uvm_km.c revision 1.163
1/*	$NetBSD: uvm_km.c,v 1.163 2023/02/12 16:28:32 andvar Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56 *  School of Computer Science
57 *  Carnegie Mellon University
58 *  Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64/*
65 * uvm_km.c: handle kernel memory allocation and management
66 */
67
68/*
69 * overview of kernel memory management:
70 *
71 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
72 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 *
75 * the kernel_map has several "submaps."   submaps can only appear in
76 * the kernel_map (user processes can't use them).   submaps "take over"
77 * the management of a sub-range of the kernel's address space.  submaps
78 * are typically allocated at boot time and are never released.   kernel
79 * virtual address space that is mapped by a submap is locked by the
80 * submap's lock -- not the kernel_map's lock.
81 *
82 * thus, the useful feature of submaps is that they allow us to break
83 * up the locking and protection of the kernel address space into smaller
84 * chunks.
85 *
86 * the vm system has several standard kernel submaps/arenas, including:
87 *   kmem_arena => used for kmem/pool (memoryallocators(9))
88 *   pager_map => used to map "buf" structures into kernel space
89 *   exec_map => used during exec to handle exec args
90 *   etc...
91 *
92 * The kmem_arena is a "special submap", as it lives in a fixed map entry
93 * within the kernel_map and is controlled by vmem(9).
94 *
95 * the kernel allocates its private memory out of special uvm_objects whose
96 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97 * are "special" and never die).   all kernel objects should be thought of
98 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
99 * object is equal to the size of kernel virtual address space (i.e. the
100 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101 *
102 * note that just because a kernel object spans the entire kernel virtual
103 * address space doesn't mean that it has to be mapped into the entire space.
104 * large chunks of a kernel object's space go unused either because
105 * that area of kernel VM is unmapped, or there is some other type of
106 * object mapped into that range (e.g. a vnode).    for submap's kernel
107 * objects, the only part of the object that can ever be populated is the
108 * offsets that are managed by the submap.
109 *
110 * note that the "offset" in a kernel object is always the kernel virtual
111 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112 * example:
113 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
116 *   then that means that the page at offset 0x235000 in kernel_object is
117 *   mapped at 0xf8235000.
118 *
119 * kernel object have one other special property: when the kernel virtual
120 * memory mapping them is unmapped, the backing memory in the object is
121 * freed right away.   this is done with the uvm_km_pgremove() function.
122 * this has to be done because there is no backing store for kernel pages
123 * and no need to save them after they are no longer referenced.
124 *
125 * Generic arenas:
126 *
127 * kmem_arena:
128 *	Main arena controlling the kernel KVA used by other arenas.
129 *
130 * kmem_va_arena:
131 *	Implements quantum caching in order to speedup allocations and
132 *	reduce fragmentation.  The pool(9), unless created with a custom
133 *	meta-data allocator, and kmem(9) subsystems use this arena.
134 *
135 * Arenas for meta-data allocations are used by vmem(9) and pool(9).
136 * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
137 * compensates this by importing larger chunks from kmem_arena.
138 *
139 * kmem_va_meta_arena:
140 *	Space for meta-data.
141 *
142 * kmem_meta_arena:
143 *	Imports from kmem_va_meta_arena.  Allocations from this arena are
144 *	backed with the pages.
145 *
146 * Arena stacking:
147 *
148 *	kmem_arena
149 *		kmem_va_arena
150 *		kmem_va_meta_arena
151 *			kmem_meta_arena
152 */
153
154#include <sys/cdefs.h>
155__KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.163 2023/02/12 16:28:32 andvar Exp $");
156
157#include "opt_uvmhist.h"
158
159#include "opt_kmempages.h"
160
161#ifndef NKMEMPAGES
162#define NKMEMPAGES 0
163#endif
164
165/*
166 * Defaults for lower and upper-bounds for the kmem_arena page count.
167 * Can be overridden by kernel config options.
