uvm_km.c revision 1.27
1/*	$NetBSD: uvm_km.c,v 1.27 1999/06/04 23:38:41 thorpej Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69#include "opt_uvmhist.h"
70#include "opt_pmap_new.h"
71
72/*
73 * uvm_km.c: handle kernel memory allocation and management
74 */
75
76/*
77 * overview of kernel memory management:
78 *
79 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
80 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
81 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
82 *
83 * the kernel_map has several "submaps."   submaps can only appear in
84 * the kernel_map (user processes can't use them).   submaps "take over"
85 * the management of a sub-range of the kernel's address space.  submaps
86 * are typically allocated at boot time and are never released.   kernel
87 * virtual address space that is mapped by a submap is locked by the
88 * submap's lock -- not the kernel_map's lock.
89 *
90 * thus, the useful feature of submaps is that they allow us to break
91 * up the locking and protection of the kernel address space into smaller
92 * chunks.
93 *
94 * the vm system has several standard kernel submaps, including:
95 *   kmem_map => contains only wired kernel memory for the kernel
96 *		malloc.   *** access to kmem_map must be protected
97 *		by splimp() because we are allowed to call malloc()
98 *		at interrupt time ***
99 *   mb_map => memory for large mbufs,  *** protected by splimp ***
100 *   pager_map => used to map "buf" structures into kernel space
101 *   exec_map => used during exec to handle exec args
102 *   etc...
103 *
104 * the kernel allocates its private memory out of special uvm_objects whose
105 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
106 * are "special" and never die).   all kernel objects should be thought of
107 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
108 * object is equal to the size of kernel virtual address space (i.e. the
109 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
110 *
111 * most kernel private memory lives in kernel_object.   the only exception
112 * to this is for memory that belongs to submaps that must be protected
113 * by splimp().    each of these submaps has their own private kernel
114 * object (e.g. kmem_object, mb_object).
115 *
116 * note that just because a kernel object spans the entire kernel virutal
117 * address space doesn't mean that it has to be mapped into the entire space.
118 * large chunks of a kernel object's space go unused either because
119 * that area of kernel VM is unmapped, or there is some other type of
120 * object mapped into that range (e.g. a vnode).    for submap's kernel
121 * objects, the only part of the object that can ever be populated is the
122 * offsets that are managed by the submap.
123 *
124 * note that the "offset" in a kernel object is always the kernel virtual
125 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
126 * example:
127 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
128 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
129 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
130 *   then that means that the page at offset 0x235000 in kernel_object is
131 *   mapped at 0xf8235000.
132 *
133 * note that the offsets in kmem_object and mb_object also follow this
134 * rule.   this means that the offsets for kmem_object must fall in the
135 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
136 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
137 * in those objects will typically not start at zero.
138 *
139 * kernel object have one other special property: when the kernel virtual
140 * memory mapping them is unmapped, the backing memory in the object is
141 * freed right away.   this is done with the uvm_km_pgremove() function.
142 * this has to be done because there is no backing store for kernel pages
143 * and no need to save them after they are no longer referenced.
144 */
145
146#include <sys/param.h>
147#include <sys/systm.h>
148#include <sys/proc.h>
149
150#include <vm/vm.h>
151#include <vm/vm_page.h>
152#include <vm/vm_kern.h>
153
154#include <uvm/uvm.h>
155
156/*
157 * global data structures
158 */
159
160vm_map_t kernel_map = NULL;
161
162struct vmi_list vmi_list;
163simple_lock_data_t vmi_list_slock;
164
165/*
166 * local functions
167 */
168
169static int uvm_km_get __P((struct uvm_object *, vaddr_t,
170	vm_page_t *, int *, int, vm_prot_t, int, int));
171
172/*
173 * local data structues
174 */
175
176static struct vm_map		kernel_map_store;
177static struct uvm_object	kmem_object_store;
178static struct uvm_object	mb_object_store;
179
180static struct uvm_pagerops km_pager = {
181	NULL,	/* init */
182	NULL, /* reference */
183	NULL, /* detach */
184	NULL, /* fault */
185	NULL, /* flush */
186	uvm_km_get, /* get */
187	/* ... rest are NULL */
188};
189
190/*
191 * uvm_km_get: pager get function for kernel objects
192 *
193 * => currently we do not support pageout to the swap area, so this
194 *    pager is very simple.    eventually we may want an anonymous
195 *    object pager which will do paging.
