1/*	$NetBSD: uvm_aobj.c,v 1.157 2023/02/24 11:03:13 riastradh Exp $	*/
2
3/*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 *                    Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29 */
30
31/*
32 * uvm_aobj.c: anonymous memory uvm_object pager
33 *
34 * author: Chuck Silvers <chuq@chuq.com>
35 * started: Jan-1998
36 *
37 * - design mostly from Chuck Cranor
38 */
39
40#include <sys/cdefs.h>
41__KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.157 2023/02/24 11:03:13 riastradh Exp $");
42
43#ifdef _KERNEL_OPT
44#include "opt_uvmhist.h"
45#endif
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/kernel.h>
50#include <sys/kmem.h>
51#include <sys/pool.h>
52#include <sys/atomic.h>
53
54#include <uvm/uvm.h>
55#include <uvm/uvm_page_array.h>
56
57/*
58 * An anonymous UVM object (aobj) manages anonymous-memory.  In addition to
59 * keeping the list of resident pages, it may also keep a list of allocated
60 * swap blocks.  Depending on the size of the object, this list is either
61 * stored in an array (small objects) or in a hash table (large objects).
62 *
63 * Lock order
64 *
65 *	uao_list_lock ->
66 *		uvm_object::vmobjlock
67 */
68
69/*
70 * Note: for hash tables, we break the address space of the aobj into blocks
71 * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
72 */
73
74#define	UAO_SWHASH_CLUSTER_SHIFT	4
75#define	UAO_SWHASH_CLUSTER_SIZE		(1 << UAO_SWHASH_CLUSTER_SHIFT)
76
77/* Get the "tag" for this page index. */
78#define	UAO_SWHASH_ELT_TAG(idx)		((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
79#define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
80    ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
81
82/* Given an ELT and a page index, find the swap slot. */
83#define	UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
84    ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
85
86/* Given an ELT, return its pageidx base. */
87#define	UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
88    ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
89
90/* The hash function. */
91#define	UAO_SWHASH_HASH(aobj, idx) \
92    (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
93    & (aobj)->u_swhashmask)])
94
95/*
96 * The threshold which determines whether we will use an array or a
97 * hash table to store the list of allocated swap blocks.
98 */
99#define	UAO_SWHASH_THRESHOLD		(UAO_SWHASH_CLUSTER_SIZE * 4)
100#define	UAO_USES_SWHASH(aobj) \
101    ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
102
103/* The number of buckets in a hash, with an upper bound. */
104#define	UAO_SWHASH_MAXBUCKETS		256
105#define	UAO_SWHASH_BUCKETS(aobj) \
106    (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
107
108/*
109 * uao_swhash_elt: when a hash table is being used, this structure defines
110 * the format of an entry in the bucket list.
111 */
112
113struct uao_swhash_elt {
114	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
115	voff_t tag;				/* our 'tag' */
116	int count;				/* our number of active slots */
117	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
118};
119
120/*
121 * uao_swhash: the swap hash table structure
122 */
123
124LIST_HEAD(uao_swhash, uao_swhash_elt);
125
126/*
127 * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
128 * Note: pages for this pool must not come from a pageable kernel map.
129 */
130static struct pool	uao_swhash_elt_pool	__cacheline_aligned;
131
132/*
133 * uvm_aobj: the actual anon-backed uvm_object
134 *
135 * => the uvm_object is at the top of the structure, this allows
136 *   (struct uvm_aobj *) == (struct uvm_object *)
137 * => only one of u_swslots and u_swhash is used in any given aobj
138 */
139
140struct uvm_aobj {
141	struct uvm_object u_obj; /* has: lock, pgops, #pages, #refs */
142	pgoff_t u_pages;	 /* number of pages in entire object */
143	int u_flags;		 /* the flags (see uvm_aobj.h) */
144	int *u_swslots;		 /* array of offset->swapslot mappings */
145				 /*
146				  * hashtable of offset->swapslot mappings
147				  * (u_swhash is an array of bucket heads)
148				  */
149	struct uao_swhash *u_swhash;
150	u_long u_swhashmask;		/* mask for hashtable */
151	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
152	int u_freelist;		  /* freelist to allocate pages from */
153};
154
155static void	uao_free(struct uvm_aobj *);
156static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
157		    int *, int, vm_prot_t, int, int);
158static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
159
160#if defined(VMSWAP)
161static struct uao_swhash_elt *uao_find_swhash_elt
162    (struct uvm_aobj *, int, bool);
163
164static bool uao_pagein(struct uvm_aobj *, int, int);
165static bool uao_pagein_page(struct uvm_aobj *, int);
166#endif /* defined(VMSWAP) */
167
168static struct vm_page	*uao_pagealloc(struct uvm_object *, voff_t, int);
169
170/*
171 * aobj_pager
172 *
173 * note that some functions (e.g. put) are handled elsewhere
174 */
175
176const struct uvm_pagerops aobj_pager = {
177	.pgo_reference = uao_reference,
178	.pgo_detach = uao_detach,
179	.pgo_get = uao_get,
180	.pgo_put = uao_put,
181};
182
183/*
184 * uao_list: global list of active aobjs, locked by uao_list_lock
185 */
186
187static LIST_HEAD(aobjlist, uvm_aobj) uao_list	__cacheline_aligned;
188static kmutex_t		uao_list_lock		__cacheline_aligned;
189
190/*
191 * hash table/array related functions
192 */
193
194#if defined(VMSWAP)
195
196/*
197 * uao_find_swhash_elt: find (or create) a hash table entry for a page
198 * offset.