168 */
169#ifndef NKMEMPAGES_MIN
170#define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
171#endif
172
173#ifndef NKMEMPAGES_MAX
174#define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
175#endif
176
177
178#include <sys/param.h>
179#include <sys/systm.h>
180#include <sys/atomic.h>
181#include <sys/proc.h>
182#include <sys/pool.h>
183#include <sys/vmem.h>
184#include <sys/vmem_impl.h>
185#include <sys/kmem.h>
186#include <sys/msan.h>
187
188#include <uvm/uvm.h>
189
190/*
191 * global data structures
192 */
193
194struct vm_map *kernel_map = NULL;
195
196/*
197 * local data structures
198 */
199
200static struct vm_map		kernel_map_store;
201static struct vm_map_entry	kernel_image_mapent_store;
202static struct vm_map_entry	kernel_kmem_mapent_store;
203
204int nkmempages = 0;
205vaddr_t kmembase;
206vsize_t kmemsize;
207
208static struct vmem kmem_arena_store;
209vmem_t *kmem_arena = NULL;
210static struct vmem kmem_va_arena_store;
211vmem_t *kmem_va_arena;
212
213/*
214 * kmeminit_nkmempages: calculate the size of kmem_arena.
215 */
216void
217kmeminit_nkmempages(void)
218{
219	int npages;
220
221	if (nkmempages != 0) {
222		/*
223		 * It's already been set (by us being here before)
224		 * bail out now;
225		 */
226		return;
227	}
228
229#if defined(NKMEMPAGES_MAX_UNLIMITED) && !defined(KMSAN)
230	npages = physmem;
231#else
232
233#if defined(KMSAN)
234	npages = (physmem / 4);
235#elif defined(PMAP_MAP_POOLPAGE)
236	npages = (physmem / 4);
237#else
238	npages = (physmem / 3) * 2;
239#endif /* defined(PMAP_MAP_POOLPAGE) */
240
241#if !defined(NKMEMPAGES_MAX_UNLIMITED)
242	if (npages > NKMEMPAGES_MAX)
243		npages = NKMEMPAGES_MAX;
244#endif
245
246#endif
247
248	if (npages < NKMEMPAGES_MIN)
249		npages = NKMEMPAGES_MIN;
250
251	nkmempages = npages;
252}
253
254/*
255 * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
256 * KVM already allocated for text, data, bss, and static data structures).
257 *
258 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
259 *    we assume that [vmin -> start] has already been allocated and that
260 *    "end" is the end.
261 */
262
263void
264uvm_km_bootstrap(vaddr_t start, vaddr_t end)
265{
266	bool kmem_arena_small;
267	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
268	struct uvm_map_args args;
269	int error;
270
271	UVMHIST_FUNC(__func__);
272	UVMHIST_CALLARGS(maphist, "start=%#jx end=%#jx", start, end, 0,0);
273
274	kmeminit_nkmempages();
275	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
276	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
277
278	UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
279
280	/*
281	 * next, init kernel memory objects.
282	 */
283
284	/* kernel_object: for pageable anonymous kernel memory */
285	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
286				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
287
288	/*
289	 * init the map and reserve any space that might already
290	 * have been allocated kernel space before installing.
291	 */
292
293	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
294	kernel_map_store.pmap = pmap_kernel();
295	if (start != base) {
296		error = uvm_map_prepare(&kernel_map_store,
297		    base, start - base,
298		    NULL, UVM_UNKNOWN_OFFSET, 0,
299		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
300		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
301		if (!error) {
302			kernel_image_mapent_store.flags =
303			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
304			error = uvm_map_enter(&kernel_map_store, &args,
305			    &kernel_image_mapent_store);
306		}
307
308		if (error)
309			panic(
310			    "uvm_km_bootstrap: could not reserve space for kernel");
311
312		kmembase = args.uma_start + args.uma_size;
313	} else {
314		kmembase = base;
315	}
316
317	error = uvm_map_prepare(&kernel_map_store,
318	    kmembase, kmemsize,
319	    NULL, UVM_UNKNOWN_OFFSET, 0,
320	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
321	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
322	if (!error) {
323		kernel_kmem_mapent_store.flags =
324		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
325		error = uvm_map_enter(&kernel_map_store, &args,
326		    &kernel_kmem_mapent_store);
327	}
328
329	if (error)
330		panic("uvm_km_bootstrap: could not reserve kernel kmem");
331
332	/*
333	 * install!