196 * => XXXCDC: this pager should be phased out in favor of the aobj pager
197 */
198
199
200static int
201uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
202	struct uvm_object *uobj;
203	vaddr_t offset;
204	struct vm_page **pps;
205	int *npagesp;
206	int centeridx, advice, flags;
207	vm_prot_t access_type;
208{
209	vaddr_t current_offset;
210	vm_page_t ptmp;
211	int lcv, gotpages, maxpages;
212	boolean_t done;
213	UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
214
215	UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
216
217	/*
218	 * get number of pages
219	 */
220
221	maxpages = *npagesp;
222
223	/*
224	 * step 1: handled the case where fault data structures are locked.
225	 */
226
227	if (flags & PGO_LOCKED) {
228
229		/*
230		 * step 1a: get pages that are already resident.   only do
231		 * this if the data structures are locked (i.e. the first time
232		 * through).
233		 */
234
235		done = TRUE;	/* be optimistic */
236		gotpages = 0;	/* # of pages we got so far */
237
238		for (lcv = 0, current_offset = offset ;
239		    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
240
241			/* do we care about this page?  if not, skip it */
242			if (pps[lcv] == PGO_DONTCARE)
243				continue;
244
245			/* lookup page */
246			ptmp = uvm_pagelookup(uobj, current_offset);
247
248			/* null?  attempt to allocate the page */
249			if (ptmp == NULL) {
250				ptmp = uvm_pagealloc(uobj, current_offset,
251				    NULL, 0);
252				if (ptmp) {
253					/* new page */
254					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
255					UVM_PAGE_OWN(ptmp, NULL);
256					uvm_pagezero(ptmp);
257				}
258			}
259
260			/*
261			 * to be useful must get a non-busy, non-released page
262			 */
263			if (ptmp == NULL ||
264			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
265				if (lcv == centeridx ||
266				    (flags & PGO_ALLPAGES) != 0)
267					/* need to do a wait or I/O! */
268					done = FALSE;
269				continue;
270			}
271
272			/*
273			 * useful page: busy/lock it and plug it in our
274			 * result array
275			 */
276
277			/* caller must un-busy this page */
278			ptmp->flags |= PG_BUSY;
279			UVM_PAGE_OWN(ptmp, "uvm_km_get1");
280			pps[lcv] = ptmp;
281			gotpages++;
282
283		}	/* "for" lcv loop */
284
285		/*
286		 * step 1b: now we've either done everything needed or we
287		 * to unlock and do some waiting or I/O.
288		 */
289
290		UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
291
292		*npagesp = gotpages;
293		if (done)
294			return(VM_PAGER_OK);		/* bingo! */
295		else
296			return(VM_PAGER_UNLOCK);	/* EEK!   Need to
297							 * unlock and I/O */
298	}
299
300	/*
301	 * step 2: get non-resident or busy pages.
302	 * object is locked.   data structures are unlocked.
303	 */
304
305	for (lcv = 0, current_offset = offset ;
306	    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
307
308		/* skip over pages we've already gotten or don't want */
309		/* skip over pages we don't _have_ to get */
310		if (pps[lcv] != NULL ||
311		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
312			continue;
313
314		/*
315		 * we have yet to locate the current page (pps[lcv]).   we
316		 * first look for a page that is already at the current offset.
