uvm_km.c revision 1.19
1/*	$NetBSD: uvm_km.c,v 1.19 1999/03/24 03:45:27 cgd Exp $	*/
2
3/*
4 * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 *         >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 */
7/*
8 * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 * Copyright (c) 1991, 1993, The Regents of the University of California.
10 *
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * The Mach Operating System project at Carnegie-Mellon University.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 *    must display the following acknowledgement:
26 *	This product includes software developed by Charles D. Cranor,
27 *      Washington University, the University of California, Berkeley and
28 *      its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 *    may be used to endorse or promote products derived from this software
31 *    without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
46 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
47 *
48 *
49 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
50 * All rights reserved.
51 *
52 * Permission to use, copy, modify and distribute this software and
53 * its documentation is hereby granted, provided that both the copyright
54 * notice and this permission notice appear in all copies of the
55 * software, derivative works or modified versions, and any portions
56 * thereof, and that both notices appear in supporting documentation.
57 *
58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 *
62 * Carnegie Mellon requests users of this software to return to
63 *
64 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65 *  School of Computer Science
66 *  Carnegie Mellon University
67 *  Pittsburgh PA 15213-3890
68 *
69 * any improvements or extensions that they make and grant Carnegie the
70 * rights to redistribute these changes.
71 */
72
73#include "opt_uvmhist.h"
74#include "opt_pmap_new.h"
75
76/*
77 * uvm_km.c: handle kernel memory allocation and management
78 */
79
80/*
81 * overview of kernel memory management:
82 *
83 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
84 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
85 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
86 *
87 * the kernel_map has several "submaps."   submaps can only appear in
88 * the kernel_map (user processes can't use them).   submaps "take over"
89 * the management of a sub-range of the kernel's address space.  submaps
90 * are typically allocated at boot time and are never released.   kernel
91 * virtual address space that is mapped by a submap is locked by the
92 * submap's lock -- not the kernel_map's lock.
93 *
94 * thus, the useful feature of submaps is that they allow us to break
95 * up the locking and protection of the kernel address space into smaller
96 * chunks.
97 *
98 * the vm system has several standard kernel submaps, including:
99 *   kmem_map => contains only wired kernel memory for the kernel
100 *		malloc.   *** access to kmem_map must be protected
101 *		by splimp() because we are allowed to call malloc()
102 *		at interrupt time ***
103 *   mb_map => memory for large mbufs,  *** protected by splimp ***
104 *   pager_map => used to map "buf" structures into kernel space
105 *   exec_map => used during exec to handle exec args
106 *   etc...
107 *
108 * the kernel allocates its private memory out of special uvm_objects whose
109 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
110 * are "special" and never die).   all kernel objects should be thought of
111 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
112 * object is equal to the size of kernel virtual address space (i.e. the
113 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
114 *
115 * most kernel private memory lives in kernel_object.   the only exception
116 * to this is for memory that belongs to submaps that must be protected
117 * by splimp().    each of these submaps has their own private kernel
118 * object (e.g. kmem_object, mb_object).
119 *
120 * note that just because a kernel object spans the entire kernel virutal
121 * address space doesn't mean that it has to be mapped into the entire space.
122 * large chunks of a kernel object's space go unused either because
123 * that area of kernel VM is unmapped, or there is some other type of
124 * object mapped into that range (e.g. a vnode).    for submap's kernel
125 * objects, the only part of the object that can ever be populated is the
126 * offsets that are managed by the submap.
127 *
128 * note that the "offset" in a kernel object is always the kernel virtual
129 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
130 * example:
131 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
132 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
133 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
134 *   then that means that the page at offset 0x235000 in kernel_object is
135 *   mapped at 0xf8235000.
136 *
137 * note that the offsets in kmem_object and mb_object also follow this
138 * rule.   this means that the offsets for kmem_object must fall in the
139 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
140 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
141 * in those objects will typically not start at zero.
142 *
143 * kernel object have one other special property: when the kernel virtual
144 * memory mapping them is unmapped, the backing memory in the object is
145 * freed right away.   this is done with the uvm_km_pgremove() function.
146 * this has to be done because there is no backing store for kernel pages
147 * and no need to save them after they are no longer referenced.
