uvm_km.c revision 1.134
1/*	$NetBSD: uvm_km.c,v 1.134 2012/09/04 13:37:41 matt Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56 *  School of Computer Science
57 *  Carnegie Mellon University
58 *  Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64/*
65 * uvm_km.c: handle kernel memory allocation and management
66 */
67
68/*
69 * overview of kernel memory management:
70 *
71 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
72 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 *
75 * the kernel_map has several "submaps."   submaps can only appear in
76 * the kernel_map (user processes can't use them).   submaps "take over"
77 * the management of a sub-range of the kernel's address space.  submaps
78 * are typically allocated at boot time and are never released.   kernel
79 * virtual address space that is mapped by a submap is locked by the
80 * submap's lock -- not the kernel_map's lock.
81 *
82 * thus, the useful feature of submaps is that they allow us to break
83 * up the locking and protection of the kernel address space into smaller
84 * chunks.
85 *
86 * the vm system has several standard kernel submaps/arenas, including:
87 *   kmem_arena => used for kmem/pool (memoryallocators(9))
88 *   pager_map => used to map "buf" structures into kernel space
89 *   exec_map => used during exec to handle exec args
90 *   etc...
91 *
92 * The kmem_arena is a "special submap", as it lives in a fixed map entry
93 * within the kernel_map and is controlled by vmem(9).
94 *
95 * the kernel allocates its private memory out of special uvm_objects whose
96 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97 * are "special" and never die).   all kernel objects should be thought of
98 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
99 * object is equal to the size of kernel virtual address space (i.e. the
100 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101 *
102 * note that just because a kernel object spans the entire kernel virtual
103 * address space doesn't mean that it has to be mapped into the entire space.
104 * large chunks of a kernel object's space go unused either because
105 * that area of kernel VM is unmapped, or there is some other type of
106 * object mapped into that range (e.g. a vnode).    for submap's kernel
107 * objects, the only part of the object that can ever be populated is the
108 * offsets that are managed by the submap.
109 *
110 * note that the "offset" in a kernel object is always the kernel virtual
111 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112 * example:
113 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
116 *   then that means that the page at offset 0x235000 in kernel_object is
117 *   mapped at 0xf8235000.
118 *
119 * kernel object have one other special property: when the kernel virtual
120 * memory mapping them is unmapped, the backing memory in the object is
121 * freed right away.   this is done with the uvm_km_pgremove() function.
122 * this has to be done because there is no backing store for kernel pages
123 * and no need to save them after they are no longer referenced.
124 *
125 * Generic arenas:
126 *
127 * kmem_arena:
128 *	Main arena controlling the kernel KVA used by other arenas.
129 *
130 * kmem_va_arena:
131 *	Implements quantum caching in order to speedup allocations and
132 *	reduce fragmentation.  The pool(9), unless created with a custom
133 *	meta-data allocator, and kmem(9) subsystems use this arena.
134 *
135 * Arenas for meta-data allocations are used by vmem(9) and pool(9).
136 * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
137 * compensates this by importing larger chunks from kmem_arena.
138 *
139 * kmem_va_meta_arena:
140 *	Space for meta-data.
141 *
142 * kmem_meta_arena:
143 *	Imports from kmem_va_meta_arena.  Allocations from this arena are
144 *	backed with the pages.
145 *
146 * Arena stacking:
147 *
148 *	kmem_arena
149 *		kmem_va_arena
150 *		kmem_va_meta_arena
151 *			kmem_meta_arena
152 */
153
154#include <sys/cdefs.h>
155__KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.134 2012/09/04 13:37:41 matt Exp $");
156
157#include "opt_uvmhist.h"
158
159#include "opt_kmempages.h"
160
161#ifndef NKMEMPAGES
162#define NKMEMPAGES 0
163#endif
164
165/*
166 * Defaults for lower and upper-bounds for the kmem_arena page count.
167 * Can be overridden by kernel config options.
168 */
169#ifndef NKMEMPAGES_MIN
170#define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
171#endif
172
173#ifndef NKMEMPAGES_MAX
174#define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
175#endif
176
177
178#include <sys/param.h>
179#include <sys/systm.h>
180#include <sys/proc.h>
181#include <sys/pool.h>
182#include <sys/vmem.h>
183#include <sys/kmem.h>
184
185#include <uvm/uvm.h>
186
187/*
188 * global data structures
189 */
190
191struct vm_map *kernel_map = NULL;
192
193/*
194 * local data structues
195 */
196
197static struct vm_map		kernel_map_store;
198static struct vm_map_entry	kernel_image_mapent_store;
199static struct vm_map_entry	kernel_kmem_mapent_store;
200
201int nkmempages = 0;
202vaddr_t kmembase;
203vsize_t kmemsize;
204
205vmem_t *kmem_arena;
206vmem_t *kmem_va_arena;
207
208/*
209 * kmeminit_nkmempages: calculate the size of kmem_arena.
