uvm_km.c revision 1.26
1/*	$NetBSD: uvm_km.c,v 1.26 1999/05/26 19:27:49 thorpej Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69#include "opt_uvmhist.h"
70#include "opt_pmap_new.h"
71
72/*
73 * uvm_km.c: handle kernel memory allocation and management
74 */
75
76/*
77 * overview of kernel memory management:
78 *
79 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
80 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
81 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
82 *
83 * the kernel_map has several "submaps."   submaps can only appear in
84 * the kernel_map (user processes can't use them).   submaps "take over"
85 * the management of a sub-range of the kernel's address space.  submaps
86 * are typically allocated at boot time and are never released.   kernel
87 * virtual address space that is mapped by a submap is locked by the
88 * submap's lock -- not the kernel_map's lock.
89 *
90 * thus, the useful feature of submaps is that they allow us to break
91 * up the locking and protection of the kernel address space into smaller
92 * chunks.
93 *
94 * the vm system has several standard kernel submaps, including:
95 *   kmem_map => contains only wired kernel memory for the kernel
96 *		malloc.   *** access to kmem_map must be protected
97 *		by splimp() because we are allowed to call malloc()
98 *		at interrupt time ***
99 *   mb_map => memory for large mbufs,  *** protected by splimp ***
100 *   pager_map => used to map "buf" structures into kernel space
101 *   exec_map => used during exec to handle exec args
102 *   etc...
103 *
104 * the kernel allocates its private memory out of special uvm_objects whose
105 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
106 * are "special" and never die).   all kernel objects should be thought of
107 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
108 * object is equal to the size of kernel virtual address space (i.e. the
109 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
110 *
111 * most kernel private memory lives in kernel_object.   the only exception
112 * to this is for memory that belongs to submaps that must be protected
113 * by splimp().    each of these submaps has their own private kernel
114 * object (e.g. kmem_object, mb_object).
115 *
116 * note that just because a kernel object spans the entire kernel virutal
117 * address space doesn't mean that it has to be mapped into the entire space.
118 * large chunks of a kernel object's space go unused either because
119 * that area of kernel VM is unmapped, or there is some other type of
120 * object mapped into that range (e.g. a vnode).    for submap's kernel
121 * objects, the only part of the object that can ever be populated is the
122 * offsets that are managed by the submap.
123 *
124 * note that the "offset" in a kernel object is always the kernel virtual
125 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
126 * example:
127 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
128 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
129 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
130 *   then that means that the page at offset 0x235000 in kernel_object is
131 *   mapped at 0xf8235000.
132 *
133 * note that the offsets in kmem_object and mb_object also follow this
134 * rule.   this means that the offsets for kmem_object must fall in the
135 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
136 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
137 * in those objects will typically not start at zero.
138 *
139 * kernel object have one other special property: when the kernel virtual
140 * memory mapping them is unmapped, the backing memory in the object is
141 * freed right away.   this is done with the uvm_km_pgremove() function.
142 * this has to be done because there is no backing store for kernel pages
143 * and no need to save them after they are no longer referenced.
144 */
145
146#include <sys/param.h>
147#include <sys/systm.h>
148#include <sys/proc.h>
149
150#include <vm/vm.h>
151#include <vm/vm_page.h>
152#include <vm/vm_kern.h>
153
154#include <uvm/uvm.h>
155
156/*
157 * global data structures
158 */
159
160vm_map_t kernel_map = NULL;
161
162/*
163 * local functions
164 */
165
166static int uvm_km_get __P((struct uvm_object *, vaddr_t,
167	vm_page_t *, int *, int, vm_prot_t, int, int));
168
169/*
170 * local data structues
171 */
172
173static struct vm_map		kernel_map_store;
174static struct uvm_object	kmem_object_store;
175static struct uvm_object	mb_object_store;
176
177static struct uvm_pagerops km_pager = {
178	NULL,	/* init */
179	NULL, /* reference */
180	NULL, /* detach */
181	NULL, /* fault */
182	NULL, /* flush */
183	uvm_km_get, /* get */
184	/* ... rest are NULL */
185};
186
187/*
188 * uvm_km_get: pager get function for kernel objects
189 *
190 * => currently we do not support pageout to the swap area, so this
191 *    pager is very simple.    eventually we may want an anonymous
192 *    object pager which will do paging.