148 */
149
150#include <sys/param.h>
151#include <sys/systm.h>
152#include <sys/proc.h>
153
154#include <vm/vm.h>
155#include <vm/vm_page.h>
156#include <vm/vm_kern.h>
157
158#include <uvm/uvm.h>
159
160/*
161 * global data structures
162 */
163
164vm_map_t kernel_map = NULL;
165
166/*
167 * local functions
168 */
169
170static int uvm_km_get __P((struct uvm_object *, vaddr_t,
171													 vm_page_t *, int *, int, vm_prot_t, int, int));
172/*
173 * local data structues
174 */
175
176static struct vm_map		kernel_map_store;
177static struct uvm_object	kmem_object_store;
178static struct uvm_object	mb_object_store;
179
180static struct uvm_pagerops km_pager = {
181	NULL,	/* init */
182	NULL, /* reference */
183	NULL, /* detach */
184	NULL, /* fault */
185	NULL, /* flush */
186	uvm_km_get, /* get */
187	/* ... rest are NULL */
188};
189
190/*
191 * uvm_km_get: pager get function for kernel objects
192 *
193 * => currently we do not support pageout to the swap area, so this
194 *    pager is very simple.    eventually we may want an anonymous
195 *    object pager which will do paging.
196 * => XXXCDC: this pager should be phased out in favor of the aobj pager
197 */
198
199
200static int
201uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
202	struct uvm_object *uobj;
203	vaddr_t offset;
204	struct vm_page **pps;
205	int *npagesp;
206	int centeridx, advice, flags;
207	vm_prot_t access_type;
208{
209	vaddr_t current_offset;
210	vm_page_t ptmp;
211	int lcv, gotpages, maxpages;
212	boolean_t done;
213	UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
214
215	UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
216
217	/*
218	 * get number of pages
219	 */
220
221	maxpages = *npagesp;
222
223	/*
224	 * step 1: handled the case where fault data structures are locked.
225	 */
226
227	if (flags & PGO_LOCKED) {
228
229		/*
230		 * step 1a: get pages that are already resident.   only do
231		 * this if the data structures are locked (i.e. the first time
232		 * through).
233		 */
234
235		done = TRUE;	/* be optimistic */
236		gotpages = 0;	/* # of pages we got so far */
237
238		for (lcv = 0, current_offset = offset ;
239		    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
240
241			/* do we care about this page?  if not, skip it */
242			if (pps[lcv] == PGO_DONTCARE)
243				continue;
244
245			/* lookup page */
246			ptmp = uvm_pagelookup(uobj, current_offset);
247
248			/* null?  attempt to allocate the page */
249			if (ptmp == NULL) {
250				ptmp = uvm_pagealloc(uobj, current_offset,
251				    NULL);
252				if (ptmp) {
253					/* new page */
254					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
255					UVM_PAGE_OWN(ptmp, NULL);
256					uvm_pagezero(ptmp);
257				}
258			}
259
260			/*
261			 * to be useful must get a non-busy, non-released page
262			 */
263			if (ptmp == NULL ||
264			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
265				if (lcv == centeridx ||
266				    (flags & PGO_ALLPAGES) != 0)
267					/* need to do a wait or I/O! */
268					done = FALSE;
269				continue;
270			}
271
272			/*
273			 * useful page: busy/lock it and plug it in our
274			 * result array
275			 */
276
277			/* caller must un-busy this page */
278			ptmp->flags |= PG_BUSY;
279			UVM_PAGE_OWN(ptmp, "uvm_km_get1");
280			pps[lcv] = ptmp;
281			gotpages++;
282
283		}	/* "for" lcv loop */
284
285		/*
286		 * step 1b: now we've either done everything needed or we
287		 * to unlock and do some waiting or I/O.
288		 */
289
290		UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
291
292		*npagesp = gotpages;
293		if (done)
294			return(VM_PAGER_OK);		/* bingo! */
295		else
296			return(VM_PAGER_UNLOCK);	/* EEK!   Need to
297							 * unlock and I/O */
298	}
299
300	/*
301	 * step 2: get non-resident or busy pages.
302	 * object is locked.   data structures are unlocked.