210 */
211void
212kmeminit_nkmempages(void)
213{
214	int npages;
215
216	if (nkmempages != 0) {
217		/*
218		 * It's already been set (by us being here before)
219		 * bail out now;
220		 */
221		return;
222	}
223
224#if defined(PMAP_MAP_POOLPAGE)
225	npages = (physmem / 4);
226#else
227	npages = (physmem / 3) * 2;
228#endif /* defined(PMAP_MAP_POOLPAGE) */
229
230#ifndef NKMEMPAGES_MAX_UNLIMITED
231	if (npages > NKMEMPAGES_MAX)
232		npages = NKMEMPAGES_MAX;
233#endif
234
235	if (npages < NKMEMPAGES_MIN)
236		npages = NKMEMPAGES_MIN;
237
238	nkmempages = npages;
239}
240
241/*
242 * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
243 * KVM already allocated for text, data, bss, and static data structures).
244 *
245 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
246 *    we assume that [vmin -> start] has already been allocated and that
247 *    "end" is the end.
248 */
249
250void
251uvm_km_bootstrap(vaddr_t start, vaddr_t end)
252{
253	bool kmem_arena_small;
254	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
255	struct uvm_map_args args;
256	int error;
257
258	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
259	UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
260	    start, end, 0,0);
261
262	kmeminit_nkmempages();
263	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
264	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
265
266	UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
267
268	/*
269	 * next, init kernel memory objects.
270	 */
271
272	/* kernel_object: for pageable anonymous kernel memory */
273	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
274				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
275
276	/*
277	 * init the map and reserve any space that might already
278	 * have been allocated kernel space before installing.
279	 */
280
281	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
282	kernel_map_store.pmap = pmap_kernel();
283	if (start != base) {
284		error = uvm_map_prepare(&kernel_map_store,
285		    base, start - base,
286		    NULL, UVM_UNKNOWN_OFFSET, 0,
287		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
288		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
289		if (!error) {
290			kernel_image_mapent_store.flags =
291			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
292			error = uvm_map_enter(&kernel_map_store, &args,
293			    &kernel_image_mapent_store);
294		}
295
296		if (error)
297			panic(
298			    "uvm_km_bootstrap: could not reserve space for kernel");
299
300		kmembase = args.uma_start + args.uma_size;
301	} else {
302		kmembase = base;
303	}
304
305	error = uvm_map_prepare(&kernel_map_store,
306	    kmembase, kmemsize,
307	    NULL, UVM_UNKNOWN_OFFSET, 0,
308	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
309	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
310	if (!error) {
311		kernel_kmem_mapent_store.flags =
312		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
313		error = uvm_map_enter(&kernel_map_store, &args,
314		    &kernel_kmem_mapent_store);
315	}
316
317	if (error)
318		panic("uvm_km_bootstrap: could not reserve kernel kmem");
319
320	/*
321	 * install!
322	 */
323
324	kernel_map = &kernel_map_store;
325
326	pool_subsystem_init();
327	vmem_bootstrap();
328
329	kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
330	    NULL, NULL, NULL,
331	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
332
333	vmem_init(kmem_arena);
334
335	UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
336	    ", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
337
338	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
339	    vmem_alloc, vmem_free, kmem_arena,
340	    (kmem_arena_small ? 4 : 8) * PAGE_SIZE,
341	    VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
342
343	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
344}
345
346/*
347 * uvm_km_init: init the kernel maps virtual memory caches
348 * and start the pool/kmem allocator.
349 */
350void
351uvm_km_init(void)
352{
353
354	kmem_init();
355
356	kmeminit(); // killme
357}
358
359/*
360 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
361 * is allocated all references to that area of VM must go through it.  this
362 * allows the locking of VAs in kernel_map to be broken up into regions.
