uvm_km.c revision 1.126
1/*	$NetBSD: uvm_km.c,v 1.126 2012/06/02 08:42:37 para Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56 *  School of Computer Science
57 *  Carnegie Mellon University
58 *  Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64/*
65 * uvm_km.c: handle kernel memory allocation and management
66 */
67
68/*
69 * overview of kernel memory management:
70 *
71 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
72 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 *
75 * the kernel_map has several "submaps."   submaps can only appear in
76 * the kernel_map (user processes can't use them).   submaps "take over"
77 * the management of a sub-range of the kernel's address space.  submaps
78 * are typically allocated at boot time and are never released.   kernel
79 * virtual address space that is mapped by a submap is locked by the
80 * submap's lock -- not the kernel_map's lock.
81 *
82 * thus, the useful feature of submaps is that they allow us to break
83 * up the locking and protection of the kernel address space into smaller
84 * chunks.
85 *
86 * the vm system has several standard kernel submaps/arenas, including:
87 *   kmem_arena => used for kmem/pool (memoryallocators(9))
88 *   pager_map => used to map "buf" structures into kernel space
89 *   exec_map => used during exec to handle exec args
90 *   etc...
91 *
92 * the kmem_arena is a "special submap", as it lives a fixed map entry
93 * within the kernel_map and controlled by vmem(9).
94 *
95 * the kernel allocates its private memory out of special uvm_objects whose
96 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97 * are "special" and never die).   all kernel objects should be thought of
98 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
99 * object is equal to the size of kernel virtual address space (i.e. the
100 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101 *
102 * note that just because a kernel object spans the entire kernel virtual
103 * address space doesn't mean that it has to be mapped into the entire space.
104 * large chunks of a kernel object's space go unused either because
105 * that area of kernel VM is unmapped, or there is some other type of
106 * object mapped into that range (e.g. a vnode).    for submap's kernel
107 * objects, the only part of the object that can ever be populated is the
108 * offsets that are managed by the submap.
109 *
110 * note that the "offset" in a kernel object is always the kernel virtual
111 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112 * example:
113 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
116 *   then that means that the page at offset 0x235000 in kernel_object is
117 *   mapped at 0xf8235000.
118 *
119 * kernel object have one other special property: when the kernel virtual
120 * memory mapping them is unmapped, the backing memory in the object is
121 * freed right away.   this is done with the uvm_km_pgremove() function.
122 * this has to be done because there is no backing store for kernel pages
123 * and no need to save them after they are no longer referenced.
124 *
125 * kmem_arena: main arena controlling the kernel kva used by other arenas.
126 * kmem_va_arena: it utilizes quantum caching for fast allocations and to
127 *   lower fragmentation. the pool and kmem allocate from this arena
128 *   except for some pool meta-data.
129 *
130 * arenas for metadata allocations used by vmem(9) and pool(9)
131 * note: these arenas can't use quantum caching, the kmem_va_meta_arena
132 *   compensates for this by importing larger chunks from kmem_arena.
133 *
134 * kmem_va_meta_arena: space for metadata is allocated from this arena.
135 * kmem_meta_arena: imports from kmem_va_meta_arena.
136 *   allocations from this arena are backed with vm_pages.
137 *
138 * arena stacking:
139 * kmem_arena
140 *   kmem_va_arena
141 *   kmem_va_meta_arena
142 *     kmem_meta_arena
143 *
144 */
145
146#include <sys/cdefs.h>
147__KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.126 2012/06/02 08:42:37 para Exp $");
148
149#include "opt_uvmhist.h"
150
151#include "opt_kmempages.h"
152
153#ifndef NKMEMPAGES
154#define NKMEMPAGES 0
155#endif
156
157/*
158 * Defaults for lower and upper-bounds for the kmem_arena page count.
159 * Can be overridden by kernel config options.
160 */
161#ifndef NKMEMPAGES_MIN
162#define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
163#endif
164
165#ifndef NKMEMPAGES_MAX
166#define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
167#endif
168
169
170#include <sys/param.h>
171#include <sys/systm.h>
172#include <sys/proc.h>
173#include <sys/pool.h>
174#include <sys/vmem.h>
175#include <sys/kmem.h>
176
177#include <uvm/uvm.h>
178
179/*
180 * global data structures
181 */
182
183struct vm_map *kernel_map = NULL;
184
185/*
186 * local data structues
187 */
188
189static struct vm_map		kernel_map_store;
190static struct vm_map_entry	kernel_image_mapent_store;
191static struct vm_map_entry	kernel_kmem_mapent_store;
192
193int nkmempages = 0;
194vaddr_t kmembase;
195vsize_t kmemsize;
196
197vmem_t *kmem_arena;
198vmem_t *kmem_va_arena;
199
200/*
201 * kmeminit_nkmempages: calculate the size of kmem_arena.