303	 */
304
305	for (lcv = 0, current_offset = offset ;
306	    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
307
308		/* skip over pages we've already gotten or don't want */
309		/* skip over pages we don't _have_ to get */
310		if (pps[lcv] != NULL ||
311		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
312			continue;
313
314		/*
315		 * we have yet to locate the current page (pps[lcv]).   we
316		 * first look for a page that is already at the current offset.
317		 * if we find a page, we check to see if it is busy or
318		 * released.  if that is the case, then we sleep on the page
319		 * until it is no longer busy or released and repeat the
320		 * lookup.    if the page we found is neither busy nor
321		 * released, then we busy it (so we own it) and plug it into
322		 * pps[lcv].   this 'break's the following while loop and
323		 * indicates we are ready to move on to the next page in the
324		 * "lcv" loop above.
325		 *
326		 * if we exit the while loop with pps[lcv] still set to NULL,
327		 * then it means that we allocated a new busy/fake/clean page
328		 * ptmp in the object and we need to do I/O to fill in the
329		 * data.
330		 */
331
332		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
333
334			/* look for a current page */
335			ptmp = uvm_pagelookup(uobj, current_offset);
336
337			/* nope?   allocate one now (if we can) */
338			if (ptmp == NULL) {
339
340				ptmp = uvm_pagealloc(uobj, current_offset,
341				    NULL);	/* alloc */
342
343				/* out of RAM? */
344				if (ptmp == NULL) {
345					simple_unlock(&uobj->vmobjlock);
346					uvm_wait("kmgetwait1");
347					simple_lock(&uobj->vmobjlock);
348					/* goto top of pps while loop */
349					continue;
350				}
351
352				/*
353				 * got new page ready for I/O.  break pps
354				 * while loop.  pps[lcv] is still NULL.
355				 */
356				break;
357			}
358
359			/* page is there, see if we need to wait on it */
360			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
361				ptmp->flags |= PG_WANTED;
362				UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
363				    "uvn_get",0);
364				simple_lock(&uobj->vmobjlock);
365				continue;	/* goto top of pps while loop */
366			}
367
368			/*
369			 * if we get here then the page has become resident
370			 * and unbusy between steps 1 and 2.  we busy it now
371			 * (so we own it) and set pps[lcv] (so that we exit
372			 * the while loop).  caller must un-busy.
373			 */
374			ptmp->flags |= PG_BUSY;
375			UVM_PAGE_OWN(ptmp, "uvm_km_get2");
376			pps[lcv] = ptmp;
377		}
378
379		/*
380		 * if we own the a valid page at the correct offset, pps[lcv]
381		 * will point to it.   nothing more to do except go to the
382		 * next page.
383		 */
384
385		if (pps[lcv])
386			continue;			/* next lcv */
387
388		/*
389		 * we have a "fake/busy/clean" page that we just allocated.
390		 * do the needed "i/o" (in this case that means zero it).
391		 */
392
393		uvm_pagezero(ptmp);
394		ptmp->flags &= ~(PG_FAKE);
395		pps[lcv] = ptmp;
396
397	}	/* lcv loop */
398
399	/*
400	 * finally, unlock object and return.
401	 */
402
403	simple_unlock(&uobj->vmobjlock);
404	UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
405	return(VM_PAGER_OK);
406}
407
408/*
409 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
410 * KVM already allocated for text, data, bss, and static data structures).
411 *
412 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
413 *    we assume that [min -> start] has already been allocated and that
414 *    "end" is the end.
415 */
416
417void
418uvm_km_init(start, end)
419	vaddr_t start, end;
420{
421	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
422
423	/*
424	 * first, init kernel memory objects.
425	 */
426
427	/* kernel_object: for pageable anonymous kernel memory */
428	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
429				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
430
431	/* kmem_object: for malloc'd memory (wired, protected by splimp) */
432	simple_lock_init(&kmem_object_store.vmobjlock);
433	kmem_object_store.pgops = &km_pager;
434	TAILQ_INIT(&kmem_object_store.memq);
435	kmem_object_store.uo_npages = 0;
436	/* we are special.  we never die */
437	kmem_object_store.uo_refs = UVM_OBJ_KERN;
438	uvmexp.kmem_object = &kmem_object_store;
439
440	/* mb_object: for mbuf memory (always wired, protected by splimp) */
441	simple_lock_init(&mb_object_store.vmobjlock);
442	mb_object_store.pgops = &km_pager;
443	TAILQ_INIT(&mb_object_store.memq);
444	mb_object_store.uo_npages = 0;
445	/* we are special.  we never die */
446	mb_object_store.uo_refs = UVM_OBJ_KERN;
447	uvmexp.mb_object = &mb_object_store;
448
449	/*
450	 * init the map and reserve allready allocated kernel space
451	 * before installing.