363 *
364 * => if `fixed' is true, *vmin specifies where the region described
365 *   pager_map => used to map "buf" structures into kernel space
366 *      by the submap must start
367 * => if submap is non NULL we use that as the submap, otherwise we
368 *	alloc a new map
369 */
370
371struct vm_map *
372uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
373    vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
374    struct vm_map *submap)
375{
376	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
377	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
378
379	KASSERT(vm_map_pmap(map) == pmap_kernel());
380
381	size = round_page(size);	/* round up to pagesize */
382
383	/*
384	 * first allocate a blank spot in the parent map
385	 */
386
387	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
388	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
389	    UVM_ADV_RANDOM, mapflags)) != 0) {
390		panic("%s: unable to allocate space in parent map", __func__);
391	}
392
393	/*
394	 * set VM bounds (vmin is filled in by uvm_map)
395	 */
396
397	*vmax = *vmin + size;
398
399	/*
400	 * add references to pmap and create or init the submap
401	 */
402
403	pmap_reference(vm_map_pmap(map));
404	if (submap == NULL) {
405		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
406		if (submap == NULL)
407			panic("uvm_km_suballoc: unable to create submap");
408	}
409	uvm_map_setup(submap, *vmin, *vmax, flags);
410	submap->pmap = vm_map_pmap(map);
411
412	/*
413	 * now let uvm_map_submap plug in it...
414	 */
415
416	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
417		panic("uvm_km_suballoc: submap allocation failed");
418
419	return(submap);
420}
421
422/*
423 * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
424 */
425
426void
427uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
428{
429	struct uvm_object * const uobj = uvm_kernel_object;
430	const voff_t start = startva - vm_map_min(kernel_map);
431	const voff_t end = endva - vm_map_min(kernel_map);
432	struct vm_page *pg;
433	voff_t curoff, nextoff;
434	int swpgonlydelta = 0;
435	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
436
437	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
438	KASSERT(startva < endva);
439	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
440
441	mutex_enter(uobj->vmobjlock);
442	pmap_remove(pmap_kernel(), startva, endva);
443	for (curoff = start; curoff < end; curoff = nextoff) {
444		nextoff = curoff + PAGE_SIZE;
445		pg = uvm_pagelookup(uobj, curoff);
446		if (pg != NULL && pg->flags & PG_BUSY) {
447			pg->flags |= PG_WANTED;
448			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
449				    "km_pgrm", 0);
450			mutex_enter(uobj->vmobjlock);
451			nextoff = curoff;
452			continue;
453		}
454
455		/*
456		 * free the swap slot, then the page.
457		 */
458
459		if (pg == NULL &&
460		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
461			swpgonlydelta++;
462		}
463		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
464		if (pg != NULL) {
465			mutex_enter(&uvm_pageqlock);
466			uvm_pagefree(pg);
467			mutex_exit(&uvm_pageqlock);
468		}
469	}
470	mutex_exit(uobj->vmobjlock);
471
472	if (swpgonlydelta > 0) {
473		mutex_enter(&uvm_swap_data_lock);
474		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
475		uvmexp.swpgonly -= swpgonlydelta;
476		mutex_exit(&uvm_swap_data_lock);
477	}
478}
479
480
481/*
482 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
483 *    regions.
484 *
485 * => when you unmap a part of anonymous kernel memory you want to toss
486 *    the pages right away.    (this is called from uvm_unmap_...).
487 * => none of the pages will ever be busy, and none of them will ever
488 *    be on the active or inactive queues (because they have no object).
489 */
490
491void
492uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
493{
494#define __PGRM_BATCH 16
495	struct vm_page *pg;
496	paddr_t pa[__PGRM_BATCH];
497	int npgrm, i;
498	vaddr_t va, batch_vastart;
499
500	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
501
502	KASSERT(VM_MAP_IS_KERNEL(map));
503	KASSERTMSG(vm_map_min(map) <= start,
504	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
505	    " (size=%#"PRIxVSIZE")",
506	    vm_map_min(map), start, end - start);
507	KASSERT(start < end);
508	KASSERT(end <= vm_map_max(map));
509
510	for (va = start; va < end;) {
511		batch_vastart = va;
512		/* create a batch of at most __PGRM_BATCH pages to free */
513		for (i = 0;
514		     i < __PGRM_BATCH && va < end;
515		     va += PAGE_SIZE) {
516			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
517				continue;
518			}
519			i++;
520		}
521		npgrm = i;
522		/* now remove the mappings */
523		pmap_kremove(batch_vastart, va - batch_vastart);
524		/* and free the pages */
525		for (i = 0; i < npgrm; i++) {
526			pg = PHYS_TO_VM_PAGE(pa[i]);
527			KASSERT(pg);
528			KASSERT(pg->uobject == NULL && pg->uanon == NULL);
529			KASSERT((pg->flags & PG_BUSY) == 0);
530			uvm_pagefree(pg);
531		}
532	}
533#undef __PGRM_BATCH
534}
535
536#if defined(DEBUG)
537void
538uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
539{
540	struct vm_page *pg;
541	vaddr_t va;
542	paddr_t pa;
543	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
544
545	KDASSERT(VM_MAP_IS_KERNEL(map));
546	KDASSERT(vm_map_min(map) <= start);
547	KDASSERT(start < end);
548	KDASSERT(end <= vm_map_max(map));
549
550	for (va = start; va < end; va += PAGE_SIZE) {
551		if (pmap_extract(pmap_kernel(), va, &pa)) {
552			panic("uvm_km_check_empty: va %p has pa 0x%llx",
553			    (void *)va, (long long)pa);
554		}
555		mutex_enter(uvm_kernel_object->vmobjlock);
556		pg = uvm_pagelookup(uvm_kernel_object,
557		    va - vm_map_min(kernel_map));
558		mutex_exit(uvm_kernel_object->vmobjlock);
559		if (pg) {
560			panic("uvm_km_check_empty: "
561			    "has page hashed at %p", (const void *)va);
562		}
563	}
564}
565#endif /* defined(DEBUG) */
566
567/*
568 * uvm_km_alloc: allocate an area of kernel memory.