199 *
200 * => the object should be locked by the caller
201 */
202
203static struct uao_swhash_elt *
204uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
205{
206	struct uao_swhash *swhash;
207	struct uao_swhash_elt *elt;
208	voff_t page_tag;
209
210	swhash = UAO_SWHASH_HASH(aobj, pageidx);
211	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
212
213	/*
214	 * now search the bucket for the requested tag
215	 */
216
217	LIST_FOREACH(elt, swhash, list) {
218		if (elt->tag == page_tag) {
219			return elt;
220		}
221	}
222	if (!create) {
223		return NULL;
224	}
225
226	/*
227	 * allocate a new entry for the bucket and init/insert it in
228	 */
229
230	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
231	if (elt == NULL) {
232		return NULL;
233	}
234	LIST_INSERT_HEAD(swhash, elt, list);
235	elt->tag = page_tag;
236	elt->count = 0;
237	memset(elt->slots, 0, sizeof(elt->slots));
238	return elt;
239}
240
241/*
242 * uao_find_swslot: find the swap slot number for an aobj/pageidx
243 *
244 * => object must be locked by caller
245 */
246
247int
248uao_find_swslot(struct uvm_object *uobj, int pageidx)
249{
250	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
251	struct uao_swhash_elt *elt;
252
253	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
254
255	/*
256	 * if noswap flag is set, then we never return a slot
257	 */
258
259	if (aobj->u_flags & UAO_FLAG_NOSWAP)
260		return 0;
261
262	/*
263	 * if hashing, look in hash table.
264	 */
265
266	if (UAO_USES_SWHASH(aobj)) {
267		elt = uao_find_swhash_elt(aobj, pageidx, false);
268		return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
269	}
270
271	/*
272	 * otherwise, look in the array
273	 */
274
275	return aobj->u_swslots[pageidx];
276}
277
278/*
279 * uao_set_swslot: set the swap slot for a page in an aobj.
280 *
281 * => setting a slot to zero frees the slot
282 * => object must be locked by caller
283 * => we return the old slot number, or -1 if we failed to allocate
284 *    memory to record the new slot number
285 */
286
287int
288uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
289{
290	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
291	struct uao_swhash_elt *elt;
292	int oldslot;
293	UVMHIST_FUNC(__func__);
294	UVMHIST_CALLARGS(pdhist, "aobj %#jx pageidx %jd slot %jd",
295	    (uintptr_t)aobj, pageidx, slot, 0);
296
297	KASSERT(rw_write_held(uobj->vmobjlock) || uobj->uo_refs == 0);
298	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
299
300	/*
301	 * if noswap flag is set, then we can't set a non-zero slot.
302	 */
303
304	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
305		KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
306		return 0;
307	}
308
309	/*
310	 * are we using a hash table?  if so, add it in the hash.
311	 */
312
313	if (UAO_USES_SWHASH(aobj)) {
314
315		/*
316		 * Avoid allocating an entry just to free it again if
317		 * the page had not swap slot in the first place, and
318		 * we are freeing.
319		 */
320
321		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
322		if (elt == NULL) {
323			return slot ? -1 : 0;
324		}
325
326		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
327		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
328
329		/*
330		 * now adjust the elt's reference counter and free it if we've
331		 * dropped it to zero.
332		 */
333
334		if (slot) {
335			if (oldslot == 0)
336				elt->count++;
337		} else {
338			if (oldslot)
339				elt->count--;
340
341			if (elt->count == 0) {
342				LIST_REMOVE(elt, list);
343				pool_put(&uao_swhash_elt_pool, elt);
344			}
345		}
346	} else {
347		/* we are using an array */
348		oldslot = aobj->u_swslots[pageidx];
349		aobj->u_swslots[pageidx] = slot;
350	}
351	return oldslot;
352}
353
354#endif /* defined(VMSWAP) */
355
356/*
357 * end of hash/array functions
358 */
359
360/*
361 * uao_free: free all resources held by an aobj, and then free the aobj
362 *
363 * => the aobj should be dead
364 */
365
366static void
367uao_free(struct uvm_aobj *aobj)
368{
369	struct uvm_object *uobj = &aobj->u_obj;
370
371	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
372	KASSERT(rw_write_held(uobj->vmobjlock));
373	uao_dropswap_range(uobj, 0, 0);
374	rw_exit(uobj->vmobjlock);
375
376#if defined(VMSWAP)
377	if (UAO_USES_SWHASH(aobj)) {
378
379		/*
380		 * free the hash table itself.
381		 */
382
383		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
384	} else {
385
386		/*
387		 * free the array itself.