452	 */
453
454	uvm_map_setup(&kernel_map_store, base, end, FALSE);
455	kernel_map_store.pmap = pmap_kernel();
456	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
457	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
458	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
459		panic("uvm_km_init: could not reserve space for kernel");
460
461	/*
462	 * install!
463	 */
464
465	kernel_map = &kernel_map_store;
466}
467
468/*
469 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
470 * is allocated all references to that area of VM must go through it.  this
471 * allows the locking of VAs in kernel_map to be broken up into regions.
472 *
473 * => if `fixed' is true, *min specifies where the region described
474 *      by the submap must start
475 * => if submap is non NULL we use that as the submap, otherwise we
476 *	alloc a new map
477 */
478struct vm_map *
479uvm_km_suballoc(map, min, max, size, pageable, fixed, submap)
480	struct vm_map *map;
481	vaddr_t *min, *max;		/* OUT, OUT */
482	vsize_t size;
483	boolean_t pageable;
484	boolean_t fixed;
485	struct vm_map *submap;
486{
487	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
488
489	size = round_page(size);	/* round up to pagesize */
490
491	/*
492	 * first allocate a blank spot in the parent map
493	 */
494
495	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
496	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
497	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
498	       panic("uvm_km_suballoc: unable to allocate space in parent map");
499	}
500
501	/*
502	 * set VM bounds (min is filled in by uvm_map)
503	 */
504
505	*max = *min + size;
506
507	/*
508	 * add references to pmap and create or init the submap
509	 */
510
511	pmap_reference(vm_map_pmap(map));
512	if (submap == NULL) {
513		submap = uvm_map_create(vm_map_pmap(map), *min, *max, pageable);
514		if (submap == NULL)
515			panic("uvm_km_suballoc: unable to create submap");
516	} else {
517		uvm_map_setup(submap, *min, *max, pageable);
518		submap->pmap = vm_map_pmap(map);
519	}
520
521	/*
522	 * now let uvm_map_submap plug in it...
523	 */
524
525	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
526		panic("uvm_km_suballoc: submap allocation failed");
527
528	return(submap);
529}
530
531/*
532 * uvm_km_pgremove: remove pages from a kernel uvm_object.
533 *
534 * => when you unmap a part of anonymous kernel memory you want to toss
535 *    the pages right away.    (this gets called from uvm_unmap_...).
536 */
537
538#define UKM_HASH_PENALTY 4      /* a guess */
539
540void
541uvm_km_pgremove(uobj, start, end)
542	struct uvm_object *uobj;
543	vaddr_t start, end;
544{
545	boolean_t by_list, is_aobj;
546	struct vm_page *pp, *ppnext;
547	vaddr_t curoff;
548	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
549
550	simple_lock(&uobj->vmobjlock);		/* lock object */
551
552	/* is uobj an aobj? */
553	is_aobj = uobj->pgops == &aobj_pager;
554
555	/* choose cheapest traversal */
556	by_list = (uobj->uo_npages <=
557	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
558
559	if (by_list)
560		goto loop_by_list;
561
562	/* by hash */
563
564	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
565		pp = uvm_pagelookup(uobj, curoff);
566		if (pp == NULL)
567			continue;
568
569		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
570		    pp->flags & PG_BUSY, 0, 0);
571		/* now do the actual work */
572		if (pp->flags & PG_BUSY)
573			/* owner must check for this when done */
574			pp->flags |= PG_RELEASED;
575		else {
576			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
577
578			/*
579			 * if this kernel object is an aobj, free the swap slot.