569 *
570 * => NOTE: we can return 0 even if we can wait if there is not enough
571 *	free VM space in the map... caller should be prepared to handle
572 *	this case.
573 * => we return KVA of memory allocated
574 */
575
576vaddr_t
577uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
578{
579	vaddr_t kva, loopva;
580	vaddr_t offset;
581	vsize_t loopsize;
582	struct vm_page *pg;
583	struct uvm_object *obj;
584	int pgaflags;
585	vm_prot_t prot;
586	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
587
588	KASSERT(vm_map_pmap(map) == pmap_kernel());
589	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
590		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
591		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
592	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
593	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
594
595	/*
596	 * setup for call
597	 */
598
599	kva = vm_map_min(map);	/* hint */
600	size = round_page(size);
601	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
602	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
603		    map, obj, size, flags);
604
605	/*
606	 * allocate some virtual space
607	 */
608
609	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
610	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
611	    UVM_ADV_RANDOM,
612	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
613	     | UVM_KMF_COLORMATCH)))) != 0)) {
614		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
615		return(0);
616	}
617
618	/*
619	 * if all we wanted was VA, return now
620	 */
621
622	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
623		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
624		return(kva);
625	}
626
627	/*
628	 * recover object offset from virtual address
629	 */
630
631	offset = kva - vm_map_min(kernel_map);
632	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
633
634	/*
635	 * now allocate and map in the memory... note that we are the only ones
636	 * whom should ever get a handle on this area of VM.
637	 */
638
639	loopva = kva;
640	loopsize = size;
641
642	pgaflags = UVM_FLAG_COLORMATCH;
643	if (flags & UVM_KMF_NOWAIT)
644		pgaflags |= UVM_PGA_USERESERVE;
645	if (flags & UVM_KMF_ZERO)
646		pgaflags |= UVM_PGA_ZERO;
647	prot = VM_PROT_READ | VM_PROT_WRITE;
648	if (flags & UVM_KMF_EXEC)
649		prot |= VM_PROT_EXECUTE;
650	while (loopsize) {
651		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
652		    "loopva=%#"PRIxVADDR, loopva);
653
654		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
655#ifdef UVM_KM_VMFREELIST
656		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
657#else
658		   UVM_PGA_STRAT_NORMAL, 0
659#endif
660		   );
661
662		/*
663		 * out of memory?
664		 */
665
666		if (__predict_false(pg == NULL)) {
667			if ((flags & UVM_KMF_NOWAIT) ||
668			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
669				/* free everything! */
670				uvm_km_free(map, kva, size,
671				    flags & UVM_KMF_TYPEMASK);
672				return (0);
673			} else {
674				uvm_wait("km_getwait2");	/* sleep here */
675				continue;
676			}
677		}
678
679		pg->flags &= ~PG_BUSY;	/* new page */
680		UVM_PAGE_OWN(pg, NULL);
681
682		/*
683		 * map it in
684		 */
685
686		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
687		    prot, PMAP_KMPAGE);
688		loopva += PAGE_SIZE;
689		offset += PAGE_SIZE;
690		loopsize -= PAGE_SIZE;
691	}
692
693	pmap_update(pmap_kernel());
694
695	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
696	return(kva);
697}
698
699/*
700 * uvm_km_free: free an area of kernel memory
701 */
702
703void
704uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
705{
706	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
707
708	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
709		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
710		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
711	KASSERT((addr & PAGE_MASK) == 0);
712	KASSERT(vm_map_pmap(map) == pmap_kernel());
713
714	size = round_page(size);
715
716	if (flags & UVM_KMF_PAGEABLE) {
717		uvm_km_pgremove(addr, addr + size);
718	} else if (flags & UVM_KMF_WIRED) {
719		/*
720		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
721		 * remove it after.  See comment below about KVA visibility.