193 * => XXXCDC: this pager should be phased out in favor of the aobj pager
194 */
195
196
197static int
198uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
199	struct uvm_object *uobj;
200	vaddr_t offset;
201	struct vm_page **pps;
202	int *npagesp;
203	int centeridx, advice, flags;
204	vm_prot_t access_type;
205{
206	vaddr_t current_offset;
207	vm_page_t ptmp;
208	int lcv, gotpages, maxpages;
209	boolean_t done;
210	UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
211
212	UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
213
214	/*
215	 * get number of pages
216	 */
217
218	maxpages = *npagesp;
219
220	/*
221	 * step 1: handled the case where fault data structures are locked.
222	 */
223
224	if (flags & PGO_LOCKED) {
225
226		/*
227		 * step 1a: get pages that are already resident.   only do
228		 * this if the data structures are locked (i.e. the first time
229		 * through).
230		 */
231
232		done = TRUE;	/* be optimistic */
233		gotpages = 0;	/* # of pages we got so far */
234
235		for (lcv = 0, current_offset = offset ;
236		    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
237
238			/* do we care about this page?  if not, skip it */
239			if (pps[lcv] == PGO_DONTCARE)
240				continue;
241
242			/* lookup page */
243			ptmp = uvm_pagelookup(uobj, current_offset);
244
245			/* null?  attempt to allocate the page */
246			if (ptmp == NULL) {
247				ptmp = uvm_pagealloc(uobj, current_offset,
248				    NULL, 0);
249				if (ptmp) {
250					/* new page */
251					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
252					UVM_PAGE_OWN(ptmp, NULL);
253					uvm_pagezero(ptmp);
254				}
255			}
256
257			/*
258			 * to be useful must get a non-busy, non-released page
259			 */
260			if (ptmp == NULL ||
261			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
262				if (lcv == centeridx ||
263				    (flags & PGO_ALLPAGES) != 0)
264					/* need to do a wait or I/O! */
265					done = FALSE;
266				continue;
267			}
268
269			/*
270			 * useful page: busy/lock it and plug it in our
271			 * result array
272			 */
273
274			/* caller must un-busy this page */
275			ptmp->flags |= PG_BUSY;
276			UVM_PAGE_OWN(ptmp, "uvm_km_get1");
277			pps[lcv] = ptmp;
278			gotpages++;
279
280		}	/* "for" lcv loop */
281
282		/*
283		 * step 1b: now we've either done everything needed or we
284		 * to unlock and do some waiting or I/O.
285		 */
286
287		UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
288
289		*npagesp = gotpages;
290		if (done)
291			return(VM_PAGER_OK);		/* bingo! */
292		else
293			return(VM_PAGER_UNLOCK);	/* EEK!   Need to
294							 * unlock and I/O */
295	}
296
297	/*
298	 * step 2: get non-resident or busy pages.
299	 * object is locked.   data structures are unlocked.
300	 */
301
302	for (lcv = 0, current_offset = offset ;
303	    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
304
305		/* skip over pages we've already gotten or don't want */
306		/* skip over pages we don't _have_ to get */
307		if (pps[lcv] != NULL ||
308		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
309			continue;
310
311		/*
312		 * we have yet to locate the current page (pps[lcv]).   we
313		 * first look for a page that is already at the current offset.
314		 * if we find a page, we check to see if it is busy or
315		 * released.  if that is the case, then we sleep on the page
316		 * until it is no longer busy or released and repeat the
317		 * lookup.    if the page we found is neither busy nor
318		 * released, then we busy it (so we own it) and plug it into
319		 * pps[lcv].   this 'break's the following while loop and
320		 * indicates we are ready to move on to the next page in the
321		 * "lcv" loop above.
322		 *
323		 * if we exit the while loop with pps[lcv] still set to NULL,
324		 * then it means that we allocated a new busy/fake/clean page
325		 * ptmp in the object and we need to do I/O to fill in the
326		 * data.
327		 */
328
329		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
330
331			/* look for a current page */
332			ptmp = uvm_pagelookup(uobj, current_offset);
333
334			/* nope?   allocate one now (if we can) */
335			if (ptmp == NULL) {
336
337				ptmp = uvm_pagealloc(uobj, current_offset,
338				    NULL, 0);
339
340				/* out of RAM? */
341				if (ptmp == NULL) {
342					simple_unlock(&uobj->vmobjlock);
343					uvm_wait("kmgetwait1");
344					simple_lock(&uobj->vmobjlock);
345					/* goto top of pps while loop */
346					continue;
347				}
348
349				/*
350				 * got new page ready for I/O.  break pps
351				 * while loop.  pps[lcv] is still NULL.