580			 */
581			if (is_aobj) {
582				int slot = uao_set_swslot(uobj,
583							  curoff >> PAGE_SHIFT,
584							  0);
585
586				if (slot)
587					uvm_swap_free(slot, 1);
588			}
589
590			uvm_lock_pageq();
591			uvm_pagefree(pp);
592			uvm_unlock_pageq();
593		}
594		/* done */
595
596	}
597	simple_unlock(&uobj->vmobjlock);
598	return;
599
600loop_by_list:
601
602	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
603
604		ppnext = pp->listq.tqe_next;
605		if (pp->offset < start || pp->offset >= end) {
606			continue;
607		}
608
609		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
610		    pp->flags & PG_BUSY, 0, 0);
611		/* now do the actual work */
612		if (pp->flags & PG_BUSY)
613			/* owner must check for this when done */
614			pp->flags |= PG_RELEASED;
615		else {
616			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
617
618			/*
619			 * if this kernel object is an aobj, free the swap slot.
620			 */
621			if (is_aobj) {
622				int slot = uao_set_swslot(uobj,
623						pp->offset >> PAGE_SHIFT, 0);
624
625				if (slot)
626					uvm_swap_free(slot, 1);
627			}
628
629			uvm_lock_pageq();
630			uvm_pagefree(pp);
631			uvm_unlock_pageq();
632		}
633		/* done */
634
635	}
636	simple_unlock(&uobj->vmobjlock);
637	return;
638}
639
640
641/*
642 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
643 *
644 * => we map wired memory into the specified map using the obj passed in
645 * => NOTE: we can return NULL even if we can wait if there is not enough
646 *	free VM space in the map... caller should be prepared to handle
647 *	this case.
648 * => we return KVA of memory allocated
649 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
650 *	lock the map
651 */
652
653vaddr_t
654uvm_km_kmemalloc(map, obj, size, flags)
655	vm_map_t map;
656	struct uvm_object *obj;
657	vsize_t size;
658	int flags;
659{
660	vaddr_t kva, loopva;
661	vaddr_t offset;
662	struct vm_page *pg;
663	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
664
665
666	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
667	map, obj, size, flags);
668#ifdef DIAGNOSTIC
669	/* sanity check */
670	if (vm_map_pmap(map) != pmap_kernel())
671		panic("uvm_km_kmemalloc: invalid map");
672#endif
673
674	/*
675	 * setup for call
676	 */
677
678	size = round_page(size);
679	kva = vm_map_min(map);	/* hint */
680
681	/*
682	 * allocate some virtual space
683	 */
684
685	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
686	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
687			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
688			!= KERN_SUCCESS) {
689		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
690		return(0);
691	}
692
693	/*
694	 * if all we wanted was VA, return now
695	 */
696
697	if (flags & UVM_KMF_VALLOC) {
698		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
699		return(kva);
700	}
701	/*
702	 * recover object offset from virtual address
703	 */
704
705	offset = kva - vm_map_min(kernel_map);
706	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
707
708	/*
709	 * now allocate and map in the memory... note that we are the only ones
710	 * whom should ever get a handle on this area of VM.
711	 */
712
713	loopva = kva;
714	while (size) {
715		simple_lock(&obj->vmobjlock);
716		pg = uvm_pagealloc(obj, offset, NULL);
717		if (pg) {
718			pg->flags &= ~PG_BUSY;	/* new page */
719			UVM_PAGE_OWN(pg, NULL);
720		}
721		simple_unlock(&obj->vmobjlock);
722
723		/*
724		 * out of memory?
725		 */
726
727		if (pg == NULL) {
728			if (flags & UVM_KMF_NOWAIT) {
729				/* free everything! */
730				uvm_unmap(map, kva, kva + size);
731				return(0);
732			} else {
733				uvm_wait("km_getwait2");	/* sleep here */
734				continue;
735			}
736		}
737
738		/*
739		 * map it in: note that we call pmap_enter with the map and
740		 * object unlocked in case we are kmem_map/kmem_object
741		 * (because if pmap_enter wants to allocate out of kmem_object
742		 * it will need to lock it itself!)