722		 */
723		uvm_km_pgremove_intrsafe(map, addr, addr + size);
724	}
725
726	/*
727	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
728	 * KVA becomes globally available.
729	 */
730
731	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
732}
733
734/* Sanity; must specify both or none. */
735#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
736    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
737#error Must specify MAP and UNMAP together.
738#endif
739
740int
741uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
742    vmem_addr_t *addr)
743{
744	struct vm_page *pg;
745	vmem_addr_t va;
746	int rc;
747	vaddr_t loopva;
748	vsize_t loopsize;
749
750	size = round_page(size);
751
752#if defined(PMAP_MAP_POOLPAGE)
753	if (size == PAGE_SIZE) {
754again:
755#ifdef PMAP_ALLOC_POOLPAGE
756		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
757		   0 : UVM_PGA_USERESERVE);
758#else
759		pg = uvm_pagealloc(NULL, 0, NULL,
760		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
761#endif /* PMAP_ALLOC_POOLPAGE */
762		if (__predict_false(pg == NULL)) {
763			if (flags & VM_SLEEP) {
764				uvm_wait("plpg");
765				goto again;
766			}
767			return ENOMEM;
768		}
769		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
770		if (__predict_false(va == 0)) {
771			uvm_pagefree(pg);
772			return ENOMEM;
773		}
774		*addr = va;
775		return 0;
776	}
777#endif /* PMAP_MAP_POOLPAGE */
778
779	rc = vmem_alloc(vm, size, flags, &va);
780	if (rc != 0)
781		return rc;
782
783#ifdef PMAP_GROWKERNEL
784	/*
785	 * These VA allocations happen independently of uvm_map so if this allocation
786	 * extends beyond the current limit, then allocate more resources for it.
787	 * This can only happen while the kmem_map is the only map entry in the
788	 * kernel_map because as soon as another map entry is created, uvm_map_prepare
789	 * will set uvm_maxkaddr to an address beyond the kmem_map.
790	 */
791	if (uvm_maxkaddr < va + size) {
792		uvm_maxkaddr = pmap_growkernel(va + size);
793		KASSERTMSG(uvm_maxkaddr >= va + size,
794		    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
795		    uvm_maxkaddr, va, size);
796	}
797#endif
798
799	loopva = va;
800	loopsize = size;
801
802	while (loopsize) {
803#ifdef DIAGNOSTIC
804		paddr_t pa;
805#endif
806		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
807		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
808		    " pa=%#"PRIxPADDR" vmem=%p",
809		    loopva, loopsize, pa, vm);
810
811		pg = uvm_pagealloc(NULL, loopva, NULL,
812		    UVM_FLAG_COLORMATCH
813		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
814		if (__predict_false(pg == NULL)) {
815			if (flags & VM_SLEEP) {
816				uvm_wait("plpg");
817				continue;
818			} else {
819				uvm_km_pgremove_intrsafe(kernel_map, va,
820				    va + size);
821				vmem_free(vm, va, size);
822				return ENOMEM;
823			}
824		}
825
826		pg->flags &= ~PG_BUSY;	/* new page */
827		UVM_PAGE_OWN(pg, NULL);
828		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
829		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
830
831		loopva += PAGE_SIZE;
832		loopsize -= PAGE_SIZE;
833	}
834	pmap_update(pmap_kernel());
835
836	*addr = va;
837
838	return 0;
839}
840
841void
842uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
843{
844
845	size = round_page(size);
846#if defined(PMAP_UNMAP_POOLPAGE)
847	if (size == PAGE_SIZE) {
848		paddr_t pa;
849
850		pa = PMAP_UNMAP_POOLPAGE(addr);
851		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
852		return;
853	}
854#endif /* PMAP_UNMAP_POOLPAGE */
855	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
856	pmap_update(pmap_kernel());
857
858	vmem_free(vm, addr, size);
859}
860
861bool
862uvm_km_va_starved_p(void)
863{
864	vmem_size_t total;
865	vmem_size_t free;
866
867	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
868	free = vmem_size(kmem_arena, VMEM_FREE);
869
870	return (free < (total / 10));
871}
872