334	 */
335
336	kernel_map = &kernel_map_store;
337
338	pool_subsystem_init();
339
340	kmem_arena = vmem_init(&kmem_arena_store, "kmem",
341	    kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
342	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
343#ifdef PMAP_GROWKERNEL
344	/*
345	 * kmem_arena VA allocations happen independently of uvm_map.
346	 * grow kernel to accommodate the kmem_arena.
347	 */
348	if (uvm_maxkaddr < kmembase + kmemsize) {
349		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
350		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
351		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
352		    uvm_maxkaddr, kmembase, kmemsize);
353	}
354#endif
355
356	vmem_subsystem_init(kmem_arena);
357
358	UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
359	    kmembase, kmemsize, 0,0);
360
361	kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
362	    0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
363	    (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
364	    VM_NOSLEEP, IPL_VM);
365
366	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
367}
368
369/*
370 * uvm_km_init: init the kernel maps virtual memory caches
371 * and start the pool/kmem allocator.
372 */
373void
374uvm_km_init(void)
375{
376	kmem_init();
377}
378
379/*
380 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
381 * is allocated all references to that area of VM must go through it.  this
382 * allows the locking of VAs in kernel_map to be broken up into regions.
383 *
384 * => if `fixed' is true, *vmin specifies where the region described
385 *   pager_map => used to map "buf" structures into kernel space
386 *      by the submap must start
387 * => if submap is non NULL we use that as the submap, otherwise we
388 *	alloc a new map
389 */
390
391struct vm_map *
392uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
393    vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
394    struct vm_map *submap)
395{
396	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
397	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
398
399	KASSERT(vm_map_pmap(map) == pmap_kernel());
400
401	size = round_page(size);	/* round up to pagesize */
402
403	/*
404	 * first allocate a blank spot in the parent map
405	 */
406
407	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
408	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
409	    UVM_ADV_RANDOM, mapflags)) != 0) {
410		panic("%s: unable to allocate space in parent map", __func__);
411	}
412
413	/*
414	 * set VM bounds (vmin is filled in by uvm_map)
415	 */
416
417	*vmax = *vmin + size;
418
419	/*
420	 * add references to pmap and create or init the submap
421	 */
422
423	pmap_reference(vm_map_pmap(map));
424	if (submap == NULL) {
425		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
426	}
427	uvm_map_setup(submap, *vmin, *vmax, flags);
428	submap->pmap = vm_map_pmap(map);
429
430	/*
431	 * now let uvm_map_submap plug in it...
432	 */
433
434	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
435		panic("uvm_km_suballoc: submap allocation failed");
436
437	return(submap);
438}
439
440/*
441 * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
442 */
443
444void
445uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
446{
447	struct uvm_object * const uobj = uvm_kernel_object;
448	const voff_t start = startva - vm_map_min(kernel_map);
449	const voff_t end = endva - vm_map_min(kernel_map);
450	struct vm_page *pg;
451	voff_t curoff, nextoff;
452	int swpgonlydelta = 0;
453	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
454
455	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
456	KASSERT(startva < endva);
457	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
458
459	rw_enter(uobj->vmobjlock, RW_WRITER);
460	pmap_remove(pmap_kernel(), startva, endva);
461	for (curoff = start; curoff < end; curoff = nextoff) {
462		nextoff = curoff + PAGE_SIZE;
463		pg = uvm_pagelookup(uobj, curoff);
464		if (pg != NULL && pg->flags & PG_BUSY) {
465			uvm_pagewait(pg, uobj->vmobjlock, "km_pgrm");
466			rw_enter(uobj->vmobjlock, RW_WRITER);
467			nextoff = curoff;
468			continue;
469		}
470
471		/*
472		 * free the swap slot, then the page.