317		 * if we find a page, we check to see if it is busy or
318		 * released.  if that is the case, then we sleep on the page
319		 * until it is no longer busy or released and repeat the
320		 * lookup.    if the page we found is neither busy nor
321		 * released, then we busy it (so we own it) and plug it into
322		 * pps[lcv].   this 'break's the following while loop and
323		 * indicates we are ready to move on to the next page in the
324		 * "lcv" loop above.
325		 *
326		 * if we exit the while loop with pps[lcv] still set to NULL,
327		 * then it means that we allocated a new busy/fake/clean page
328		 * ptmp in the object and we need to do I/O to fill in the
329		 * data.
330		 */
331
332		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
333
334			/* look for a current page */
335			ptmp = uvm_pagelookup(uobj, current_offset);
336
337			/* nope?   allocate one now (if we can) */
338			if (ptmp == NULL) {
339
340				ptmp = uvm_pagealloc(uobj, current_offset,
341				    NULL, 0);
342
343				/* out of RAM? */
344				if (ptmp == NULL) {
345					simple_unlock(&uobj->vmobjlock);
346					uvm_wait("kmgetwait1");
347					simple_lock(&uobj->vmobjlock);
348					/* goto top of pps while loop */
349					continue;
350				}
351
352				/*
353				 * got new page ready for I/O.  break pps
354				 * while loop.  pps[lcv] is still NULL.
355				 */
356				break;
357			}
358
359			/* page is there, see if we need to wait on it */
360			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
361				ptmp->flags |= PG_WANTED;
362				UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
363				    "uvn_get",0);
364				simple_lock(&uobj->vmobjlock);
365				continue;	/* goto top of pps while loop */
366			}
367
368			/*
369			 * if we get here then the page has become resident
370			 * and unbusy between steps 1 and 2.  we busy it now
371			 * (so we own it) and set pps[lcv] (so that we exit
372			 * the while loop).  caller must un-busy.
373			 */
374			ptmp->flags |= PG_BUSY;
375			UVM_PAGE_OWN(ptmp, "uvm_km_get2");
376			pps[lcv] = ptmp;
377		}
378
379		/*
380		 * if we own the a valid page at the correct offset, pps[lcv]
381		 * will point to it.   nothing more to do except go to the
382		 * next page.
383		 */
384
385		if (pps[lcv])
386			continue;			/* next lcv */
387
388		/*
389		 * we have a "fake/busy/clean" page that we just allocated.
390		 * do the needed "i/o" (in this case that means zero it).
391		 */
392
393		uvm_pagezero(ptmp);
394		ptmp->flags &= ~(PG_FAKE);
395		pps[lcv] = ptmp;
396
397	}	/* lcv loop */
398
399	/*
400	 * finally, unlock object and return.
401	 */
402
403	simple_unlock(&uobj->vmobjlock);
404	UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
405	return(VM_PAGER_OK);
406}
407
408/*
409 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
410 * KVM already allocated for text, data, bss, and static data structures).
411 *
412 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
413 *    we assume that [min -> start] has already been allocated and that
414 *    "end" is the end.
415 */
416
417void
418uvm_km_init(start, end)
419	vaddr_t start, end;
420{
421	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
422
423	/*
424	 * first, initialize the interrupt-safe map list.
425	 */
426	LIST_INIT(&vmi_list);
427	simple_lock_init(&vmi_list_slock);
428
429	/*
430	 * next, init kernel memory objects.
431	 */
432
433	/* kernel_object: for pageable anonymous kernel memory */
434	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
435				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
436
437	/*
438	 * kmem_object: for use by the kernel malloc().  Memory is always
439	 * wired, and this object (and the kmem_map) can be accessed at
440	 * interrupt time.