388		 */
389
390		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
391	}
392#endif /* defined(VMSWAP) */
393
394	/*
395	 * finally free the aobj itself
396	 */
397
398	uvm_obj_destroy(uobj, true);
399	kmem_free(aobj, sizeof(struct uvm_aobj));
400}
401
402/*
403 * pager functions
404 */
405
406/*
407 * uao_create: create an aobj of the given size and return its uvm_object.
408 *
409 * => for normal use, flags are always zero
410 * => for the kernel object, the flags are:
411 *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
412 *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
413 */
414
415struct uvm_object *
416uao_create(voff_t size, int flags)
417{
418	static struct uvm_aobj kernel_object_store;
419	static krwlock_t bootstrap_kernel_object_lock;
420	static int kobj_alloced __diagused = 0;
421	pgoff_t pages = round_page((uint64_t)size) >> PAGE_SHIFT;
422	struct uvm_aobj *aobj;
423	int refs;
424
425	/*
426	 * Allocate a new aobj, unless kernel object is requested.
427	 */
428
429	if (flags & UAO_FLAG_KERNOBJ) {
430		KASSERT(!kobj_alloced);
431		aobj = &kernel_object_store;
432		aobj->u_pages = pages;
433		aobj->u_flags = UAO_FLAG_NOSWAP;
434		refs = UVM_OBJ_KERN;
435		kobj_alloced = UAO_FLAG_KERNOBJ;
436	} else if (flags & UAO_FLAG_KERNSWAP) {
437		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
438		aobj = &kernel_object_store;
439		kobj_alloced = UAO_FLAG_KERNSWAP;
440		refs = 0xdeadbeaf; /* XXX: gcc */
441	} else {
442		aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
443		aobj->u_pages = pages;
444		aobj->u_flags = 0;
445		refs = 1;
446	}
447
448	/*
449	 * no freelist by default
450	 */
451
452	aobj->u_freelist = VM_NFREELIST;
453
454	/*
455 	 * allocate hash/array if necessary
456 	 *
457 	 * note: in the KERNSWAP case no need to worry about locking since
458 	 * we are still booting we should be the only thread around.
459 	 */
460
461	const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
462	if (flags == 0 || kernswap) {
463#if defined(VMSWAP)
464
465		/* allocate hash table or array depending on object size */
466		if (UAO_USES_SWHASH(aobj)) {
467			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
468			    HASH_LIST, true, &aobj->u_swhashmask);
469		} else {
470			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
471			    KM_SLEEP);
472		}
473#endif /* defined(VMSWAP) */
474
475		/*
476		 * Replace kernel_object's temporary static lock with
477		 * a regular rw_obj.  We cannot use uvm_obj_setlock()
478		 * because that would try to free the old lock.
479		 */
480
481		if (kernswap) {
482			aobj->u_obj.vmobjlock = rw_obj_alloc();
483			rw_destroy(&bootstrap_kernel_object_lock);
484		}
485		if (flags) {
486			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
487			return &aobj->u_obj;
488		}
489	}
490
491	/*
492	 * Initialise UVM object.
493	 */
494
495	const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
496	uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
497	if (__predict_false(kernobj)) {
498		/* Use a temporary static lock for kernel_object. */
499		rw_init(&bootstrap_kernel_object_lock);
500		uvm_obj_setlock(&aobj->u_obj, &bootstrap_kernel_object_lock);
501	}
502
503	/*
504 	 * now that aobj is ready, add it to the global list
505 	 */
506
507	mutex_enter(&uao_list_lock);
508	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
509	mutex_exit(&uao_list_lock);
510	return(&aobj->u_obj);
511}
512
513/*
514 * uao_set_pgfl: allocate pages only from the specified freelist.
515 *
516 * => must be called before any pages are allocated for the object.
517 * => reset by setting it to VM_NFREELIST, meaning any freelist.
518 */
519
520void
521uao_set_pgfl(struct uvm_object *uobj, int freelist)
522{
523	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
524
525	KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist);
526	KASSERTMSG((freelist <= VM_NFREELIST), "invalid freelist %d",
527	    freelist);
528
529	aobj->u_freelist = freelist;
530}
531
532/*
533 * uao_pagealloc: allocate a page for aobj.
534 */
535
536static inline struct vm_page *
537uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags)
538{
539	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
540
541	if (__predict_true(aobj->u_freelist == VM_NFREELIST))
542		return uvm_pagealloc(uobj, offset, NULL, flags);
543	else
544		return uvm_pagealloc_strat(uobj, offset, NULL, flags,
545		    UVM_PGA_STRAT_ONLY, aobj->u_freelist);
546}
547
548/*
549 * uao_init: set up aobj pager subsystem
550 *
551 * => called at boot time from uvm_pager_init()
552 */
553
554void
555uao_init(void)
556{
557	static int uao_initialized;
558
559	if (uao_initialized)
560		return;
561	uao_initialized = true;
562	LIST_INIT(&uao_list);
563	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
564	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
565	    0, 0, 0, "uaoeltpl", NULL, IPL_VM);
566}
567
568/*
569 * uao_reference: hold a reference to an anonymous UVM object.