352				 */
353				break;
354			}
355
356			/* page is there, see if we need to wait on it */
357			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
358				ptmp->flags |= PG_WANTED;
359				UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
360				    "uvn_get",0);
361				simple_lock(&uobj->vmobjlock);
362				continue;	/* goto top of pps while loop */
363			}
364
365			/*
366			 * if we get here then the page has become resident
367			 * and unbusy between steps 1 and 2.  we busy it now
368			 * (so we own it) and set pps[lcv] (so that we exit
369			 * the while loop).  caller must un-busy.
370			 */
371			ptmp->flags |= PG_BUSY;
372			UVM_PAGE_OWN(ptmp, "uvm_km_get2");
373			pps[lcv] = ptmp;
374		}
375
376		/*
377		 * if we own the a valid page at the correct offset, pps[lcv]
378		 * will point to it.   nothing more to do except go to the
379		 * next page.
380		 */
381
382		if (pps[lcv])
383			continue;			/* next lcv */
384
385		/*
386		 * we have a "fake/busy/clean" page that we just allocated.
387		 * do the needed "i/o" (in this case that means zero it).
388		 */
389
390		uvm_pagezero(ptmp);
391		ptmp->flags &= ~(PG_FAKE);
392		pps[lcv] = ptmp;
393
394	}	/* lcv loop */
395
396	/*
397	 * finally, unlock object and return.
398	 */
399
400	simple_unlock(&uobj->vmobjlock);
401	UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
402	return(VM_PAGER_OK);
403}
404
405/*
406 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
407 * KVM already allocated for text, data, bss, and static data structures).
408 *
409 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
410 *    we assume that [min -> start] has already been allocated and that
411 *    "end" is the end.
412 */
413
414void
415uvm_km_init(start, end)
416	vaddr_t start, end;
417{
418	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
419
420	/*
421	 * first, init kernel memory objects.
422	 */
423
424	/* kernel_object: for pageable anonymous kernel memory */
425	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
426				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
427
428	/*
429	 * kmem_object: for use by the kernel malloc().  Memory is always
430	 * wired, and this object (and the kmem_map) can be accessed at
431	 * interrupt time.
432	 */
433	simple_lock_init(&kmem_object_store.vmobjlock);
434	kmem_object_store.pgops = &km_pager;
435	TAILQ_INIT(&kmem_object_store.memq);
436	kmem_object_store.uo_npages = 0;
437	/* we are special.  we never die */
438	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
439	uvmexp.kmem_object = &kmem_object_store;
440
441	/*
442	 * mb_object: for mbuf cluster pages on platforms which use the
443	 * mb_map.  Memory is always wired, and this object (and the mb_map)
444	 * can be accessed at interrupt time.
445	 */
446	simple_lock_init(&mb_object_store.vmobjlock);
447	mb_object_store.pgops = &km_pager;
448	TAILQ_INIT(&mb_object_store.memq);
449	mb_object_store.uo_npages = 0;
450	/* we are special.  we never die */
451	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
452	uvmexp.mb_object = &mb_object_store;
453
454	/*
455	 * init the map and reserve allready allocated kernel space
456	 * before installing.
457	 */
458
459	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
460	kernel_map_store.pmap = pmap_kernel();
461	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
462	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
463	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
464		panic("uvm_km_init: could not reserve space for kernel");
465
466	/*
467	 * install!
468	 */
469
470	kernel_map = &kernel_map_store;
471}
472
473/*
474 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
475 * is allocated all references to that area of VM must go through it.  this
476 * allows the locking of VAs in kernel_map to be broken up into regions.