441	 */
442	simple_lock_init(&kmem_object_store.vmobjlock);
443	kmem_object_store.pgops = &km_pager;
444	TAILQ_INIT(&kmem_object_store.memq);
445	kmem_object_store.uo_npages = 0;
446	/* we are special.  we never die */
447	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
448	uvmexp.kmem_object = &kmem_object_store;
449
450	/*
451	 * mb_object: for mbuf cluster pages on platforms which use the
452	 * mb_map.  Memory is always wired, and this object (and the mb_map)
453	 * can be accessed at interrupt time.
454	 */
455	simple_lock_init(&mb_object_store.vmobjlock);
456	mb_object_store.pgops = &km_pager;
457	TAILQ_INIT(&mb_object_store.memq);
458	mb_object_store.uo_npages = 0;
459	/* we are special.  we never die */
460	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
461	uvmexp.mb_object = &mb_object_store;
462
463	/*
464	 * init the map and reserve allready allocated kernel space
465	 * before installing.
466	 */
467
468	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
469	kernel_map_store.pmap = pmap_kernel();
470	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
471	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
472	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
473		panic("uvm_km_init: could not reserve space for kernel");
474
475	/*
476	 * install!
477	 */
478
479	kernel_map = &kernel_map_store;
480}
481
482/*
483 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
484 * is allocated all references to that area of VM must go through it.  this
485 * allows the locking of VAs in kernel_map to be broken up into regions.
486 *
487 * => if `fixed' is true, *min specifies where the region described
488 *      by the submap must start
489 * => if submap is non NULL we use that as the submap, otherwise we
490 *	alloc a new map
491 */
492struct vm_map *
493uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
494	struct vm_map *map;
495	vaddr_t *min, *max;		/* OUT, OUT */
496	vsize_t size;
497	int flags;
498	boolean_t fixed;
499	struct vm_map *submap;
500{
501	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
502
503	size = round_page(size);	/* round up to pagesize */
504
505	/*
506	 * first allocate a blank spot in the parent map
507	 */
508
509	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
510	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
511	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
512	       panic("uvm_km_suballoc: unable to allocate space in parent map");
513	}
514
515	/*
516	 * set VM bounds (min is filled in by uvm_map)
517	 */
518
519	*max = *min + size;
520
521	/*
522	 * add references to pmap and create or init the submap
523	 */
524
525	pmap_reference(vm_map_pmap(map));
526	if (submap == NULL) {
527		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
528		if (submap == NULL)
529			panic("uvm_km_suballoc: unable to create submap");
530	} else {
531		uvm_map_setup(submap, *min, *max, flags);
532		submap->pmap = vm_map_pmap(map);
533	}
534
535	/*
536	 * now let uvm_map_submap plug in it...
537	 */
538
539	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
540		panic("uvm_km_suballoc: submap allocation failed");
541
542	return(submap);
543}
544
545/*
546 * uvm_km_pgremove: remove pages from a kernel uvm_object.
547 *
548 * => when you unmap a part of anonymous kernel memory you want to toss
549 *    the pages right away.    (this gets called from uvm_unmap_...).
550 */
551
552#define UKM_HASH_PENALTY 4      /* a guess */
553
554void
555uvm_km_pgremove(uobj, start, end)
556	struct uvm_object *uobj;
557	vaddr_t start, end;
558{
559	boolean_t by_list;
560	struct vm_page *pp, *ppnext;
561	vaddr_t curoff;
562	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
563
564	simple_lock(&uobj->vmobjlock);		/* lock object */
565
566#ifdef DIAGNOSTIC
567	if (uobj->pgops != &aobj_pager)
568		panic("uvm_km_pgremove: object %p not an aobj", uobj);
569#endif
570
571	/* choose cheapest traversal */
572	by_list = (uobj->uo_npages <=
573	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
574
575	if (by_list)
576		goto loop_by_list;
577
578	/* by hash */
579
580	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
581		pp = uvm_pagelookup(uobj, curoff);
582		if (pp == NULL)
583			continue;
584
585		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
586		    pp->flags & PG_BUSY, 0, 0);
587
588		/* now do the actual work */
589		if (pp->flags & PG_BUSY) {
590			/* owner must check for this when done */
591			pp->flags |= PG_RELEASED;
592		} else {
593			/* free the swap slot... */
594			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
595
596			/*
597			 * ...and free the page; note it may be on the
598			 * active or inactive queues.