473		 */
474
475		if (pg == NULL &&
476		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
477			swpgonlydelta++;
478		}
479		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
480		if (pg != NULL) {
481			uvm_pagefree(pg);
482		}
483	}
484	rw_exit(uobj->vmobjlock);
485
486	if (swpgonlydelta > 0) {
487		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
488		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
489	}
490}
491
492
493/*
494 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
495 *    regions.
496 *
497 * => when you unmap a part of anonymous kernel memory you want to toss
498 *    the pages right away.    (this is called from uvm_unmap_...).
499 * => none of the pages will ever be busy, and none of them will ever
500 *    be on the active or inactive queues (because they have no object).
501 */
502
503void
504uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
505{
506#define __PGRM_BATCH 16
507	struct vm_page *pg;
508	paddr_t pa[__PGRM_BATCH];
509	int npgrm, i;
510	vaddr_t va, batch_vastart;
511
512	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
513
514	KASSERT(VM_MAP_IS_KERNEL(map));
515	KASSERTMSG(vm_map_min(map) <= start,
516	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
517	    " (size=%#"PRIxVSIZE")",
518	    vm_map_min(map), start, end - start);
519	KASSERT(start < end);
520	KASSERT(end <= vm_map_max(map));
521
522	for (va = start; va < end;) {
523		batch_vastart = va;
524		/* create a batch of at most __PGRM_BATCH pages to free */
525		for (i = 0;
526		     i < __PGRM_BATCH && va < end;
527		     va += PAGE_SIZE) {
528			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
529				continue;
530			}
531			i++;
532		}
533		npgrm = i;
534		/* now remove the mappings */
535		pmap_kremove(batch_vastart, va - batch_vastart);
536		/* and free the pages */
537		for (i = 0; i < npgrm; i++) {
538			pg = PHYS_TO_VM_PAGE(pa[i]);
539			KASSERT(pg);
540			KASSERT(pg->uobject == NULL && pg->uanon == NULL);
541			KASSERT((pg->flags & PG_BUSY) == 0);
542			uvm_pagefree(pg);
543		}
544	}
545#undef __PGRM_BATCH
546}
547
548#if defined(DEBUG)
549void
550uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
551{
552	vaddr_t va;
553	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
554
555	KDASSERT(VM_MAP_IS_KERNEL(map));
556	KDASSERT(vm_map_min(map) <= start);
557	KDASSERT(start < end);
558	KDASSERT(end <= vm_map_max(map));
559
560	for (va = start; va < end; va += PAGE_SIZE) {
561		paddr_t pa;
562
563		if (pmap_extract(pmap_kernel(), va, &pa)) {
564			panic("uvm_km_check_empty: va %p has pa %#llx",
565			    (void *)va, (long long)pa);
566		}
567		/*
568		 * kernel_object should not have pages for the corresponding
569		 * region.  check it.
570		 *
571		 * why trylock?  because:
572		 * - caller might not want to block.
573		 * - we can recurse when allocating radix_node for
574		 *   kernel_object.
575		 */
576		if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_READER)) {
577			struct vm_page *pg;
578
579			pg = uvm_pagelookup(uvm_kernel_object,
580			    va - vm_map_min(kernel_map));
581			rw_exit(uvm_kernel_object->vmobjlock);
582			if (pg) {
583				panic("uvm_km_check_empty: "
584				    "has page hashed at %p",
585				    (const void *)va);
586			}
587		}
588	}
589}
590#endif /* defined(DEBUG) */
591
592/*
593 * uvm_km_alloc: allocate an area of kernel memory.
594 *
595 * => NOTE: we can return 0 even if we can wait if there is not enough
596 *	free VM space in the map... caller should be prepared to handle
597 *	this case.