477 *
478 * => if `fixed' is true, *min specifies where the region described
479 *      by the submap must start
480 * => if submap is non NULL we use that as the submap, otherwise we
481 *	alloc a new map
482 */
483struct vm_map *
484uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
485	struct vm_map *map;
486	vaddr_t *min, *max;		/* OUT, OUT */
487	vsize_t size;
488	int flags;
489	boolean_t fixed;
490	struct vm_map *submap;
491{
492	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
493
494	size = round_page(size);	/* round up to pagesize */
495
496	/*
497	 * first allocate a blank spot in the parent map
498	 */
499
500	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
501	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
502	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
503	       panic("uvm_km_suballoc: unable to allocate space in parent map");
504	}
505
506	/*
507	 * set VM bounds (min is filled in by uvm_map)
508	 */
509
510	*max = *min + size;
511
512	/*
513	 * add references to pmap and create or init the submap
514	 */
515
516	pmap_reference(vm_map_pmap(map));
517	if (submap == NULL) {
518		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
519		if (submap == NULL)
520			panic("uvm_km_suballoc: unable to create submap");
521	} else {
522		uvm_map_setup(submap, *min, *max, flags);
523		submap->pmap = vm_map_pmap(map);
524	}
525
526	/*
527	 * now let uvm_map_submap plug in it...
528	 */
529
530	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
531		panic("uvm_km_suballoc: submap allocation failed");
532
533	return(submap);
534}
535
536/*
537 * uvm_km_pgremove: remove pages from a kernel uvm_object.
538 *
539 * => when you unmap a part of anonymous kernel memory you want to toss
540 *    the pages right away.    (this gets called from uvm_unmap_...).
541 */
542
543#define UKM_HASH_PENALTY 4      /* a guess */
544
545void
546uvm_km_pgremove(uobj, start, end)
547	struct uvm_object *uobj;
548	vaddr_t start, end;
549{
550	boolean_t by_list;
551	struct vm_page *pp, *ppnext;
552	vaddr_t curoff;
553	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
554
555	simple_lock(&uobj->vmobjlock);		/* lock object */
556
557#ifdef DIAGNOSTIC
558	if (uobj->pgops != &aobj_pager)
559		panic("uvm_km_pgremove: object %p not an aobj", uobj);
560#endif
561
562	/* choose cheapest traversal */
563	by_list = (uobj->uo_npages <=
564	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
565
566	if (by_list)
567		goto loop_by_list;
568
569	/* by hash */
570
571	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
572		pp = uvm_pagelookup(uobj, curoff);
573		if (pp == NULL)
574			continue;
575
576		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
577		    pp->flags & PG_BUSY, 0, 0);
578
579		/* now do the actual work */
580		if (pp->flags & PG_BUSY) {
581			/* owner must check for this when done */
582			pp->flags |= PG_RELEASED;
583		} else {
584			/* free the swap slot... */
585			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
586
587			/*
588			 * ...and free the page; note it may be on the
589			 * active or inactive queues.
590			 */
591			uvm_lock_pageq();
592			uvm_pagefree(pp);
593			uvm_unlock_pageq();
594		}
595		/* done */
596	}
597	simple_unlock(&uobj->vmobjlock);
598	return;
599
600loop_by_list:
601
602	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
603		ppnext = pp->listq.tqe_next;
604		if (pp->offset < start || pp->offset >= end) {
605			continue;
606		}
607
608		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
609		    pp->flags & PG_BUSY, 0, 0);
610
611		/* now do the actual work */
612		if (pp->flags & PG_BUSY) {
613			/* owner must check for this when done */
614			pp->flags |= PG_RELEASED;
615		} else {
616			/* free the swap slot... */
617			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
618
619			/*
620			 * ...and free the page; note it may be on the
621			 * active or inactive queues.
622			 */
623			uvm_lock_pageq();
624			uvm_pagefree(pp);
625			uvm_unlock_pageq();
626		}
627		/* done */
628	}
629	simple_unlock(&uobj->vmobjlock);
630	return;
631}
632
633
634/*
635 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
636 *    objects
637 *
638 * => when you unmap a part of anonymous kernel memory you want to toss
639 *    the pages right away.    (this gets called from uvm_unmap_...).
640 * => none of the pages will ever be busy, and none of them will ever
641 *    be on the active or inactive queues (because these objects are
642 *    never allowed to "page").