599			 */
600			uvm_lock_pageq();
601			uvm_pagefree(pp);
602			uvm_unlock_pageq();
603		}
604		/* done */
605	}
606	simple_unlock(&uobj->vmobjlock);
607	return;
608
609loop_by_list:
610
611	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
612		ppnext = pp->listq.tqe_next;
613		if (pp->offset < start || pp->offset >= end) {
614			continue;
615		}
616
617		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
618		    pp->flags & PG_BUSY, 0, 0);
619
620		/* now do the actual work */
621		if (pp->flags & PG_BUSY) {
622			/* owner must check for this when done */
623			pp->flags |= PG_RELEASED;
624		} else {
625			/* free the swap slot... */
626			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
627
628			/*
629			 * ...and free the page; note it may be on the
630			 * active or inactive queues.
631			 */
632			uvm_lock_pageq();
633			uvm_pagefree(pp);
634			uvm_unlock_pageq();
635		}
636		/* done */
637	}
638	simple_unlock(&uobj->vmobjlock);
639	return;
640}
641
642
643/*
644 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
645 *    objects
646 *
647 * => when you unmap a part of anonymous kernel memory you want to toss
648 *    the pages right away.    (this gets called from uvm_unmap_...).
649 * => none of the pages will ever be busy, and none of them will ever
650 *    be on the active or inactive queues (because these objects are
651 *    never allowed to "page").
652 */
653
654void
655uvm_km_pgremove_intrsafe(uobj, start, end)
656	struct uvm_object *uobj;
657	vaddr_t start, end;
658{
659	boolean_t by_list;
660	struct vm_page *pp, *ppnext;
661	vaddr_t curoff;
662	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
663
664	simple_lock(&uobj->vmobjlock);		/* lock object */
665
666#ifdef DIAGNOSTIC
667	if (UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0)
668		panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
669#endif
670
671	/* choose cheapest traversal */
672	by_list = (uobj->uo_npages <=
673	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
674
675	if (by_list)
676		goto loop_by_list;
677
678	/* by hash */
679
680	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
681		pp = uvm_pagelookup(uobj, curoff);
682		if (pp == NULL)
683			continue;
684
685		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
686		    pp->flags & PG_BUSY, 0, 0);
687#ifdef DIAGNOSTIC
688		if (pp->flags & PG_BUSY)
689			panic("uvm_km_pgremove_intrsafe: busy page");
690		if (pp->pqflags & PQ_ACTIVE)
691			panic("uvm_km_pgremove_intrsafe: active page");
692		if (pp->pqflags & PQ_INACTIVE)
693			panic("uvm_km_pgremove_intrsafe: inactive page");
694#endif
695
696		/* free the page */
697		uvm_pagefree(pp);
698	}
699	simple_unlock(&uobj->vmobjlock);
700	return;
701
702loop_by_list:
703
704	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
705		ppnext = pp->listq.tqe_next;
706		if (pp->offset < start || pp->offset >= end) {
707			continue;
708		}
709
710		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
711		    pp->flags & PG_BUSY, 0, 0);
712
713#ifdef DIAGNOSTIC
714		if (pp->flags & PG_BUSY)
715			panic("uvm_km_pgremove_intrsafe: busy page");
716		if (pp->pqflags & PQ_ACTIVE)
717			panic("uvm_km_pgremove_intrsafe: active page");
718		if (pp->pqflags & PQ_INACTIVE)
719			panic("uvm_km_pgremove_intrsafe: inactive page");
720#endif
721
722		/* free the page */
723		uvm_pagefree(pp);
724	}
725	simple_unlock(&uobj->vmobjlock);
726	return;
727}
728
729
730/*
731 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
732 *
733 * => we map wired memory into the specified map using the obj passed in
734 * => NOTE: we can return NULL even if we can wait if there is not enough
735 *	free VM space in the map... caller should be prepared to handle
736 *	this case.
