uvm_km.c revision 1.137
1/*	$NetBSD: uvm_km.c,v 1.137 2013/01/26 15:18:01 para Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56 *  School of Computer Science
57 *  Carnegie Mellon University
58 *  Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64/*
65 * uvm_km.c: handle kernel memory allocation and management
66 */
67
68/*
69 * overview of kernel memory management:
70 *
71 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
72 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 *
75 * the kernel_map has several "submaps."   submaps can only appear in
76 * the kernel_map (user processes can't use them).   submaps "take over"
77 * the management of a sub-range of the kernel's address space.  submaps
78 * are typically allocated at boot time and are never released.   kernel
79 * virtual address space that is mapped by a submap is locked by the
80 * submap's lock -- not the kernel_map's lock.
81 *
82 * thus, the useful feature of submaps is that they allow us to break
83 * up the locking and protection of the kernel address space into smaller
84 * chunks.
85 *
86 * the vm system has several standard kernel submaps/arenas, including:
87 *   kmem_arena => used for kmem/pool (memoryallocators(9))
88 *   pager_map => used to map "buf" structures into kernel space
89 *   exec_map => used during exec to handle exec args
90 *   etc...
91 *
92 * The kmem_arena is a "special submap", as it lives in a fixed map entry
93 * within the kernel_map and is controlled by vmem(9).
94 *
95 * the kernel allocates its private memory out of special uvm_objects whose
96 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97 * are "special" and never die).   all kernel objects should be thought of
98 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
99 * object is equal to the size of kernel virtual address space (i.e. the
100 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101 *
102 * note that just because a kernel object spans the entire kernel virtual
103 * address space doesn't mean that it has to be mapped into the entire space.
104 * large chunks of a kernel object's space go unused either because
105 * that area of kernel VM is unmapped, or there is some other type of
106 * object mapped into that range (e.g. a vnode).    for submap's kernel
107 * objects, the only part of the object that can ever be populated is the
108 * offsets that are managed by the submap.
109 *
110 * note that the "offset" in a kernel object is always the kernel virtual
111 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112 * example:
113 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
116 *   then that means that the page at offset 0x235000 in kernel_object is
117 *   mapped at 0xf8235000.
118 *
119 * kernel object have one other special property: when the kernel virtual
120 * memory mapping them is unmapped, the backing memory in the object is
121 * freed right away.   this is done with the uvm_km_pgremove() function.
122 * this has to be done because there is no backing store for kernel pages
123 * and no need to save them after they are no longer referenced.
124 *
125 * Generic arenas:
126 *
127 * kmem_arena:
128 *	Main arena controlling the kernel KVA used by other arenas.
129 *
130 * kmem_va_arena:
131 *	Implements quantum caching in order to speedup allocations and
132 *	reduce fragmentation.  The pool(9), unless created with a custom
133 *	meta-data allocator, and kmem(9) subsystems use this arena.
134 *
135 * Arenas for meta-data allocations are used by vmem(9) and pool(9).
136 * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
137 * compensates this by importing larger chunks from kmem_arena.
138 *
139 * kmem_va_meta_arena:
140 *	Space for meta-data.
141 *
142 * kmem_meta_arena:
143 *	Imports from kmem_va_meta_arena.  Allocations from this arena are
144 *	backed with the pages.
145 *
146 * Arena stacking:
147 *
148 *	kmem_arena
149 *		kmem_va_arena
150 *		kmem_va_meta_arena
151 *			kmem_meta_arena
152 */
153
154#include <sys/cdefs.h>
155__KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.137 2013/01/26 15:18:01 para Exp $");
156
157#include "opt_uvmhist.h"
158
159#include "opt_kmempages.h"
160
161#ifndef NKMEMPAGES
162#define NKMEMPAGES 0
163#endif
164
165/*
166 * Defaults for lower and upper-bounds for the kmem_arena page count.
167 * Can be overridden by kernel config options.
168 */
169#ifndef NKMEMPAGES_MIN
170#define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
171#endif
172
173#ifndef NKMEMPAGES_MAX
174#define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
175#endif
176
177
178#include <sys/param.h>
179#include <sys/systm.h>
180#include <sys/proc.h>
181#include <sys/pool.h>
182#include <sys/vmem.h>
183#include <sys/kmem.h>
184
185#include <uvm/uvm.h>
186
187/*
188 * global data structures
189 */
190
191struct vm_map *kernel_map = NULL;
192
193/*
194 * local data structues
195 */
196
197static struct vm_map		kernel_map_store;
198static struct vm_map_entry	kernel_image_mapent_store;
199static struct vm_map_entry	kernel_kmem_mapent_store;
200
201int nkmempages = 0;
202vaddr_t kmembase;
203vsize_t kmemsize;
204
205vmem_t *kmem_arena = NULL;
206vmem_t *kmem_va_arena;
207
208/*
209 * kmeminit_nkmempages: calculate the size of kmem_arena.