643 */
644
645void
646uvm_km_pgremove_intrsafe(uobj, start, end)
647	struct uvm_object *uobj;
648	vaddr_t start, end;
649{
650	boolean_t by_list;
651	struct vm_page *pp, *ppnext;
652	vaddr_t curoff;
653	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
654
655	simple_lock(&uobj->vmobjlock);		/* lock object */
656
657#ifdef DIAGNOSTIC
658	if (UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0)
659		panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
660#endif
661
662	/* choose cheapest traversal */
663	by_list = (uobj->uo_npages <=
664	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
665
666	if (by_list)
667		goto loop_by_list;
668
669	/* by hash */
670
671	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
672		pp = uvm_pagelookup(uobj, curoff);
673		if (pp == NULL)
674			continue;
675
676		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
677		    pp->flags & PG_BUSY, 0, 0);
678#ifdef DIAGNOSTIC
679		if (pp->flags & PG_BUSY)
680			panic("uvm_km_pgremove_intrsafe: busy page");
681		if (pp->pqflags & PQ_ACTIVE)
682			panic("uvm_km_pgremove_intrsafe: active page");
683		if (pp->pqflags & PQ_INACTIVE)
684			panic("uvm_km_pgremove_intrsafe: inactive page");
685#endif
686
687		/* free the page */
688		uvm_pagefree(pp);
689	}
690	simple_unlock(&uobj->vmobjlock);
691	return;
692
693loop_by_list:
694
695	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
696		ppnext = pp->listq.tqe_next;
697		if (pp->offset < start || pp->offset >= end) {
698			continue;
699		}
700
701		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
702		    pp->flags & PG_BUSY, 0, 0);
703
704#ifdef DIAGNOSTIC
705		if (pp->flags & PG_BUSY)
706			panic("uvm_km_pgremove_intrsafe: busy page");
707		if (pp->pqflags & PQ_ACTIVE)
708			panic("uvm_km_pgremove_intrsafe: active page");
709		if (pp->pqflags & PQ_INACTIVE)
710			panic("uvm_km_pgremove_intrsafe: inactive page");
711#endif
712
713		/* free the page */
714		uvm_pagefree(pp);
715	}
716	simple_unlock(&uobj->vmobjlock);
717	return;
718}
719
720
721/*
722 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
723 *
724 * => we map wired memory into the specified map using the obj passed in
725 * => NOTE: we can return NULL even if we can wait if there is not enough
726 *	free VM space in the map... caller should be prepared to handle
727 *	this case.
728 * => we return KVA of memory allocated
729 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
730 *	lock the map
731 */
732
733vaddr_t
734uvm_km_kmemalloc(map, obj, size, flags)
735	vm_map_t map;
736	struct uvm_object *obj;
737	vsize_t size;
738	int flags;
739{
740	vaddr_t kva, loopva;
741	vaddr_t offset;
742	struct vm_page *pg;
743	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
744
745
746	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
747	map, obj, size, flags);
748#ifdef DIAGNOSTIC
749	/* sanity check */
750	if (vm_map_pmap(map) != pmap_kernel())
751		panic("uvm_km_kmemalloc: invalid map");
752#endif
753
754	/*
755	 * setup for call
756	 */
757
758	size = round_page(size);
759	kva = vm_map_min(map);	/* hint */
760
761	/*
762	 * allocate some virtual space
763	 */
764
765	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
766	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
767			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
768			!= KERN_SUCCESS) {
769		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
770		return(0);
771	}
772
773	/*
774	 * if all we wanted was VA, return now
775	 */
776
777	if (flags & UVM_KMF_VALLOC) {
778		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
779		return(kva);
780	}
781	/*
782	 * recover object offset from virtual address
783	 */
784
785	offset = kva - vm_map_min(kernel_map);
786	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
787
788	/*
789	 * now allocate and map in the memory... note that we are the only ones
790	 * whom should ever get a handle on this area of VM.
791	 */
792
793	loopva = kva;
794	while (size) {
795		simple_lock(&obj->vmobjlock);
796		pg = uvm_pagealloc(obj, offset, NULL, 0);
797		if (pg) {
798			pg->flags &= ~PG_BUSY;	/* new page */
799			UVM_PAGE_OWN(pg, NULL);
800		}
801		simple_unlock(&obj->vmobjlock);
802
803		/*
804		 * out of memory?
805		 */
806
807		if (pg == NULL) {
808			if (flags & UVM_KMF_NOWAIT) {
809				/* free everything! */
810				uvm_unmap(map, kva, kva + size);
811				return(0);
812			} else {
813				uvm_wait("km_getwait2");	/* sleep here */
814				continue;
815			}
816		}
817
818		/*
819		 * map it in: note that we call pmap_enter with the map and
820		 * object unlocked in case we are kmem_map/kmem_object
821		 * (because if pmap_enter wants to allocate out of kmem_object
822		 * it will need to lock it itself!)