202 */
203void
204kmeminit_nkmempages(void)
205{
206	int npages;
207
208	if (nkmempages != 0) {
209		/*
210		 * It's already been set (by us being here before)
211		 * bail out now;
212		 */
213		return;
214	}
215
216#if defined(PMAP_MAP_POOLPAGE)
217	npages = (physmem / 4);
218#else
219	npages = (physmem / 3) * 2;
220#endif /* defined(PMAP_MAP_POOLPAGE) */
221
222#ifndef NKMEMPAGES_MAX_UNLIMITED
223	if (npages > NKMEMPAGES_MAX)
224		npages = NKMEMPAGES_MAX;
225#endif
226
227	if (npages < NKMEMPAGES_MIN)
228		npages = NKMEMPAGES_MIN;
229
230	nkmempages = npages;
231}
232
233/*
234 * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
235 * KVM already allocated for text, data, bss, and static data structures).
236 *
237 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
238 *    we assume that [vmin -> start] has already been allocated and that
239 *    "end" is the end.
240 */
241
242void
243uvm_km_bootstrap(vaddr_t start, vaddr_t end)
244{
245	bool kmem_arena_small;
246	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
247	struct uvm_map_args args;
248	int error;
249
250	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
251	UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
252	    start, end, 0,0);
253
254	kmeminit_nkmempages();
255	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
256	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
257
258	UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
259
260	/*
261	 * next, init kernel memory objects.
262	 */
263
264	/* kernel_object: for pageable anonymous kernel memory */
265	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
266				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
267
268	/*
269	 * init the map and reserve any space that might already
270	 * have been allocated kernel space before installing.
271	 */
272
273	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
274	kernel_map_store.pmap = pmap_kernel();
275	if (start != base) {
276		error = uvm_map_prepare(&kernel_map_store,
277		    base, start - base,
278		    NULL, UVM_UNKNOWN_OFFSET, 0,
279		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
280		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
281		if (!error) {
282			kernel_image_mapent_store.flags =
283			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
284			error = uvm_map_enter(&kernel_map_store, &args,
285			    &kernel_image_mapent_store);
286		}
287
288		if (error)
289			panic(
290			    "uvm_km_bootstrap: could not reserve space for kernel");
291
292		kmembase = args.uma_start + args.uma_size;
293	} else {
294		kmembase = base;
295	}
296
297	error = uvm_map_prepare(&kernel_map_store,
298	    kmembase, kmemsize,
299	    NULL, UVM_UNKNOWN_OFFSET, 0,
300	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
301	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
302	if (!error) {
303		kernel_kmem_mapent_store.flags =
304		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
305		error = uvm_map_enter(&kernel_map_store, &args,
306		    &kernel_kmem_mapent_store);
307	}
308
309	if (error)
310		panic("uvm_km_bootstrap: could not reserve kernel kmem");
311
312	/*
313	 * install!
314	 */
315
316	kernel_map = &kernel_map_store;
317
318	pool_subsystem_init();
319	vmem_bootstrap();
320
321	kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
322	    NULL, NULL, NULL,
323	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
324
325	vmem_init(kmem_arena);
326
327	UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
328	    ", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
329
330	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
331	    vmem_alloc, vmem_free, kmem_arena,
332	    (kmem_arena_small ? 4 : 8) * PAGE_SIZE,
333	    VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
334
335	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
336}
337
338/*
339 * uvm_km_init: init the kernel maps virtual memory caches
340 * and start the pool/kmem allocator.
341 */
342void
343uvm_km_init(void)
344{
345
346	kmem_init();
347
348	kmeminit(); // killme
349}
350
351/*
352 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
353 * is allocated all references to that area of VM must go through it.  this
354 * allows the locking of VAs in kernel_map to be broken up into regions.