743		 */
744#if defined(PMAP_NEW)
745		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
746#else
747		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
748		    UVM_PROT_ALL, TRUE);
749#endif
750		loopva += PAGE_SIZE;
751		offset += PAGE_SIZE;
752		size -= PAGE_SIZE;
753	}
754
755	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
756	return(kva);
757}
758
759/*
760 * uvm_km_free: free an area of kernel memory
761 */
762
763void
764uvm_km_free(map, addr, size)
765	vm_map_t map;
766	vaddr_t addr;
767	vsize_t size;
768{
769
770	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
771}
772
773/*
774 * uvm_km_free_wakeup: free an area of kernel memory and wake up
775 * anyone waiting for vm space.
776 *
777 * => XXX: "wanted" bit + unlock&wait on other end?
778 */
779
780void
781uvm_km_free_wakeup(map, addr, size)
782	vm_map_t map;
783	vaddr_t addr;
784	vsize_t size;
785{
786	vm_map_entry_t dead_entries;
787
788	vm_map_lock(map);
789	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
790			 &dead_entries);
791	thread_wakeup(map);
792	vm_map_unlock(map);
793
794	if (dead_entries != NULL)
795		uvm_unmap_detach(dead_entries, 0);
796}
797
798/*
799 * uvm_km_alloc1: allocate wired down memory in the kernel map.
800 *
801 * => we can sleep if needed
802 */
803
804vaddr_t
805uvm_km_alloc1(map, size, zeroit)
806	vm_map_t map;
807	vsize_t size;
808	boolean_t zeroit;
809{
810	vaddr_t kva, loopva, offset;
811	struct vm_page *pg;
812	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
813
814	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
815
816#ifdef DIAGNOSTIC
817	if (vm_map_pmap(map) != pmap_kernel())
818		panic("uvm_km_alloc1");
819#endif
820
821	size = round_page(size);
822	kva = vm_map_min(map);		/* hint */
823
824	/*
825	 * allocate some virtual space
826	 */
827
828	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
829	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
830			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
831		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
832		return(0);
833	}
834
835	/*
836	 * recover object offset from virtual address
837	 */
838
839	offset = kva - vm_map_min(kernel_map);
840	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
841
842	/*
843	 * now allocate the memory.  we must be careful about released pages.
844	 */
845
846	loopva = kva;
847	while (size) {
848		simple_lock(&uvm.kernel_object->vmobjlock);
849		pg = uvm_pagelookup(uvm.kernel_object, offset);
850
851		/*
852		 * if we found a page in an unallocated region, it must be
853		 * released
854		 */
855		if (pg) {
856			if ((pg->flags & PG_RELEASED) == 0)
857				panic("uvm_km_alloc1: non-released page");
858			pg->flags |= PG_WANTED;
859			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
860			    0, "km_alloc", 0);
861			continue;   /* retry */
862		}
863
864		/* allocate ram */
865		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL);
866		if (pg) {
867			pg->flags &= ~PG_BUSY;	/* new page */
868			UVM_PAGE_OWN(pg, NULL);
869		}
870		simple_unlock(&uvm.kernel_object->vmobjlock);
871		if (pg == NULL) {
872			uvm_wait("km_alloc1w");	/* wait for memory */
873			continue;
874		}
875
876		/* map it in */
877#if defined(PMAP_NEW)
878		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL);
879#else
880		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
881		    UVM_PROT_ALL, TRUE);
882#endif
883		loopva += PAGE_SIZE;
884		offset += PAGE_SIZE;
885		size -= PAGE_SIZE;
886	}
887
888	/*
889	 * zero on request (note that "size" is now zero due to the above loop
890	 * so we need to subtract kva from loopva to reconstruct the size).
891	 */
892
893	if (zeroit)
894		memset((caddr_t)kva, 0, loopva - kva);
895
896	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
897	return(kva);
898}
899
900/*
901 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
902 *
903 * => memory is not allocated until fault time
904 */
905
906vaddr_t
907uvm_km_valloc(map, size)
908	vm_map_t map;
909	vsize_t size;
910{
911	vaddr_t kva;
912	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
913
914	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
915
916#ifdef DIAGNOSTIC
917	if (vm_map_pmap(map) != pmap_kernel())
918		panic("uvm_km_valloc");
919#endif
920
921	size = round_page(size);
922	kva = vm_map_min(map);		/* hint */
923
924	/*
925	 * allocate some virtual space.  will be demand filled by kernel_object.