737 * => we return KVA of memory allocated
738 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
739 *	lock the map
740 */
741
742vaddr_t
743uvm_km_kmemalloc(map, obj, size, flags)
744	vm_map_t map;
745	struct uvm_object *obj;
746	vsize_t size;
747	int flags;
748{
749	vaddr_t kva, loopva;
750	vaddr_t offset;
751	struct vm_page *pg;
752	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
753
754
755	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
756	map, obj, size, flags);
757#ifdef DIAGNOSTIC
758	/* sanity check */
759	if (vm_map_pmap(map) != pmap_kernel())
760		panic("uvm_km_kmemalloc: invalid map");
761#endif
762
763	/*
764	 * setup for call
765	 */
766
767	size = round_page(size);
768	kva = vm_map_min(map);	/* hint */
769
770	/*
771	 * allocate some virtual space
772	 */
773
774	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
775	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
776			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
777			!= KERN_SUCCESS) {
778		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
779		return(0);
780	}
781
782	/*
783	 * if all we wanted was VA, return now
784	 */
785
786	if (flags & UVM_KMF_VALLOC) {
787		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
788		return(kva);
789	}
790	/*
791	 * recover object offset from virtual address
792	 */
793
794	offset = kva - vm_map_min(kernel_map);
795	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
796
797	/*
798	 * now allocate and map in the memory... note that we are the only ones
799	 * whom should ever get a handle on this area of VM.
800	 */
801
802	loopva = kva;
803	while (size) {
804		simple_lock(&obj->vmobjlock);
805		pg = uvm_pagealloc(obj, offset, NULL, 0);
806		if (pg) {
807			pg->flags &= ~PG_BUSY;	/* new page */
808			UVM_PAGE_OWN(pg, NULL);
809		}
810		simple_unlock(&obj->vmobjlock);
811
812		/*
813		 * out of memory?
814		 */
815
816		if (pg == NULL) {
817			if (flags & UVM_KMF_NOWAIT) {
818				/* free everything! */
819				uvm_unmap(map, kva, kva + size);
820				return(0);
821			} else {
822				uvm_wait("km_getwait2");	/* sleep here */
823				continue;
824			}
825		}
826
827		/*
828		 * map it in: note that we call pmap_enter with the map and
829		 * object unlocked in case we are kmem_map/kmem_object
830		 * (because if pmap_enter wants to allocate out of kmem_object
831		 * it will need to lock it itself!)
832		 */
833		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
834#if defined(PMAP_NEW)
835			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
836			    VM_PROT_ALL);
837#else
838			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
839			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
840#endif
841		} else {
842			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
843			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
844		}
845		loopva += PAGE_SIZE;
846		offset += PAGE_SIZE;
847		size -= PAGE_SIZE;
848	}
849
850	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
851	return(kva);
852}
853
854/*
855 * uvm_km_free: free an area of kernel memory
856 */
857
858void
859uvm_km_free(map, addr, size)
860	vm_map_t map;
861	vaddr_t addr;
862	vsize_t size;
863{
864
865	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
866}
867
868/*
869 * uvm_km_free_wakeup: free an area of kernel memory and wake up
870 * anyone waiting for vm space.
871 *
872 * => XXX: "wanted" bit + unlock&wait on other end?
873 */
874
875void
876uvm_km_free_wakeup(map, addr, size)
877	vm_map_t map;
878	vaddr_t addr;
879	vsize_t size;
880{
881	vm_map_entry_t dead_entries;
882
883	vm_map_lock(map);
884	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
885			 &dead_entries);
886	thread_wakeup(map);
887	vm_map_unlock(map);
888
889	if (dead_entries != NULL)
890		uvm_unmap_detach(dead_entries, 0);
891}
892
893/*
894 * uvm_km_alloc1: allocate wired down memory in the kernel map.