823		 */
824		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
825#if defined(PMAP_NEW)
826			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
827			    VM_PROT_ALL);
828#else
829			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
830			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
831#endif
832		} else {
833			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
834			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
835		}
836		loopva += PAGE_SIZE;
837		offset += PAGE_SIZE;
838		size -= PAGE_SIZE;
839	}
840
841	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
842	return(kva);
843}
844
845/*
846 * uvm_km_free: free an area of kernel memory
847 */
848
849void
850uvm_km_free(map, addr, size)
851	vm_map_t map;
852	vaddr_t addr;
853	vsize_t size;
854{
855
856	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
857}
858
859/*
860 * uvm_km_free_wakeup: free an area of kernel memory and wake up
861 * anyone waiting for vm space.
862 *
863 * => XXX: "wanted" bit + unlock&wait on other end?
864 */
865
866void
867uvm_km_free_wakeup(map, addr, size)
868	vm_map_t map;
869	vaddr_t addr;
870	vsize_t size;
871{
872	vm_map_entry_t dead_entries;
873
874	vm_map_lock(map);
875	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
876			 &dead_entries);
877	thread_wakeup(map);
878	vm_map_unlock(map);
879
880	if (dead_entries != NULL)
881		uvm_unmap_detach(dead_entries, 0);
882}
883
884/*
885 * uvm_km_alloc1: allocate wired down memory in the kernel map.
886 *
887 * => we can sleep if needed
888 */
889
890vaddr_t
891uvm_km_alloc1(map, size, zeroit)
892	vm_map_t map;
893	vsize_t size;
894	boolean_t zeroit;
895{
896	vaddr_t kva, loopva, offset;
897	struct vm_page *pg;
898	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
899
900	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
901
902#ifdef DIAGNOSTIC
903	if (vm_map_pmap(map) != pmap_kernel())
904		panic("uvm_km_alloc1");
905#endif
906
907	size = round_page(size);
908	kva = vm_map_min(map);		/* hint */
909
910	/*
911	 * allocate some virtual space
912	 */
913
914	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
915	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
916			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
917		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
918		return(0);
919	}
920
921	/*
922	 * recover object offset from virtual address
923	 */
924
925	offset = kva - vm_map_min(kernel_map);
926	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
927
928	/*
929	 * now allocate the memory.  we must be careful about released pages.
930	 */
931
932	loopva = kva;
933	while (size) {
934		simple_lock(&uvm.kernel_object->vmobjlock);
935		pg = uvm_pagelookup(uvm.kernel_object, offset);
936
937		/*
938		 * if we found a page in an unallocated region, it must be
939		 * released
940		 */
941		if (pg) {
942			if ((pg->flags & PG_RELEASED) == 0)
943				panic("uvm_km_alloc1: non-released page");
944			pg->flags |= PG_WANTED;
945			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
946			    0, "km_alloc", 0);
947			continue;   /* retry */
948		}
949
950		/* allocate ram */
951		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
952		if (pg) {
953			pg->flags &= ~PG_BUSY;	/* new page */
954			UVM_PAGE_OWN(pg, NULL);
955		}
956		simple_unlock(&uvm.kernel_object->vmobjlock);
957		if (pg == NULL) {
958			uvm_wait("km_alloc1w");	/* wait for memory */
959			continue;
960		}
961
962		/*
963		 * map it in; note we're never called with an intrsafe
964		 * object, so we always use regular old pmap_enter().
965		 */
966		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
967		    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
968
969		loopva += PAGE_SIZE;
970		offset += PAGE_SIZE;
971		size -= PAGE_SIZE;
972	}
973
974	/*
975	 * zero on request (note that "size" is now zero due to the above loop
976	 * so we need to subtract kva from loopva to reconstruct the size).
977	 */
978
979	if (zeroit)
980		memset((caddr_t)kva, 0, loopva - kva);
981
982	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
983	return(kva);
984}
985
986/*
987 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
988 *
989 * => memory is not allocated until fault time
990 */
991
992vaddr_t
993uvm_km_valloc(map, size)
994	vm_map_t map;
995	vsize_t size;
996{
997	vaddr_t kva;
998	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
999
1000	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
1001
1002#ifdef DIAGNOSTIC
1003	if (vm_map_pmap(map) != pmap_kernel())
1004		panic("uvm_km_valloc");
1005#endif
1006
1007	size = round_page(size);
1008	kva = vm_map_min(map);		/* hint */
1009
1010	/*
1011	 * allocate some virtual space.  will be demand filled by kernel_object.