210 */
211void
212kmeminit_nkmempages(void)
213{
214	int npages;
215
216	if (nkmempages != 0) {
217		/*
218		 * It's already been set (by us being here before)
219		 * bail out now;
220		 */
221		return;
222	}
223
224#if defined(PMAP_MAP_POOLPAGE)
225	npages = (physmem / 4);
226#else
227	npages = (physmem / 3) * 2;
228#endif /* defined(PMAP_MAP_POOLPAGE) */
229
230#ifndef NKMEMPAGES_MAX_UNLIMITED
231	if (npages > NKMEMPAGES_MAX)
232		npages = NKMEMPAGES_MAX;
233#endif
234
235	if (npages < NKMEMPAGES_MIN)
236		npages = NKMEMPAGES_MIN;
237
238	nkmempages = npages;
239}
240
241/*
242 * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
243 * KVM already allocated for text, data, bss, and static data structures).
244 *
245 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
246 *    we assume that [vmin -> start] has already been allocated and that
247 *    "end" is the end.
248 */
249
250void
251uvm_km_bootstrap(vaddr_t start, vaddr_t end)
252{
253	bool kmem_arena_small;
254	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
255	struct uvm_map_args args;
256	int error;
257
258	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
259	UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
260	    start, end, 0,0);
261
262	kmeminit_nkmempages();
263	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
264	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
265
266	UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
267
268	/*
269	 * next, init kernel memory objects.
270	 */
271
272	/* kernel_object: for pageable anonymous kernel memory */
273	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
274				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
275
276	/*
277	 * init the map and reserve any space that might already
278	 * have been allocated kernel space before installing.
279	 */
280
281	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
282	kernel_map_store.pmap = pmap_kernel();
283	if (start != base) {
284		error = uvm_map_prepare(&kernel_map_store,
285		    base, start - base,
286		    NULL, UVM_UNKNOWN_OFFSET, 0,
287		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
288		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
289		if (!error) {
290			kernel_image_mapent_store.flags =
291			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
292			error = uvm_map_enter(&kernel_map_store, &args,
293			    &kernel_image_mapent_store);
294		}
295
296		if (error)
297			panic(
298			    "uvm_km_bootstrap: could not reserve space for kernel");
299
300		kmembase = args.uma_start + args.uma_size;
301	} else {
302		kmembase = base;
303	}
304
305	error = uvm_map_prepare(&kernel_map_store,
306	    kmembase, kmemsize,
307	    NULL, UVM_UNKNOWN_OFFSET, 0,
308	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
309	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
310	if (!error) {
311		kernel_kmem_mapent_store.flags =
312		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
313		error = uvm_map_enter(&kernel_map_store, &args,
314		    &kernel_kmem_mapent_store);
315	}
316
317	if (error)
318		panic("uvm_km_bootstrap: could not reserve kernel kmem");
319
320	/*
321	 * install!
322	 */
323
324	kernel_map = &kernel_map_store;
325
326	pool_subsystem_init();
327	vmem_bootstrap();
328
329	kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
330	    NULL, NULL, NULL,
331	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
332#ifdef PMAP_GROWKERNEL
333	/*
334	 * kmem_arena VA allocations happen independently of uvm_map.
335	 * grow kernel to accommodate the kmem_arena.
336	 */
337	if (uvm_maxkaddr < kmembase + kmemsize) {
338		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
339		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
340		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
341		    uvm_maxkaddr, kmembase, kmemsize);
342	}
343#endif
344
345	vmem_init(kmem_arena);
346
347	UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
348	    ", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
349
350	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
351	    vmem_alloc, vmem_free, kmem_arena,
352	    (kmem_arena_small ? 4 : 8) * PAGE_SIZE,
353	    VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
354
355	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
356}
357
358/*
359 * uvm_km_init: init the kernel maps virtual memory caches
360 * and start the pool/kmem allocator.
361 */
362void
363uvm_km_init(void)
364{
365
366	kmem_init();
367
368	kmeminit(); // killme
369}
370
371/*
372 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
373 * is allocated all references to that area of VM must go through it.  this
374 * allows the locking of VAs in kernel_map to be broken up into regions.