895 *
896 * => we can sleep if needed
897 */
898
899vaddr_t
900uvm_km_alloc1(map, size, zeroit)
901	vm_map_t map;
902	vsize_t size;
903	boolean_t zeroit;
904{
905	vaddr_t kva, loopva, offset;
906	struct vm_page *pg;
907	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
908
909	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
910
911#ifdef DIAGNOSTIC
912	if (vm_map_pmap(map) != pmap_kernel())
913		panic("uvm_km_alloc1");
914#endif
915
916	size = round_page(size);
917	kva = vm_map_min(map);		/* hint */
918
919	/*
920	 * allocate some virtual space
921	 */
922
923	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
924	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
925			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
926		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
927		return(0);
928	}
929
930	/*
931	 * recover object offset from virtual address
932	 */
933
934	offset = kva - vm_map_min(kernel_map);
935	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
936
937	/*
938	 * now allocate the memory.  we must be careful about released pages.
939	 */
940
941	loopva = kva;
942	while (size) {
943		simple_lock(&uvm.kernel_object->vmobjlock);
944		pg = uvm_pagelookup(uvm.kernel_object, offset);
945
946		/*
947		 * if we found a page in an unallocated region, it must be
948		 * released
949		 */
950		if (pg) {
951			if ((pg->flags & PG_RELEASED) == 0)
952				panic("uvm_km_alloc1: non-released page");
953			pg->flags |= PG_WANTED;
954			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
955			    0, "km_alloc", 0);
956			continue;   /* retry */
957		}
958
959		/* allocate ram */
960		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
961		if (pg) {
962			pg->flags &= ~PG_BUSY;	/* new page */
963			UVM_PAGE_OWN(pg, NULL);
964		}
965		simple_unlock(&uvm.kernel_object->vmobjlock);
966		if (pg == NULL) {
967			uvm_wait("km_alloc1w");	/* wait for memory */
968			continue;
969		}
970
971		/*
972		 * map it in; note we're never called with an intrsafe
973		 * object, so we always use regular old pmap_enter().
974		 */
975		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
976		    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
977
978		loopva += PAGE_SIZE;
979		offset += PAGE_SIZE;
980		size -= PAGE_SIZE;
981	}
982
983	/*
984	 * zero on request (note that "size" is now zero due to the above loop
985	 * so we need to subtract kva from loopva to reconstruct the size).
986	 */
987
988	if (zeroit)
989		memset((caddr_t)kva, 0, loopva - kva);
990
991	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
992	return(kva);
993}
994
995/*
996 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
997 *
998 * => memory is not allocated until fault time
999 */
1000
1001vaddr_t
1002uvm_km_valloc(map, size)
1003	vm_map_t map;
1004	vsize_t size;
1005{
1006	vaddr_t kva;
1007	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
1008
1009	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
1010
1011#ifdef DIAGNOSTIC
1012	if (vm_map_pmap(map) != pmap_kernel())
1013		panic("uvm_km_valloc");
1014#endif
1015
1016	size = round_page(size);
1017	kva = vm_map_min(map);		/* hint */
1018
1019	/*
1020	 * allocate some virtual space.  will be demand filled by kernel_object.