355 *
356 * => if `fixed' is true, *vmin specifies where the region described
357 *   pager_map => used to map "buf" structures into kernel space
358 *      by the submap must start
359 * => if submap is non NULL we use that as the submap, otherwise we
360 *	alloc a new map
361 */
362
363struct vm_map *
364uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
365    vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
366    struct vm_map *submap)
367{
368	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
369	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
370
371	KASSERT(vm_map_pmap(map) == pmap_kernel());
372
373	size = round_page(size);	/* round up to pagesize */
374
375	/*
376	 * first allocate a blank spot in the parent map
377	 */
378
379	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
380	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
381	    UVM_ADV_RANDOM, mapflags)) != 0) {
382		panic("%s: unable to allocate space in parent map", __func__);
383	}
384
385	/*
386	 * set VM bounds (vmin is filled in by uvm_map)
387	 */
388
389	*vmax = *vmin + size;
390
391	/*
392	 * add references to pmap and create or init the submap
393	 */
394
395	pmap_reference(vm_map_pmap(map));
396	if (submap == NULL) {
397		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
398		if (submap == NULL)
399			panic("uvm_km_suballoc: unable to create submap");
400	}
401	uvm_map_setup(submap, *vmin, *vmax, flags);
402	submap->pmap = vm_map_pmap(map);
403
404	/*
405	 * now let uvm_map_submap plug in it...
406	 */
407
408	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
409		panic("uvm_km_suballoc: submap allocation failed");
410
411	return(submap);
412}
413
414/*
415 * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
416 */
417
418void
419uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
420{
421	struct uvm_object * const uobj = uvm_kernel_object;
422	const voff_t start = startva - vm_map_min(kernel_map);
423	const voff_t end = endva - vm_map_min(kernel_map);
424	struct vm_page *pg;
425	voff_t curoff, nextoff;
426	int swpgonlydelta = 0;
427	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
428
429	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
430	KASSERT(startva < endva);
431	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
432
433	mutex_enter(uobj->vmobjlock);
434	pmap_remove(pmap_kernel(), startva, endva);
435	for (curoff = start; curoff < end; curoff = nextoff) {
436		nextoff = curoff + PAGE_SIZE;
437		pg = uvm_pagelookup(uobj, curoff);
438		if (pg != NULL && pg->flags & PG_BUSY) {
439			pg->flags |= PG_WANTED;
440			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
441				    "km_pgrm", 0);
442			mutex_enter(uobj->vmobjlock);
443			nextoff = curoff;
444			continue;
445		}
446
447		/*
448		 * free the swap slot, then the page.
449		 */
450
451		if (pg == NULL &&
452		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
453			swpgonlydelta++;
454		}
455		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
456		if (pg != NULL) {
457			mutex_enter(&uvm_pageqlock);
458			uvm_pagefree(pg);
459			mutex_exit(&uvm_pageqlock);
460		}
461	}
462	mutex_exit(uobj->vmobjlock);
463
464	if (swpgonlydelta > 0) {
465		mutex_enter(&uvm_swap_data_lock);
466		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
467		uvmexp.swpgonly -= swpgonlydelta;
468		mutex_exit(&uvm_swap_data_lock);
469	}
470}
471
472
473/*
474 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
475 *    regions.
476 *
477 * => when you unmap a part of anonymous kernel memory you want to toss
478 *    the pages right away.    (this is called from uvm_unmap_...).
479 * => none of the pages will ever be busy, and none of them will ever
480 *    be on the active or inactive queues (because they have no object).