1012	 */
1013
1014	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
1015	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
1016	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
1017		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
1018		return(0);
1019	}
1020
1021	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
1022	return(kva);
1023}
1024
1025/*
1026 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
1027 *
1028 * => memory is not allocated until fault time
1029 * => if no room in map, wait for space to free, unless requested size
1030 *    is larger than map (in which case we return 0)
1031 */
1032
1033vaddr_t
1034uvm_km_valloc_wait(map, size)
1035	vm_map_t map;
1036	vsize_t size;
1037{
1038	vaddr_t kva;
1039	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
1040
1041	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
1042
1043#ifdef DIAGNOSTIC
1044	if (vm_map_pmap(map) != pmap_kernel())
1045		panic("uvm_km_valloc_wait");
1046#endif
1047
1048	size = round_page(size);
1049	if (size > vm_map_max(map) - vm_map_min(map))
1050		return(0);
1051
1052	while (1) {
1053		kva = vm_map_min(map);		/* hint */
1054
1055		/*
1056		 * allocate some virtual space.   will be demand filled
1057		 * by kernel_object.
1058		 */
1059
1060		if (uvm_map(map, &kva, size, uvm.kernel_object,
1061		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
1062		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
1063		    == KERN_SUCCESS) {
1064			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
1065			return(kva);
1066		}
1067
1068		/*
1069		 * failed.  sleep for a while (on map)
1070		 */
1071
1072		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
1073		tsleep((caddr_t)map, PVM, "vallocwait", 0);
1074	}
1075	/*NOTREACHED*/
1076}
1077
1078/* Sanity; must specify both or none. */
1079#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
1080    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
1081#error Must specify MAP and UNMAP together.
1082#endif
1083
1084/*
1085 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
1086 *
1087 * => if the pmap specifies an alternate mapping method, we use it.
1088 */
1089
1090/* ARGSUSED */
1091vaddr_t
1092uvm_km_alloc_poolpage1(map, obj, waitok)
1093	vm_map_t map;
1094	struct uvm_object *obj;
1095	boolean_t waitok;
1096{
1097#if defined(PMAP_MAP_POOLPAGE)
1098	struct vm_page *pg;
1099	vaddr_t va;
1100
1101 again:
1102	pg = uvm_pagealloc(NULL, 0, NULL, 0);
1103	if (pg == NULL) {
1104		if (waitok) {
1105			uvm_wait("plpg");
1106			goto again;
1107		} else
1108			return (0);
1109	}
1110	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
1111	if (va == 0)
1112		uvm_pagefree(pg);
1113	return (va);
1114#else
1115	vaddr_t va;
1116	int s;
1117
1118	/*
1119	 * NOTE: We may be called with a map that doens't require splimp
1120	 * protection (e.g. kernel_map).  However, it does not hurt to
1121	 * go to splimp in this case (since unprocted maps will never be
1122	 * accessed in interrupt context).
1123	 *
1124	 * XXX We may want to consider changing the interface to this
1125	 * XXX function.
1126	 */
1127
1128	s = splimp();
1129	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
1130	splx(s);
1131	return (va);
1132#endif /* PMAP_MAP_POOLPAGE */
1133}
1134
1135/*
1136 * uvm_km_free_poolpage: free a previously allocated pool page
1137 *
1138 * => if the pmap specifies an alternate unmapping method, we use it.
1139 */
1140
1141/* ARGSUSED */
1142void
1143uvm_km_free_poolpage1(map, addr)
1144	vm_map_t map;
1145	vaddr_t addr;
1146{
1147#if defined(PMAP_UNMAP_POOLPAGE)
1148	paddr_t pa;
1149
1150	pa = PMAP_UNMAP_POOLPAGE(addr);
1151	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1152#else
1153	int s;
1154
1155	/*
1156	 * NOTE: We may be called with a map that doens't require splimp
1157	 * protection (e.g. kernel_map).  However, it does not hurt to
1158	 * go to splimp in this case (since unprocted maps will never be
1159	 * accessed in interrupt context).
1160	 *
1161	 * XXX We may want to consider changing the interface to this
1162	 * XXX function.
1163	 */
1164
1165	s = splimp();
1166	uvm_km_free(map, addr, PAGE_SIZE);
1167	splx(s);
1168#endif /* PMAP_UNMAP_POOLPAGE */
1169}
1170