1021	 */
1022
1023	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
1024	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
1025	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
1026		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
1027		return(0);
1028	}
1029
1030	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
1031	return(kva);
1032}
1033
1034/*
1035 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
1036 *
1037 * => memory is not allocated until fault time
1038 * => if no room in map, wait for space to free, unless requested size
1039 *    is larger than map (in which case we return 0)
1040 */
1041
1042vaddr_t
1043uvm_km_valloc_wait(map, size)
1044	vm_map_t map;
1045	vsize_t size;
1046{
1047	vaddr_t kva;
1048	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
1049
1050	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
1051
1052#ifdef DIAGNOSTIC
1053	if (vm_map_pmap(map) != pmap_kernel())
1054		panic("uvm_km_valloc_wait");
1055#endif
1056
1057	size = round_page(size);
1058	if (size > vm_map_max(map) - vm_map_min(map))
1059		return(0);
1060
1061	while (1) {
1062		kva = vm_map_min(map);		/* hint */
1063
1064		/*
1065		 * allocate some virtual space.   will be demand filled
1066		 * by kernel_object.
1067		 */
1068
1069		if (uvm_map(map, &kva, size, uvm.kernel_object,
1070		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
1071		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
1072		    == KERN_SUCCESS) {
1073			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
1074			return(kva);
1075		}
1076
1077		/*
1078		 * failed.  sleep for a while (on map)
1079		 */
1080
1081		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
1082		tsleep((caddr_t)map, PVM, "vallocwait", 0);
1083	}
1084	/*NOTREACHED*/
1085}
1086
1087/* Sanity; must specify both or none. */
1088#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
1089    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
1090#error Must specify MAP and UNMAP together.
1091#endif
1092
1093/*
1094 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
1095 *
1096 * => if the pmap specifies an alternate mapping method, we use it.
1097 */
1098
1099/* ARGSUSED */
1100vaddr_t
1101uvm_km_alloc_poolpage1(map, obj, waitok)
1102	vm_map_t map;
1103	struct uvm_object *obj;
1104	boolean_t waitok;
1105{
1106#if defined(PMAP_MAP_POOLPAGE)
1107	struct vm_page *pg;
1108	vaddr_t va;
1109
1110 again:
1111	pg = uvm_pagealloc(NULL, 0, NULL, 0);
1112	if (pg == NULL) {
1113		if (waitok) {
1114			uvm_wait("plpg");
1115			goto again;
1116		} else
1117			return (0);
1118	}
1119	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
1120	if (va == 0)
1121		uvm_pagefree(pg);
1122	return (va);
1123#else
1124	vaddr_t va;
1125	int s;
1126
1127	/*
1128	 * NOTE: We may be called with a map that doens't require splimp
1129	 * protection (e.g. kernel_map).  However, it does not hurt to
1130	 * go to splimp in this case (since unprocted maps will never be
1131	 * accessed in interrupt context).
1132	 *
1133	 * XXX We may want to consider changing the interface to this
1134	 * XXX function.
1135	 */
1136
1137	s = splimp();
1138	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
1139	splx(s);
1140	return (va);
1141#endif /* PMAP_MAP_POOLPAGE */
1142}
1143
1144/*
1145 * uvm_km_free_poolpage: free a previously allocated pool page
1146 *
1147 * => if the pmap specifies an alternate unmapping method, we use it.
1148 */
1149
1150/* ARGSUSED */
1151void
1152uvm_km_free_poolpage1(map, addr)
1153	vm_map_t map;
1154	vaddr_t addr;
1155{
1156#if defined(PMAP_UNMAP_POOLPAGE)
1157	paddr_t pa;
1158
1159	pa = PMAP_UNMAP_POOLPAGE(addr);
1160	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1161#else
1162	int s;
1163
1164	/*
1165	 * NOTE: We may be called with a map that doens't require splimp
1166	 * protection (e.g. kernel_map).  However, it does not hurt to
1167	 * go to splimp in this case (since unprocted maps will never be
1168	 * accessed in interrupt context).
1169	 *
1170	 * XXX We may want to consider changing the interface to this
1171	 * XXX function.
1172	 */
1173
1174	s = splimp();
1175	uvm_km_free(map, addr, PAGE_SIZE);
1176	splx(s);
1177#endif /* PMAP_UNMAP_POOLPAGE */
1178}
1179