481 */
482
483void
484uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
485{
486#define __PGRM_BATCH 16
487	struct vm_page *pg;
488	paddr_t pa[__PGRM_BATCH];
489	int npgrm, i;
490	vaddr_t va, batch_vastart;
491
492	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
493
494	KASSERT(VM_MAP_IS_KERNEL(map));
495	KASSERT(vm_map_min(map) <= start);
496	KASSERT(start < end);
497	KASSERT(end <= vm_map_max(map));
498
499	for (va = start; va < end;) {
500		batch_vastart = va;
501		/* create a batch of at most __PGRM_BATCH pages to free */
502		for (i = 0;
503		     i < __PGRM_BATCH && va < end;
504		     va += PAGE_SIZE) {
505			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
506				continue;
507			}
508			i++;
509		}
510		npgrm = i;
511		/* now remove the mappings */
512		pmap_kremove(batch_vastart, va - batch_vastart);
513		/* and free the pages */
514		for (i = 0; i < npgrm; i++) {
515			pg = PHYS_TO_VM_PAGE(pa[i]);
516			KASSERT(pg);
517			KASSERT(pg->uobject == NULL && pg->uanon == NULL);
518			KASSERT((pg->flags & PG_BUSY) == 0);
519			uvm_pagefree(pg);
520		}
521	}
522#undef __PGRM_BATCH
523}
524
525#if defined(DEBUG)
526void
527uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
528{
529	struct vm_page *pg;
530	vaddr_t va;
531	paddr_t pa;
532	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
533
534	KDASSERT(VM_MAP_IS_KERNEL(map));
535	KDASSERT(vm_map_min(map) <= start);
536	KDASSERT(start < end);
537	KDASSERT(end <= vm_map_max(map));
538
539	for (va = start; va < end; va += PAGE_SIZE) {
540		if (pmap_extract(pmap_kernel(), va, &pa)) {
541			panic("uvm_km_check_empty: va %p has pa 0x%llx",
542			    (void *)va, (long long)pa);
543		}
544		mutex_enter(uvm_kernel_object->vmobjlock);
545		pg = uvm_pagelookup(uvm_kernel_object,
546		    va - vm_map_min(kernel_map));
547		mutex_exit(uvm_kernel_object->vmobjlock);
548		if (pg) {
549			panic("uvm_km_check_empty: "
550			    "has page hashed at %p", (const void *)va);
551		}
552	}
553}
554#endif /* defined(DEBUG) */
555
556/*
557 * uvm_km_alloc: allocate an area of kernel memory.
558 *
559 * => NOTE: we can return 0 even if we can wait if there is not enough
560 *	free VM space in the map... caller should be prepared to handle
561 *	this case.
562 * => we return KVA of memory allocated
563 */
564
565vaddr_t
566uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
567{
568	vaddr_t kva, loopva;
569	vaddr_t offset;
570	vsize_t loopsize;
571	struct vm_page *pg;
572	struct uvm_object *obj;
573	int pgaflags;
574	vm_prot_t prot;
575	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
576
577	KASSERT(vm_map_pmap(map) == pmap_kernel());
578	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
579		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
580		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
581	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
582	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
583
584	/*
585	 * setup for call
586	 */
587
588	kva = vm_map_min(map);	/* hint */
589	size = round_page(size);
590	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
591	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
592		    map, obj, size, flags);
593
594	/*
595	 * allocate some virtual space
596	 */
597
598	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
599	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
600	    UVM_ADV_RANDOM,
601	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
602	     | UVM_KMF_COLORMATCH)))) != 0)) {
603		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
604		return(0);
605	}
606
607	/*
608	 * if all we wanted was VA, return now
609	 */
610
611	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
612		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
613		return(kva);
614	}
615
616	/*
617	 * recover object offset from virtual address
618	 */
619
620	offset = kva - vm_map_min(kernel_map);
621	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
622
623	/*
624	 * now allocate and map in the memory... note that we are the only ones
625	 * whom should ever get a handle on this area of VM.
626	 */
627
628	loopva = kva;
629	loopsize = size;
630
631	pgaflags = UVM_FLAG_COLORMATCH;
632	if (flags & UVM_KMF_NOWAIT)
633		pgaflags |= UVM_PGA_USERESERVE;
634	if (flags & UVM_KMF_ZERO)
635		pgaflags |= UVM_PGA_ZERO;
636	prot = VM_PROT_READ | VM_PROT_WRITE;
637	if (flags & UVM_KMF_EXEC)
638		prot |= VM_PROT_EXECUTE;
639	while (loopsize) {
640		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
641		    "loopva=%#"PRIxVADDR, loopva);
642
643		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
644#ifdef UVM_KM_VMFREELIST
645		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
646#else
647		   UVM_PGA_STRAT_NORMAL, 0
648#endif
649		   );
650
651		/*
652		 * out of memory?