570 */
571void
572uao_reference(struct uvm_object *uobj)
573{
574	/* Kernel object is persistent. */
575	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
576		return;
577	}
578	atomic_inc_uint(&uobj->uo_refs);
579}
580
581/*
582 * uao_detach: drop a reference to an anonymous UVM object.
583 */
584void
585uao_detach(struct uvm_object *uobj)
586{
587	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
588	struct uvm_page_array a;
589	struct vm_page *pg;
590
591	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
592
593	/*
594	 * Detaching from kernel object is a NOP.
595	 */
596
597	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
598		return;
599
600	/*
601	 * Drop the reference.  If it was the last one, destroy the object.
602	 */
603
604	KASSERT(uobj->uo_refs > 0);
605	UVMHIST_LOG(maphist,"  (uobj=%#jx)  ref=%jd",
606	    (uintptr_t)uobj, uobj->uo_refs, 0, 0);
607	membar_release();
608	if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
609		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
610		return;
611	}
612	membar_acquire();
613
614	/*
615	 * Remove the aobj from the global list.
616	 */
617
618	mutex_enter(&uao_list_lock);
619	LIST_REMOVE(aobj, u_list);
620	mutex_exit(&uao_list_lock);
621
622	/*
623	 * Free all the pages left in the aobj.  For each page, when the
624	 * page is no longer busy (and thus after any disk I/O that it is
625	 * involved in is complete), release any swap resources and free
626	 * the page itself.
627	 */
628	uvm_page_array_init(&a, uobj, 0);
629	rw_enter(uobj->vmobjlock, RW_WRITER);
630	while ((pg = uvm_page_array_fill_and_peek(&a, 0, 0)) != NULL) {
631		uvm_page_array_advance(&a);
632		pmap_page_protect(pg, VM_PROT_NONE);
633		if (pg->flags & PG_BUSY) {
634			uvm_pagewait(pg, uobj->vmobjlock, "uao_det");
635			uvm_page_array_clear(&a);
636			rw_enter(uobj->vmobjlock, RW_WRITER);
637			continue;
638		}
639		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
640		uvm_pagefree(pg);
641	}
642	uvm_page_array_fini(&a);
643
644	/*
645	 * Finally, free the anonymous UVM object itself.
646	 */
647
648	uao_free(aobj);
649}
650
651/*
652 * uao_put: flush pages out of a uvm object
653 *
654 * => object should be locked by caller.  we may _unlock_ the object
655 *	if (and only if) we need to clean a page (PGO_CLEANIT).
656 *	XXXJRT Currently, however, we don't.  In the case of cleaning
657 *	XXXJRT a page, we simply just deactivate it.  Should probably
658 *	XXXJRT handle this better, in the future (although "flushing"
659 *	XXXJRT anonymous memory isn't terribly important).
660 * => if PGO_CLEANIT is not set, then we will neither unlock the object
661 *	or block.
662 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
663 *	for flushing.
664 * => we return 0 unless we encountered some sort of I/O error
665 *	XXXJRT currently never happens, as we never directly initiate
666 *	XXXJRT I/O
667 */
668
669static int
670uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
671{
672	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
673	struct uvm_page_array a;
674	struct vm_page *pg;
675	voff_t curoff;
676	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
677
678	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
679	KASSERT(rw_write_held(uobj->vmobjlock));
680
681	if (flags & PGO_ALLPAGES) {
682		start = 0;
683		stop = aobj->u_pages << PAGE_SHIFT;
684	} else {
685		start = trunc_page(start);
686		if (stop == 0) {
687			stop = aobj->u_pages << PAGE_SHIFT;
688		} else {
689			stop = round_page(stop);
690		}
691		if (stop > (uint64_t)(aobj->u_pages << PAGE_SHIFT)) {
692			printf("uao_put: strange, got an out of range "
693			    "flush %#jx > %#jx (fixed)\n",
694			    (uintmax_t)stop,
695			    (uintmax_t)(aobj->u_pages << PAGE_SHIFT));
696			stop = aobj->u_pages << PAGE_SHIFT;
697		}
698	}
699	UVMHIST_LOG(maphist,
700	    " flush start=%#jx, stop=%#jx, flags=%#jx",
701	    start, stop, flags, 0);
702
703	/*
704	 * Don't need to do any work here if we're not freeing
705	 * or deactivating pages.
706	 */
707
708	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
709		rw_exit(uobj->vmobjlock);
710		return 0;
711	}
712
713	/* locked: uobj */
714	uvm_page_array_init(&a, uobj, 0);
715	curoff = start;
716	while ((pg = uvm_page_array_fill_and_peek(&a, curoff, 0)) != NULL) {
717		if (pg->offset >= stop) {
718			break;
719		}
720
721		/*
722		 * wait and try again if the page is busy.
723		 */
724
725		if (pg->flags & PG_BUSY) {
726			uvm_pagewait(pg, uobj->vmobjlock, "uao_put");
727			uvm_page_array_clear(&a);
728			rw_enter(uobj->vmobjlock, RW_WRITER);
729			continue;
730		}
731		uvm_page_array_advance(&a);
732		curoff = pg->offset + PAGE_SIZE;
733
734		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
735
736		/*
737		 * XXX In these first 3 cases, we always just
738		 * XXX deactivate the page.  We may want to
739		 * XXX handle the different cases more specifically
740		 * XXX in the future.