375 *
376 * => if `fixed' is true, *vmin specifies where the region described
377 *   pager_map => used to map "buf" structures into kernel space
378 *      by the submap must start
379 * => if submap is non NULL we use that as the submap, otherwise we
380 *	alloc a new map
381 */
382
383struct vm_map *
384uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
385    vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
386    struct vm_map *submap)
387{
388	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
389	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
390
391	KASSERT(vm_map_pmap(map) == pmap_kernel());
392
393	size = round_page(size);	/* round up to pagesize */
394
395	/*
396	 * first allocate a blank spot in the parent map
397	 */
398
399	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
400	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
401	    UVM_ADV_RANDOM, mapflags)) != 0) {
402		panic("%s: unable to allocate space in parent map", __func__);
403	}
404
405	/*
406	 * set VM bounds (vmin is filled in by uvm_map)
407	 */
408
409	*vmax = *vmin + size;
410
411	/*
412	 * add references to pmap and create or init the submap
413	 */
414
415	pmap_reference(vm_map_pmap(map));
416	if (submap == NULL) {
417		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
418		if (submap == NULL)
419			panic("uvm_km_suballoc: unable to create submap");
420	}
421	uvm_map_setup(submap, *vmin, *vmax, flags);
422	submap->pmap = vm_map_pmap(map);
423
424	/*
425	 * now let uvm_map_submap plug in it...
426	 */
427
428	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
429		panic("uvm_km_suballoc: submap allocation failed");
430
431	return(submap);
432}
433
434/*
435 * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
436 */
437
438void
439uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
440{
441	struct uvm_object * const uobj = uvm_kernel_object;
442	const voff_t start = startva - vm_map_min(kernel_map);
443	const voff_t end = endva - vm_map_min(kernel_map);
444	struct vm_page *pg;
445	voff_t curoff, nextoff;
446	int swpgonlydelta = 0;
447	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
448
449	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
450	KASSERT(startva < endva);
451	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
452
453	mutex_enter(uobj->vmobjlock);
454	pmap_remove(pmap_kernel(), startva, endva);
455	for (curoff = start; curoff < end; curoff = nextoff) {
456		nextoff = curoff + PAGE_SIZE;
457		pg = uvm_pagelookup(uobj, curoff);
458		if (pg != NULL && pg->flags & PG_BUSY) {
459			pg->flags |= PG_WANTED;
460			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
461				    "km_pgrm", 0);
462			mutex_enter(uobj->vmobjlock);
463			nextoff = curoff;
464			continue;
465		}
466
467		/*
468		 * free the swap slot, then the page.
469		 */
470
471		if (pg == NULL &&
472		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
473			swpgonlydelta++;
474		}
475		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
476		if (pg != NULL) {
477			mutex_enter(&uvm_pageqlock);
478			uvm_pagefree(pg);
479			mutex_exit(&uvm_pageqlock);
480		}
481	}
482	mutex_exit(uobj->vmobjlock);
483
484	if (swpgonlydelta > 0) {
485		mutex_enter(&uvm_swap_data_lock);
486		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
487		uvmexp.swpgonly -= swpgonlydelta;
488		mutex_exit(&uvm_swap_data_lock);
489	}
490}
491
492
493/*
494 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
495 *    regions.
496 *
497 * => when you unmap a part of anonymous kernel memory you want to toss
498 *    the pages right away.    (this is called from uvm_unmap_...).
499 * => none of the pages will ever be busy, and none of them will ever
500 *    be on the active or inactive queues (because they have no object).