653		 */
654
655		if (__predict_false(pg == NULL)) {
656			if ((flags & UVM_KMF_NOWAIT) ||
657			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
658				/* free everything! */
659				uvm_km_free(map, kva, size,
660				    flags & UVM_KMF_TYPEMASK);
661				return (0);
662			} else {
663				uvm_wait("km_getwait2");	/* sleep here */
664				continue;
665			}
666		}
667
668		pg->flags &= ~PG_BUSY;	/* new page */
669		UVM_PAGE_OWN(pg, NULL);
670
671		/*
672		 * map it in
673		 */
674
675		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
676		    prot, PMAP_KMPAGE);
677		loopva += PAGE_SIZE;
678		offset += PAGE_SIZE;
679		loopsize -= PAGE_SIZE;
680	}
681
682	pmap_update(pmap_kernel());
683
684	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
685	return(kva);
686}
687
688/*
689 * uvm_km_free: free an area of kernel memory
690 */
691
692void
693uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
694{
695	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
696
697	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
698		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
699		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
700	KASSERT((addr & PAGE_MASK) == 0);
701	KASSERT(vm_map_pmap(map) == pmap_kernel());
702
703	size = round_page(size);
704
705	if (flags & UVM_KMF_PAGEABLE) {
706		uvm_km_pgremove(addr, addr + size);
707	} else if (flags & UVM_KMF_WIRED) {
708		/*
709		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
710		 * remove it after.  See comment below about KVA visibility.
711		 */
712		uvm_km_pgremove_intrsafe(map, addr, addr + size);
713	}
714
715	/*
716	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
717	 * KVA becomes globally available.
718	 */
719
720	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
721}
722
723/* Sanity; must specify both or none. */
724#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
725    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
726#error Must specify MAP and UNMAP together.
727#endif
728
729int
730uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
731    vmem_addr_t *addr)
732{
733	struct vm_page *pg;
734	vmem_addr_t va;
735	int rc;
736	vaddr_t loopva;
737	vsize_t loopsize;
738
739	size = round_page(size);
740
741#if defined(PMAP_MAP_POOLPAGE)
742	if (size == PAGE_SIZE) {
743again:
744#ifdef PMAP_ALLOC_POOLPAGE
745		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
746		   0 : UVM_PGA_USERESERVE);
747#else
748		pg = uvm_pagealloc(NULL, 0, NULL,
749		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
750#endif /* PMAP_ALLOC_POOLPAGE */
751		if (__predict_false(pg == NULL)) {
752			if (flags & VM_SLEEP) {
753				uvm_wait("plpg");
754				goto again;
755			}
756			return ENOMEM;
757		}
758		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
759		if (__predict_false(va == 0)) {
760			uvm_pagefree(pg);
761			return ENOMEM;
762		}
763		*addr = va;
764		return 0;
765	}
766#endif /* PMAP_MAP_POOLPAGE */
767
768	rc = vmem_alloc(vm, size, flags, &va);
769	if (rc != 0)
770		return rc;
771
772	loopva = va;
773	loopsize = size;
774
775	while (loopsize) {
776		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
777		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE" vmem=%p",
778		    loopva, loopsize, vm);
779
780		pg = uvm_pagealloc(NULL, loopva, NULL,
781		    UVM_FLAG_COLORMATCH
782		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
783		if (__predict_false(pg == NULL)) {
784			if (flags & VM_SLEEP) {
785				uvm_wait("plpg");
786				continue;
787			} else {
788				uvm_km_pgremove_intrsafe(kernel_map, va,
789				    va + size);
790				vmem_free(vm, va, size);
791				return ENOMEM;
792			}
793		}
794
795		pg->flags &= ~PG_BUSY;	/* new page */
796		UVM_PAGE_OWN(pg, NULL);
797		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
798		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
799
800		loopva += PAGE_SIZE;
801		loopsize -= PAGE_SIZE;
802	}
803	pmap_update(pmap_kernel());
804
805	*addr = va;
806
807	return 0;
808}
809
810void
811uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
812{
813
814	size = round_page(size);
815#if defined(PMAP_UNMAP_POOLPAGE)
816	if (size == PAGE_SIZE) {
817		paddr_t pa;
818
819		pa = PMAP_UNMAP_POOLPAGE(addr);
820		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
821		return;
822	}
823#endif /* PMAP_UNMAP_POOLPAGE */
824	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
825	pmap_update(pmap_kernel());
826
827	vmem_free(vm, addr, size);
828}
829
830bool
831uvm_km_va_starved_p(void)
832{
833	vmem_size_t total;
834	vmem_size_t free;
835
836	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
837	free = vmem_size(kmem_arena, VMEM_FREE);
838
839	return (free < (total / 10));
840}
841