741		 */
742
743		case PGO_CLEANIT|PGO_FREE:
744		case PGO_CLEANIT|PGO_DEACTIVATE:
745		case PGO_DEACTIVATE:
746 deactivate_it:
747 			uvm_pagelock(pg);
748			uvm_pagedeactivate(pg);
749 			uvm_pageunlock(pg);
750			break;
751
752		case PGO_FREE:
753			/*
754			 * If there are multiple references to
755			 * the object, just deactivate the page.
756			 */
757
758			if (uobj->uo_refs > 1)
759				goto deactivate_it;
760
761			/*
762			 * free the swap slot and the page.
763			 */
764
765			pmap_page_protect(pg, VM_PROT_NONE);
766
767			/*
768			 * freeing swapslot here is not strictly necessary.
769			 * however, leaving it here doesn't save much
770			 * because we need to update swap accounting anyway.
771			 */
772
773			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
774			uvm_pagefree(pg);
775			break;
776
777		default:
778			panic("%s: impossible", __func__);
779		}
780	}
781	rw_exit(uobj->vmobjlock);
782	uvm_page_array_fini(&a);
783	return 0;
784}
785
786/*
787 * uao_get: fetch me a page
788 *
789 * we have three cases:
790 * 1: page is resident     -> just return the page.
791 * 2: page is zero-fill    -> allocate a new page and zero it.
792 * 3: page is swapped out  -> fetch the page from swap.
793 *
794 * case 1 can be handled with PGO_LOCKED, cases 2 and 3 cannot.
795 * so, if the "center" page hits case 2/3 then we will need to return EBUSY.
796 *
797 * => prefer map unlocked (not required)
798 * => object must be locked!  we will _unlock_ it before starting any I/O.
799 * => flags: PGO_LOCKED: fault data structures are locked
800 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
801 * => NOTE: caller must check for released pages!!
802 */
803
804static int
805uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
806    int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
807{
808	voff_t current_offset;
809	struct vm_page *ptmp;
810	int lcv, gotpages, maxpages, swslot, pageidx;
811	bool overwrite = ((flags & PGO_OVERWRITE) != 0);
812	struct uvm_page_array a;
813
814	UVMHIST_FUNC(__func__);
815	UVMHIST_CALLARGS(pdhist, "aobj=%#jx offset=%jd, flags=%#jx",
816		    (uintptr_t)uobj, offset, flags,0);
817
818	/*
819	 * the object must be locked.  it can only be a read lock when
820	 * processing a read fault with PGO_LOCKED.
821	 */
822
823	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
824	KASSERT(rw_lock_held(uobj->vmobjlock));
825	KASSERT(rw_write_held(uobj->vmobjlock) ||
826	   ((flags & PGO_LOCKED) != 0 && (access_type & VM_PROT_WRITE) == 0));
827
828	/*
829 	 * get number of pages
830 	 */
831
832	maxpages = *npagesp;
833
834	/*
835 	 * step 1: handled the case where fault data structures are locked.
836 	 */
837
838	if (flags & PGO_LOCKED) {
839
840		/*
841 		 * step 1a: get pages that are already resident.   only do
842		 * this if the data structures are locked (i.e. the first
843		 * time through).
844 		 */
845
846		uvm_page_array_init(&a, uobj, 0);
847		gotpages = 0;	/* # of pages we got so far */
848		for (lcv = 0; lcv < maxpages; lcv++) {
849			ptmp = uvm_page_array_fill_and_peek(&a,
850			    offset + (lcv << PAGE_SHIFT), maxpages);
851			if (ptmp == NULL) {
852				break;
853			}
854			KASSERT(ptmp->offset >= offset);
855			lcv = (ptmp->offset - offset) >> PAGE_SHIFT;
856			if (lcv >= maxpages) {
857				break;
858			}
859			uvm_page_array_advance(&a);
860
861			/*
862			 * to be useful must get a non-busy page
863			 */
864
865			if ((ptmp->flags & PG_BUSY) != 0) {
866				continue;
867			}
868
869			/*
870			 * useful page: plug it in our result array
871			 */
872
873			KASSERT(uvm_pagegetdirty(ptmp) !=
874			    UVM_PAGE_STATUS_CLEAN);
875			pps[lcv] = ptmp;
876			gotpages++;
877		}
878		uvm_page_array_fini(&a);
879
880		/*
881 		 * step 1b: now we've either done everything needed or we
882		 * to unlock and do some waiting or I/O.
883 		 */
884
885		UVMHIST_LOG(pdhist, "<- done (done=%jd)",
886		    (pps[centeridx] != NULL), 0,0,0);
887		*npagesp = gotpages;
888		return pps[centeridx] != NULL ? 0 : EBUSY;
889	}
890
891	/*
892 	 * step 2: get non-resident or busy pages.
893 	 * object is locked.   data structures are unlocked.