598 * => we return KVA of memory allocated
599 */
600
601vaddr_t
602uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
603{
604	vaddr_t kva, loopva;
605	vaddr_t offset;
606	vsize_t loopsize;
607	struct vm_page *pg;
608	struct uvm_object *obj;
609	int pgaflags;
610	vm_prot_t prot, vaprot;
611	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
612
613	KASSERT(vm_map_pmap(map) == pmap_kernel());
614	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
615		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
616		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
617	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
618	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
619
620	/*
621	 * setup for call
622	 */
623
624	kva = vm_map_min(map);	/* hint */
625	size = round_page(size);
626	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
627	UVMHIST_LOG(maphist,"  (map=%#jx, obj=%#jx, size=%#jx, flags=%#jx)",
628	    (uintptr_t)map, (uintptr_t)obj, size, flags);
629
630	/*
631	 * allocate some virtual space
632	 */
633
634	vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
635	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
636	    align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
637	    UVM_ADV_RANDOM,
638	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
639	     | UVM_KMF_COLORMATCH)))) != 0)) {
640		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
641		return(0);
642	}
643
644	/*
645	 * if all we wanted was VA, return now
646	 */
647
648	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
649		UVMHIST_LOG(maphist,"<- done valloc (kva=%#jx)", kva,0,0,0);
650		return(kva);
651	}
652
653	/*
654	 * recover object offset from virtual address
655	 */
656
657	offset = kva - vm_map_min(kernel_map);
658	UVMHIST_LOG(maphist, "  kva=%#jx, offset=%#jx", kva, offset,0,0);
659
660	/*
661	 * now allocate and map in the memory... note that we are the only ones
662	 * whom should ever get a handle on this area of VM.
663	 */
664
665	loopva = kva;
666	loopsize = size;
667
668	pgaflags = UVM_FLAG_COLORMATCH;
669	if (flags & UVM_KMF_NOWAIT)
670		pgaflags |= UVM_PGA_USERESERVE;
671	if (flags & UVM_KMF_ZERO)
672		pgaflags |= UVM_PGA_ZERO;
673	prot = VM_PROT_READ | VM_PROT_WRITE;
674	if (flags & UVM_KMF_EXEC)
675		prot |= VM_PROT_EXECUTE;
676	while (loopsize) {
677		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
678		    "loopva=%#"PRIxVADDR, loopva);
679
680		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
681#ifdef UVM_KM_VMFREELIST
682		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
683#else
684		   UVM_PGA_STRAT_NORMAL, 0
685#endif
686		   );
687
688		/*
689		 * out of memory?
690		 */
691
692		if (__predict_false(pg == NULL)) {
693			if ((flags & UVM_KMF_NOWAIT) ||
694			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
695				/* free everything! */
696				uvm_km_free(map, kva, size,
697				    flags & UVM_KMF_TYPEMASK);
698				return (0);
699			} else {
700				uvm_wait("km_getwait2");	/* sleep here */
701				continue;
702			}
703		}
704
705		pg->flags &= ~PG_BUSY;	/* new page */
706		UVM_PAGE_OWN(pg, NULL);
707
708		/*
709		 * map it in
710		 */
711
712		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
713		    prot, PMAP_KMPAGE);
714		loopva += PAGE_SIZE;
715		offset += PAGE_SIZE;
716		loopsize -= PAGE_SIZE;
717	}
718
719	pmap_update(pmap_kernel());
720
721	if ((flags & UVM_KMF_ZERO) == 0) {
722		kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
723		kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
724	}
725
726	UVMHIST_LOG(maphist,"<- done (kva=%#jx)", kva,0,0,0);
727	return(kva);
728}
729
730/*
731 * uvm_km_protect: change the protection of an allocated area
732 */
733
734int
735uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
736{
737	return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
738}
739
740/*
741 * uvm_km_free: free an area of kernel memory
742 */
743
744void
745uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
746{
747	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
748
749	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
750		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
751		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
752	KASSERT((addr & PAGE_MASK) == 0);
753	KASSERT(vm_map_pmap(map) == pmap_kernel());
754
755	size = round_page(size);
756
757	if (flags & UVM_KMF_PAGEABLE) {
758		uvm_km_pgremove(addr, addr + size);
759	} else if (flags & UVM_KMF_WIRED) {
760		/*
761		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
762		 * remove it after.  See comment below about KVA visibility.