501 */
502
503void
504uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
505{
506#define __PGRM_BATCH 16
507	struct vm_page *pg;
508	paddr_t pa[__PGRM_BATCH];
509	int npgrm, i;
510	vaddr_t va, batch_vastart;
511
512	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
513
514	KASSERT(VM_MAP_IS_KERNEL(map));
515	KASSERTMSG(vm_map_min(map) <= start,
516	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
517	    " (size=%#"PRIxVSIZE")",
518	    vm_map_min(map), start, end - start);
519	KASSERT(start < end);
520	KASSERT(end <= vm_map_max(map));
521
522	for (va = start; va < end;) {
523		batch_vastart = va;
524		/* create a batch of at most __PGRM_BATCH pages to free */
525		for (i = 0;
526		     i < __PGRM_BATCH && va < end;
527		     va += PAGE_SIZE) {
528			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
529				continue;
530			}
531			i++;
532		}
533		npgrm = i;
534		/* now remove the mappings */
535		pmap_kremove(batch_vastart, va - batch_vastart);
536		/* and free the pages */
537		for (i = 0; i < npgrm; i++) {
538			pg = PHYS_TO_VM_PAGE(pa[i]);
539			KASSERT(pg);
540			KASSERT(pg->uobject == NULL && pg->uanon == NULL);
541			KASSERT((pg->flags & PG_BUSY) == 0);
542			uvm_pagefree(pg);
543		}
544	}
545#undef __PGRM_BATCH
546}
547
548#if defined(DEBUG)
549void
550uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
551{
552	struct vm_page *pg;
553	vaddr_t va;
554	paddr_t pa;
555	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
556
557	KDASSERT(VM_MAP_IS_KERNEL(map));
558	KDASSERT(vm_map_min(map) <= start);
559	KDASSERT(start < end);
560	KDASSERT(end <= vm_map_max(map));
561
562	for (va = start; va < end; va += PAGE_SIZE) {
563		if (pmap_extract(pmap_kernel(), va, &pa)) {
564			panic("uvm_km_check_empty: va %p has pa 0x%llx",
565			    (void *)va, (long long)pa);
566		}
567		mutex_enter(uvm_kernel_object->vmobjlock);
568		pg = uvm_pagelookup(uvm_kernel_object,
569		    va - vm_map_min(kernel_map));
570		mutex_exit(uvm_kernel_object->vmobjlock);
571		if (pg) {
572			panic("uvm_km_check_empty: "
573			    "has page hashed at %p", (const void *)va);
574		}
575	}
576}
577#endif /* defined(DEBUG) */
578
579/*
580 * uvm_km_alloc: allocate an area of kernel memory.
581 *
582 * => NOTE: we can return 0 even if we can wait if there is not enough
583 *	free VM space in the map... caller should be prepared to handle
584 *	this case.
585 * => we return KVA of memory allocated
586 */
587
588vaddr_t
589uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
590{
591	vaddr_t kva, loopva;
592	vaddr_t offset;
593	vsize_t loopsize;
594	struct vm_page *pg;
595	struct uvm_object *obj;
596	int pgaflags;
597	vm_prot_t prot;
598	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
599
600	KASSERT(vm_map_pmap(map) == pmap_kernel());
601	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
602		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
603		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
604	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
605	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
606
607	/*
608	 * setup for call
609	 */
610
611	kva = vm_map_min(map);	/* hint */
612	size = round_page(size);
613	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
614	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
615		    map, obj, size, flags);
616
617	/*
618	 * allocate some virtual space
619	 */
620
621	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
622	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
623	    UVM_ADV_RANDOM,
624	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
625	     | UVM_KMF_COLORMATCH)))) != 0)) {
626		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
627		return(0);
628	}
629
630	/*
631	 * if all we wanted was VA, return now
632	 */
633
634	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
635		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
636		return(kva);
637	}
638
639	/*
640	 * recover object offset from virtual address
641	 */
642
643	offset = kva - vm_map_min(kernel_map);
644	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
645
646	/*
647	 * now allocate and map in the memory... note that we are the only ones
648	 * whom should ever get a handle on this area of VM.
649	 */
650
651	loopva = kva;
652	loopsize = size;
653
654	pgaflags = UVM_FLAG_COLORMATCH;
655	if (flags & UVM_KMF_NOWAIT)
656		pgaflags |= UVM_PGA_USERESERVE;
657	if (flags & UVM_KMF_ZERO)
658		pgaflags |= UVM_PGA_ZERO;
659	prot = VM_PROT_READ | VM_PROT_WRITE;
660	if (flags & UVM_KMF_EXEC)
661		prot |= VM_PROT_EXECUTE;
662	while (loopsize) {
663		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
664		    "loopva=%#"PRIxVADDR, loopva);
665
666		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
667#ifdef UVM_KM_VMFREELIST
668		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
669#else
670		   UVM_PGA_STRAT_NORMAL, 0
671#endif
672		   );
673
674		/*
675		 * out of memory?