894 	 */
895
896	if ((flags & PGO_SYNCIO) == 0) {
897		goto done;
898	}
899
900	uvm_page_array_init(&a, uobj, 0);
901	for (lcv = 0, current_offset = offset ; lcv < maxpages ;) {
902
903		/*
904 		 * we have yet to locate the current page (pps[lcv]).   we
905		 * first look for a page that is already at the current offset.
906		 * if we find a page, we check to see if it is busy or
907		 * released.  if that is the case, then we sleep on the page
908		 * until it is no longer busy or released and repeat the lookup.
909		 * if the page we found is neither busy nor released, then we
910		 * busy it (so we own it) and plug it into pps[lcv].   we are
911		 * ready to move on to the next page.
912 		 */
913
914		ptmp = uvm_page_array_fill_and_peek(&a, current_offset,
915		    maxpages - lcv);
916
917		if (ptmp != NULL && ptmp->offset == current_offset) {
918			/* page is there, see if we need to wait on it */
919			if ((ptmp->flags & PG_BUSY) != 0) {
920				UVMHIST_LOG(pdhist,
921				    "sleeping, ptmp->flags %#jx\n",
922				    ptmp->flags,0,0,0);
923				uvm_pagewait(ptmp, uobj->vmobjlock, "uao_get");
924				rw_enter(uobj->vmobjlock, RW_WRITER);
925				uvm_page_array_clear(&a);
926				continue;
927			}
928
929			/*
930 			 * if we get here then the page is resident and
931			 * unbusy.  we busy it now (so we own it).  if
932			 * overwriting, mark the page dirty up front as
933			 * it will be zapped via an unmanaged mapping.
934 			 */
935
936			KASSERT(uvm_pagegetdirty(ptmp) !=
937			    UVM_PAGE_STATUS_CLEAN);
938			if (overwrite) {
939				uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_DIRTY);
940			}
941			/* we own it, caller must un-busy */
942			ptmp->flags |= PG_BUSY;
943			UVM_PAGE_OWN(ptmp, "uao_get2");
944			pps[lcv++] = ptmp;
945			current_offset += PAGE_SIZE;
946			uvm_page_array_advance(&a);
947			continue;
948		} else {
949			KASSERT(ptmp == NULL || ptmp->offset > current_offset);
950		}
951
952		/*
953		 * not resident.  allocate a new busy/fake/clean page in the
954		 * object.  if it's in swap we need to do I/O to fill in the
955		 * data, otherwise the page needs to be cleared: if it's not
956		 * destined to be overwritten, then zero it here and now.
957		 */
958
959		pageidx = current_offset >> PAGE_SHIFT;
960		swslot = uao_find_swslot(uobj, pageidx);
961		ptmp = uao_pagealloc(uobj, current_offset,
962		    swslot != 0 || overwrite ? 0 : UVM_PGA_ZERO);
963
964		/* out of RAM? */
965		if (ptmp == NULL) {
966			rw_exit(uobj->vmobjlock);
967			UVMHIST_LOG(pdhist, "sleeping, ptmp == NULL",0,0,0,0);
968			uvm_wait("uao_getpage");
969			rw_enter(uobj->vmobjlock, RW_WRITER);
970			uvm_page_array_clear(&a);
971			continue;
972		}
973
974		/*
975 		 * if swslot == 0, page hasn't existed before and is zeroed.
976 		 * otherwise we have a "fake/busy/clean" page that we just
977 		 * allocated.  do the needed "i/o", reading from swap.
978 		 */
979
980		if (swslot != 0) {
981#if defined(VMSWAP)
982			int error;
983
984			UVMHIST_LOG(pdhist, "pagein from swslot %jd",
985			     swslot, 0,0,0);
986
987			/*
988			 * page in the swapped-out page.
989			 * unlock object for i/o, relock when done.
990			 */
991
992			uvm_page_array_clear(&a);
993			rw_exit(uobj->vmobjlock);
994			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
995			rw_enter(uobj->vmobjlock, RW_WRITER);
996
997			/*
998			 * I/O done.  check for errors.
999			 */
1000
1001			if (error != 0) {
1002				UVMHIST_LOG(pdhist, "<- done (error=%jd)",
1003				    error,0,0,0);
1004
1005				/*
1006				 * remove the swap slot from the aobj
1007				 * and mark the aobj as having no real slot.
1008				 * don't free the swap slot, thus preventing
1009				 * it from being used again.
1010				 */
1011
1012				swslot = uao_set_swslot(uobj, pageidx,
1013				    SWSLOT_BAD);
1014				if (swslot > 0) {
1015					uvm_swap_markbad(swslot, 1);
1016				}
1017
1018				uvm_pagefree(ptmp);
1019				rw_exit(uobj->vmobjlock);
1020				UVMHIST_LOG(pdhist, "<- done (error)",
1021				    error,lcv,0,0);
1022				if (lcv != 0) {
1023					uvm_page_unbusy(pps, lcv);
1024				}
1025				memset(pps, 0, maxpages * sizeof(pps[0]));
1026				uvm_page_array_fini(&a);
1027				return error;
1028			}
1029#else /* defined(VMSWAP) */
1030			panic("%s: pagein", __func__);
1031#endif /* defined(VMSWAP) */
1032		}
1033
1034		/*
1035		 * note that we will allow the page being writably-mapped
1036		 * (!PG_RDONLY) regardless of access_type.  if overwrite,
1037		 * the page can be modified through an unmanaged mapping
1038		 * so mark it dirty up front.