926	 */
927
928	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
929	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
930	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
931		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
932		return(0);
933	}
934
935	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
936	return(kva);
937}
938
939/*
940 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
941 *
942 * => memory is not allocated until fault time
943 * => if no room in map, wait for space to free, unless requested size
944 *    is larger than map (in which case we return 0)
945 */
946
947vaddr_t
948uvm_km_valloc_wait(map, size)
949	vm_map_t map;
950	vsize_t size;
951{
952	vaddr_t kva;
953	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
954
955	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
956
957#ifdef DIAGNOSTIC
958	if (vm_map_pmap(map) != pmap_kernel())
959		panic("uvm_km_valloc_wait");
960#endif
961
962	size = round_page(size);
963	if (size > vm_map_max(map) - vm_map_min(map))
964		return(0);
965
966	while (1) {
967		kva = vm_map_min(map);		/* hint */
968
969		/*
970		 * allocate some virtual space.   will be demand filled
971		 * by kernel_object.
972		 */
973
974		if (uvm_map(map, &kva, size, uvm.kernel_object,
975		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
976		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
977		    == KERN_SUCCESS) {
978			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
979			return(kva);
980		}
981
982		/*
983		 * failed.  sleep for a while (on map)
984		 */
985
986		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
987		tsleep((caddr_t)map, PVM, "vallocwait", 0);
988	}
989	/*NOTREACHED*/
990}
991
992/* Sanity; must specify both or none. */
993#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
994    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
995#error Must specify MAP and UNMAP together.
996#endif
997
998/*
999 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
1000 *
1001 * => if the pmap specifies an alternate mapping method, we use it.
1002 */
1003
1004/* ARGSUSED */
1005vaddr_t
1006uvm_km_alloc_poolpage1(map, obj, waitok)
1007	vm_map_t map;
1008	struct uvm_object *obj;
1009	boolean_t waitok;
1010{
1011#if defined(PMAP_MAP_POOLPAGE)
1012	struct vm_page *pg;
1013	vaddr_t va;
1014
1015 again:
1016	pg = uvm_pagealloc(NULL, 0, NULL);
1017	if (pg == NULL) {
1018		if (waitok) {
1019			uvm_wait("plpg");
1020			goto again;
1021		} else
1022			return (0);
1023	}
1024	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
1025	if (va == 0)
1026		uvm_pagefree(pg);
1027	return (va);
1028#else
1029	vaddr_t va;
1030	int s;
1031
1032	/*
1033	 * NOTE: We may be called with a map that doens't require splimp
1034	 * protection (e.g. kernel_map).  However, it does not hurt to
1035	 * go to splimp in this case (since unprocted maps will never be
1036	 * accessed in interrupt context).
1037	 *
1038	 * XXX We may want to consider changing the interface to this
1039	 * XXX function.
1040	 */
1041
1042	s = splimp();
1043	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
1044	splx(s);
1045	return (va);
1046#endif /* PMAP_MAP_POOLPAGE */
1047}
1048
1049/*
1050 * uvm_km_free_poolpage: free a previously allocated pool page
1051 *
1052 * => if the pmap specifies an alternate unmapping method, we use it.
1053 */
1054
1055/* ARGSUSED */
1056void
1057uvm_km_free_poolpage1(map, addr)
1058	vm_map_t map;
1059	vaddr_t addr;
1060{
1061#if defined(PMAP_UNMAP_POOLPAGE)
1062	paddr_t pa;
1063
1064	pa = PMAP_UNMAP_POOLPAGE(addr);
1065	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1066#else
1067	int s;
1068
1069	/*
1070	 * NOTE: We may be called with a map that doens't require splimp
1071	 * protection (e.g. kernel_map).  However, it does not hurt to
1072	 * go to splimp in this case (since unprocted maps will never be
1073	 * accessed in interrupt context).
1074	 *
1075	 * XXX We may want to consider changing the interface to this
1076	 * XXX function.
1077	 */
1078
1079	s = splimp();
1080	uvm_km_free(map, addr, PAGE_SIZE);
1081	splx(s);
1082#endif /* PMAP_UNMAP_POOLPAGE */
1083}
1084