676		 */
677
678		if (__predict_false(pg == NULL)) {
679			if ((flags & UVM_KMF_NOWAIT) ||
680			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
681				/* free everything! */
682				uvm_km_free(map, kva, size,
683				    flags & UVM_KMF_TYPEMASK);
684				return (0);
685			} else {
686				uvm_wait("km_getwait2");	/* sleep here */
687				continue;
688			}
689		}
690
691		pg->flags &= ~PG_BUSY;	/* new page */
692		UVM_PAGE_OWN(pg, NULL);
693
694		/*
695		 * map it in
696		 */
697
698		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
699		    prot, PMAP_KMPAGE);
700		loopva += PAGE_SIZE;
701		offset += PAGE_SIZE;
702		loopsize -= PAGE_SIZE;
703	}
704
705	pmap_update(pmap_kernel());
706
707	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
708	return(kva);
709}
710
711/*
712 * uvm_km_free: free an area of kernel memory
713 */
714
715void
716uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
717{
718	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
719
720	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
721		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
722		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
723	KASSERT((addr & PAGE_MASK) == 0);
724	KASSERT(vm_map_pmap(map) == pmap_kernel());
725
726	size = round_page(size);
727
728	if (flags & UVM_KMF_PAGEABLE) {
729		uvm_km_pgremove(addr, addr + size);
730	} else if (flags & UVM_KMF_WIRED) {
731		/*
732		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
733		 * remove it after.  See comment below about KVA visibility.
734		 */
735		uvm_km_pgremove_intrsafe(map, addr, addr + size);
736	}
737
738	/*
739	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
740	 * KVA becomes globally available.
741	 */
742
743	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
744}
745
746/* Sanity; must specify both or none. */
747#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
748    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
749#error Must specify MAP and UNMAP together.
750#endif
751
752int
753uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
754    vmem_addr_t *addr)
755{
756	struct vm_page *pg;
757	vmem_addr_t va;
758	int rc;
759	vaddr_t loopva;
760	vsize_t loopsize;
761
762	size = round_page(size);
763
764#if defined(PMAP_MAP_POOLPAGE)
765	if (size == PAGE_SIZE) {
766again:
767#ifdef PMAP_ALLOC_POOLPAGE
768		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
769		   0 : UVM_PGA_USERESERVE);
770#else
771		pg = uvm_pagealloc(NULL, 0, NULL,
772		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
773#endif /* PMAP_ALLOC_POOLPAGE */
774		if (__predict_false(pg == NULL)) {
775			if (flags & VM_SLEEP) {
776				uvm_wait("plpg");
777				goto again;
778			}
779			return ENOMEM;
780		}
781		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
782		if (__predict_false(va == 0)) {
783			uvm_pagefree(pg);
784			return ENOMEM;
785		}
786		*addr = va;
787		return 0;
788	}
789#endif /* PMAP_MAP_POOLPAGE */
790
791	rc = vmem_alloc(vm, size, flags, &va);
792	if (rc != 0)
793		return rc;
794
795#ifdef PMAP_GROWKERNEL
796	/*
797	 * These VA allocations happen independently of uvm_map
798	 * so this allocation must not extend beyond the current limit.
799	 */
800	KASSERTMSG(uvm_maxkaddr >= va + size,
801	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
802	    uvm_maxkaddr, va, size);
803#endif
804
805	loopva = va;
806	loopsize = size;
807
808	while (loopsize) {
809#ifdef DIAGNOSTIC
810		paddr_t pa;
811#endif
812		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
813		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
814		    " pa=%#"PRIxPADDR" vmem=%p",
815		    loopva, loopsize, pa, vm);
816
817		pg = uvm_pagealloc(NULL, loopva, NULL,
818		    UVM_FLAG_COLORMATCH
819		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
820		if (__predict_false(pg == NULL)) {
821			if (flags & VM_SLEEP) {
822				uvm_wait("plpg");
823				continue;
824			} else {
825				uvm_km_pgremove_intrsafe(kernel_map, va,
826				    va + size);
827				vmem_free(vm, va, size);
828				return ENOMEM;
829			}
830		}
831
832		pg->flags &= ~PG_BUSY;	/* new page */
833		UVM_PAGE_OWN(pg, NULL);
834		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
835		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
836
837		loopva += PAGE_SIZE;
838		loopsize -= PAGE_SIZE;
839	}
840	pmap_update(pmap_kernel());
841
842	*addr = va;
843
844	return 0;
845}
846
847void
848uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
849{
850
851	size = round_page(size);
852#if defined(PMAP_UNMAP_POOLPAGE)
853	if (size == PAGE_SIZE) {
854		paddr_t pa;
855
856		pa = PMAP_UNMAP_POOLPAGE(addr);
857		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
858		return;
859	}
860#endif /* PMAP_UNMAP_POOLPAGE */
861	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
862	pmap_update(pmap_kernel());
863
864	vmem_free(vm, addr, size);
865}
866
867bool
868uvm_km_va_starved_p(void)
869{
870	vmem_size_t total;
871	vmem_size_t free;
872
873	if (kmem_arena == NULL)
874		return false;
875
876	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
877	free = vmem_size(kmem_arena, VMEM_FREE);
878
879	return (free < (total / 10));
880}
881