1039		 */
1040		if (overwrite) {
1041			uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_DIRTY);
1042		} else {
1043			uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_UNKNOWN);
1044		}
1045
1046		/*
1047 		 * we got the page!   clear the fake flag (indicates valid
1048		 * data now in page) and plug into our result array.   note
1049		 * that page is still busy.
1050 		 *
1051 		 * it is the callers job to:
1052 		 * => check if the page is released
1053 		 * => unbusy the page
1054 		 * => activate the page
1055 		 */
1056		KASSERT(uvm_pagegetdirty(ptmp) != UVM_PAGE_STATUS_CLEAN);
1057		KASSERT((ptmp->flags & PG_FAKE) != 0);
1058		KASSERT(ptmp->offset == current_offset);
1059		ptmp->flags &= ~PG_FAKE;
1060		pps[lcv++] = ptmp;
1061		current_offset += PAGE_SIZE;
1062	}
1063	uvm_page_array_fini(&a);
1064
1065	/*
1066 	 * finally, unlock object and return.
1067 	 */
1068
1069done:
1070	rw_exit(uobj->vmobjlock);
1071	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1072	return 0;
1073}
1074
1075#if defined(VMSWAP)
1076
1077/*
1078 * uao_dropswap:  release any swap resources from this aobj page.
1079 *
1080 * => aobj must be locked or have a reference count of 0.
1081 */
1082
1083void
1084uao_dropswap(struct uvm_object *uobj, int pageidx)
1085{
1086	int slot;
1087
1088	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
1089
1090	slot = uao_set_swslot(uobj, pageidx, 0);
1091	if (slot) {
1092		uvm_swap_free(slot, 1);
1093	}
1094}
1095
1096/*
1097 * page in every page in every aobj that is paged-out to a range of swslots.
1098 *
1099 * => nothing should be locked.
1100 * => returns true if pagein was aborted due to lack of memory.
1101 */
1102
1103bool
1104uao_swap_off(int startslot, int endslot)
1105{
1106	struct uvm_aobj *aobj;
1107
1108	/*
1109	 * Walk the list of all anonymous UVM objects.  Grab the first.
1110	 */
1111	mutex_enter(&uao_list_lock);
1112	if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
1113		mutex_exit(&uao_list_lock);
1114		return false;
1115	}
1116	uao_reference(&aobj->u_obj);
1117
1118	do {
1119		struct uvm_aobj *nextaobj;
1120		bool rv;
1121
1122		/*
1123		 * Prefetch the next object and immediately hold a reference
1124		 * on it, so neither the current nor the next entry could
1125		 * disappear while we are iterating.
1126		 */
1127		if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
1128			uao_reference(&nextaobj->u_obj);
1129		}
1130		mutex_exit(&uao_list_lock);
1131
1132		/*
1133		 * Page in all pages in the swap slot range.
1134		 */
1135		rw_enter(aobj->u_obj.vmobjlock, RW_WRITER);
1136		rv = uao_pagein(aobj, startslot, endslot);
1137		rw_exit(aobj->u_obj.vmobjlock);
1138
1139		/* Drop the reference of the current object. */
1140		uao_detach(&aobj->u_obj);
1141		if (rv) {
1142			if (nextaobj) {
1143				uao_detach(&nextaobj->u_obj);
1144			}
1145			return rv;
1146		}
1147
1148		aobj = nextaobj;
1149		mutex_enter(&uao_list_lock);
1150	} while (aobj);
1151
1152	mutex_exit(&uao_list_lock);
1153	return false;
1154}
1155
1156/*
1157 * page in any pages from aobj in the given range.
1158 *
1159 * => aobj must be locked and is returned locked.
1160 * => returns true if pagein was aborted due to lack of memory.
1161 */
1162static bool
1163uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1164{
1165	bool rv;
1166
1167	if (UAO_USES_SWHASH(aobj)) {
1168		struct uao_swhash_elt *elt;
1169		int buck;
1170
1171restart:
1172		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1173			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1174			     elt != NULL;
1175			     elt = LIST_NEXT(elt, list)) {
1176				int i;
1177
1178				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1179					int slot = elt->slots[i];
1180
1181					/*
1182					 * if the slot isn't in range, skip it.
1183					 */
1184
1185					if (slot < startslot ||
1186					    slot >= endslot) {
1187						continue;
1188					}
1189
1190					/*
1191					 * process the page,
1192					 * the start over on this object
1193					 * since the swhash elt
1194					 * may have been freed.
1195					 */
1196
1197					rv = uao_pagein_page(aobj,
1198					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1199					if (rv) {
1200						return rv;
1201					}
1202					goto restart;
1203				}
1204			}
1205		}
1206	} else {
1207		int i;
1208
1209		for (i = 0; i < aobj->u_pages; i++) {
1210			int slot = aobj->u_swslots[i];
1211
1212			/*
1213			 * if the slot isn't in range, skip it
1214			 */
1215
1216			if (slot < startslot || slot >= endslot) {
1217				continue;
1218			}
1219
1220			/*
1221			 * process the page.