763		 */
764		uvm_km_pgremove_intrsafe(map, addr, addr + size);
765	}
766
767	/*
768	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
769	 * KVA becomes globally available.
770	 */
771
772	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
773}
774
775/* Sanity; must specify both or none. */
776#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
777    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
778#error Must specify MAP and UNMAP together.
779#endif
780
781#if defined(PMAP_ALLOC_POOLPAGE) && \
782    !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
783#error Must specify ALLOC with MAP and UNMAP
784#endif
785
786int
787uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
788    vmem_addr_t *addr)
789{
790	struct vm_page *pg;
791	vmem_addr_t va;
792	int rc;
793	vaddr_t loopva;
794	vsize_t loopsize;
795
796	size = round_page(size);
797
798#if defined(PMAP_MAP_POOLPAGE)
799	if (size == PAGE_SIZE) {
800again:
801#ifdef PMAP_ALLOC_POOLPAGE
802		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
803		   0 : UVM_PGA_USERESERVE);
804#else
805		pg = uvm_pagealloc(NULL, 0, NULL,
806		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
807#endif /* PMAP_ALLOC_POOLPAGE */
808		if (__predict_false(pg == NULL)) {
809			if (flags & VM_SLEEP) {
810				uvm_wait("plpg");
811				goto again;
812			}
813			return ENOMEM;
814		}
815		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
816		KASSERT(va != 0);
817		*addr = va;
818		return 0;
819	}
820#endif /* PMAP_MAP_POOLPAGE */
821
822	rc = vmem_alloc(vm, size, flags, &va);
823	if (rc != 0)
824		return rc;
825
826#ifdef PMAP_GROWKERNEL
827	/*
828	 * These VA allocations happen independently of uvm_map
829	 * so this allocation must not extend beyond the current limit.
830	 */
831	KASSERTMSG(uvm_maxkaddr >= va + size,
832	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
833	    uvm_maxkaddr, va, size);
834#endif
835
836	loopva = va;
837	loopsize = size;
838
839	while (loopsize) {
840		paddr_t pa __diagused;
841		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
842		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
843		    " pa=%#"PRIxPADDR" vmem=%p",
844		    loopva, loopsize, pa, vm);
845
846		pg = uvm_pagealloc(NULL, loopva, NULL,
847		    UVM_FLAG_COLORMATCH
848		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
849		if (__predict_false(pg == NULL)) {
850			if (flags & VM_SLEEP) {
851				uvm_wait("plpg");
852				continue;
853			} else {
854				uvm_km_pgremove_intrsafe(kernel_map, va,
855				    va + size);
856				vmem_free(vm, va, size);
857				return ENOMEM;
858			}
859		}
860
861		pg->flags &= ~PG_BUSY;	/* new page */
862		UVM_PAGE_OWN(pg, NULL);
863		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
864		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
865
866		loopva += PAGE_SIZE;
867		loopsize -= PAGE_SIZE;
868	}
869	pmap_update(pmap_kernel());
870
871	*addr = va;
872
873	return 0;
874}
875
876void
877uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
878{
879
880	size = round_page(size);
881#if defined(PMAP_UNMAP_POOLPAGE)
882	if (size == PAGE_SIZE) {
883		paddr_t pa;
884
885		pa = PMAP_UNMAP_POOLPAGE(addr);
886		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
887		return;
888	}
889#endif /* PMAP_UNMAP_POOLPAGE */
890	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
891	pmap_update(pmap_kernel());
892
893	vmem_free(vm, addr, size);
894}
895
896bool
897uvm_km_va_starved_p(void)
898{
899	vmem_size_t total;
900	vmem_size_t free;
901
902	if (kmem_arena == NULL)
903		return false;
904
905	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
906	free = vmem_size(kmem_arena, VMEM_FREE);
907
908	return (free < (total / 10));
909}
910