1222			 */
1223
1224			rv = uao_pagein_page(aobj, i);
1225			if (rv) {
1226				return rv;
1227			}
1228		}
1229	}
1230
1231	return false;
1232}
1233
1234/*
1235 * uao_pagein_page: page in a single page from an anonymous UVM object.
1236 *
1237 * => Returns true if pagein was aborted due to lack of memory.
1238 * => Object must be locked and is returned locked.
1239 */
1240
1241static bool
1242uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1243{
1244	struct uvm_object *uobj = &aobj->u_obj;
1245	struct vm_page *pg;
1246	int rv, npages;
1247
1248	pg = NULL;
1249	npages = 1;
1250
1251	KASSERT(rw_write_held(uobj->vmobjlock));
1252	rv = uao_get(uobj, (voff_t)pageidx << PAGE_SHIFT, &pg, &npages,
1253	    0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
1254
1255	/*
1256	 * relock and finish up.
1257	 */
1258
1259	rw_enter(uobj->vmobjlock, RW_WRITER);
1260	switch (rv) {
1261	case 0:
1262		break;
1263
1264	case EIO:
1265	case ERESTART:
1266
1267		/*
1268		 * nothing more to do on errors.
1269		 * ERESTART can only mean that the anon was freed,
1270		 * so again there's nothing to do.
1271		 */
1272
1273		return false;
1274
1275	default:
1276		return true;
1277	}
1278
1279	/*
1280	 * ok, we've got the page now.
1281	 * mark it as dirty, clear its swslot and un-busy it.
1282	 */
1283	uao_dropswap(&aobj->u_obj, pageidx);
1284
1285	/*
1286	 * make sure it's on a page queue.
1287	 */
1288	uvm_pagelock(pg);
1289	uvm_pageenqueue(pg);
1290	uvm_pagewakeup(pg);
1291	uvm_pageunlock(pg);
1292
1293	pg->flags &= ~(PG_BUSY|PG_FAKE);
1294	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1295	UVM_PAGE_OWN(pg, NULL);
1296
1297	return false;
1298}
1299
1300/*
1301 * uao_dropswap_range: drop swapslots in the range.
1302 *
1303 * => aobj must be locked and is returned locked.
1304 * => start is inclusive.  end is exclusive.
1305 */
1306
1307void
1308uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1309{
1310	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1311	int swpgonlydelta = 0;
1312
1313	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
1314	KASSERT(rw_write_held(uobj->vmobjlock));
1315
1316	if (end == 0) {
1317		end = INT64_MAX;
1318	}
1319
1320	if (UAO_USES_SWHASH(aobj)) {
1321		int i, hashbuckets = aobj->u_swhashmask + 1;
1322		voff_t taghi;
1323		voff_t taglo;
1324
1325		taglo = UAO_SWHASH_ELT_TAG(start);
1326		taghi = UAO_SWHASH_ELT_TAG(end);
1327
1328		for (i = 0; i < hashbuckets; i++) {
1329			struct uao_swhash_elt *elt, *next;
1330
1331			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1332			     elt != NULL;
1333			     elt = next) {
1334				int startidx, endidx;
1335				int j;
1336
1337				next = LIST_NEXT(elt, list);
1338
1339				if (elt->tag < taglo || taghi < elt->tag) {
1340					continue;
1341				}
1342
1343				if (elt->tag == taglo) {
1344					startidx =
1345					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1346				} else {
1347					startidx = 0;
1348				}
1349
1350				if (elt->tag == taghi) {
1351					endidx =
1352					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1353				} else {
1354					endidx = UAO_SWHASH_CLUSTER_SIZE;
1355				}
1356
1357				for (j = startidx; j < endidx; j++) {
1358					int slot = elt->slots[j];
1359
1360					KASSERT(uvm_pagelookup(&aobj->u_obj,
1361					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1362					    + j) << PAGE_SHIFT) == NULL);
1363					if (slot > 0) {
1364						uvm_swap_free(slot, 1);
1365						swpgonlydelta++;
1366						KASSERT(elt->count > 0);
1367						elt->slots[j] = 0;
1368						elt->count--;
1369					}
1370				}
1371
1372				if (elt->count == 0) {
1373					LIST_REMOVE(elt, list);
1374					pool_put(&uao_swhash_elt_pool, elt);
1375				}
1376			}
1377		}
1378	} else {
1379		int i;
1380
1381		if (aobj->u_pages < end) {
1382			end = aobj->u_pages;
1383		}
1384		for (i = start; i < end; i++) {
1385			int slot = aobj->u_swslots[i];
1386
1387			if (slot > 0) {
1388				uvm_swap_free(slot, 1);
1389				swpgonlydelta++;
1390			}
1391		}
1392	}
1393
1394	/*
1395	 * adjust the counter of pages only in swap for all
1396	 * the swap slots we've freed.
1397	 */
1398
1399	if (swpgonlydelta > 0) {
1400		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1401		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
1402	}
1403}
1404
1405#endif /* defined(VMSWAP) */
1406