lfs_subr.c revision 1.69
1/*	$NetBSD: lfs_subr.c,v 1.69 2007/04/18 00:50:06 perseant Exp $	*/
2
3/*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant@hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38/*
39 * Copyright (c) 1991, 1993
40 *	The Regents of the University of California.  All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 *    notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in the
49 *    documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 *    may be used to endorse or promote products derived from this software
52 *    without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 *	@(#)lfs_subr.c	8.4 (Berkeley) 5/8/95
67 */
68
69#include <sys/cdefs.h>
70__KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.69 2007/04/18 00:50:06 perseant Exp $");
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/namei.h>
75#include <sys/vnode.h>
76#include <sys/buf.h>
77#include <sys/mount.h>
78#include <sys/malloc.h>
79#include <sys/proc.h>
80#include <sys/kauth.h>
81
82#include <ufs/ufs/inode.h>
83#include <ufs/lfs/lfs.h>
84#include <ufs/lfs/lfs_extern.h>
85
86#include <uvm/uvm.h>
87
88#ifdef DEBUG
89const char *lfs_res_names[LFS_NB_COUNT] = {
90	"summary",
91	"superblock",
92	"file block",
93	"cluster",
94	"clean",
95	"blkiov",
96};
97#endif
98
99int lfs_res_qty[LFS_NB_COUNT] = {
100	LFS_N_SUMMARIES,
101	LFS_N_SBLOCKS,
102	LFS_N_IBLOCKS,
103	LFS_N_CLUSTERS,
104	LFS_N_CLEAN,
105	LFS_N_BLKIOV,
106};
107
108void
109lfs_setup_resblks(struct lfs *fs)
110{
111	int i, j;
112	int maxbpp;
113
114	ASSERT_NO_SEGLOCK(fs);
115	fs->lfs_resblk = (res_t *)malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
116					  M_WAITOK);
117	for (i = 0; i < LFS_N_TOTAL; i++) {
118		fs->lfs_resblk[i].inuse = 0;
119		fs->lfs_resblk[i].p = NULL;
120	}
121	for (i = 0; i < LFS_RESHASH_WIDTH; i++)
122		LIST_INIT(fs->lfs_reshash + i);
123
124	/*
125	 * These types of allocations can be larger than a page,
126	 * so we can't use the pool subsystem for them.
127	 */
128	for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
129		fs->lfs_resblk[i].size = fs->lfs_sumsize;
130	for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
131		fs->lfs_resblk[i].size = LFS_SBPAD;
132	for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
133		fs->lfs_resblk[i].size = fs->lfs_bsize;
134	for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
135		fs->lfs_resblk[i].size = MAXPHYS;
136	for (j = 0; j < LFS_N_CLEAN; j++, i++)
137		fs->lfs_resblk[i].size = MAXPHYS;
138	for (j = 0; j < LFS_N_BLKIOV; j++, i++)
139		fs->lfs_resblk[i].size = LFS_MARKV_MAXBLKCNT * sizeof(BLOCK_INFO);
140
141	for (i = 0; i < LFS_N_TOTAL; i++) {
142		fs->lfs_resblk[i].p = malloc(fs->lfs_resblk[i].size,
143					     M_SEGMENT, M_WAITOK);
144	}
145
146	/*
147	 * Initialize pools for small types (XXX is BPP small?)
148	 */
149	pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0, 0,
150		"lfsclpl", &pool_allocator_nointr, IPL_NONE);
151	pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0, 0,
152		"lfssegpool", &pool_allocator_nointr, IPL_NONE);
153	maxbpp = ((fs->lfs_sumsize - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
154	maxbpp = MIN(maxbpp, segsize(fs) / fs->lfs_fsize + 2);
155	pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0, 0,
156		"lfsbpppl", &pool_allocator_nointr, IPL_NONE);
157}
158
159void
160lfs_free_resblks(struct lfs *fs)
161{
162	int i;
163
164	pool_destroy(&fs->lfs_bpppool);
165	pool_destroy(&fs->lfs_segpool);
166	pool_destroy(&fs->lfs_clpool);
167
168	simple_lock(&fs->lfs_interlock);
169	for (i = 0; i < LFS_N_TOTAL; i++) {
170		while (fs->lfs_resblk[i].inuse)
171			ltsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0,
172				&fs->lfs_interlock);
173		if (fs->lfs_resblk[i].p != NULL)
174			free(fs->lfs_resblk[i].p, M_SEGMENT);
175	}
176	free(fs->lfs_resblk, M_SEGMENT);
177	simple_unlock(&fs->lfs_interlock);
178}
179
180static unsigned int
181lfs_mhash(void *vp)
182{
183	return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
184}
185
186/*
187 * Return memory of the given size for the given purpose, or use one of a
188 * number of spare last-resort buffers, if malloc returns NULL.
189 */
190void *
191lfs_malloc(struct lfs *fs, size_t size, int type)
192{
193	struct lfs_res_blk *re;
194	void *r;
195	int i, s, start;
196	unsigned int h;
197
198	ASSERT_MAYBE_SEGLOCK(fs);
199	r = NULL;
200
201	/* If no mem allocated for this type, it just waits */
202	if (lfs_res_qty[type] == 0) {
203		r = malloc(size, M_SEGMENT, M_WAITOK);
204		return r;
205	}
206
207	/* Otherwise try a quick malloc, and if it works, great */
208	if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL) {
209		return r;
210	}
211
212	/*
213	 * If malloc returned NULL, we are forced to use one of our
214	 * reserve blocks.  We have on hand at least one summary block,
215	 * at least one cluster block, at least one superblock,
216	 * and several indirect blocks.
217	 */
218
219	simple_lock(&fs->lfs_interlock);
220	/* skip over blocks of other types */
221	for (i = 0, start = 0; i < type; i++)
222		start += lfs_res_qty[i];
223	while (r == NULL) {
224		for (i = 0; i < lfs_res_qty[type]; i++) {
225			if (fs->lfs_resblk[start + i].inuse == 0) {
226				re = fs->lfs_resblk + start + i;
227				re->inuse = 1;
228				r = re->p;
229				KASSERT(re->size >= size);
230				h = lfs_mhash(r);
231				s = splbio();
232				LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
233				splx(s);
234				simple_unlock(&fs->lfs_interlock);
235				return r;
236			}
237		}
238		DLOG((DLOG_MALLOC, "sleeping on %s (%d)\n",
239		      lfs_res_names[type], lfs_res_qty[type]));
240		ltsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0,
241			&fs->lfs_interlock);
242		DLOG((DLOG_MALLOC, "done sleeping on %s\n",
243		      lfs_res_names[type]));
244	}
245	/* NOTREACHED */
246	simple_unlock(&fs->lfs_interlock);
247	return r;
248}
249
250void
251lfs_free(struct lfs *fs, void *p, int type)
252{
253	int s;
254	unsigned int h;
255	res_t *re;
256#ifdef DEBUG
257	int i;
258#endif
259
260	ASSERT_MAYBE_SEGLOCK(fs);
261	h = lfs_mhash(p);
262	simple_lock(&fs->lfs_interlock);
263	s = splbio();
264	LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
265		if (re->p == p) {
266			KASSERT(re->inuse == 1);
267			LIST_REMOVE(re, res);
268			re->inuse = 0;
269			wakeup(&fs->lfs_resblk);
270			splx(s);
271			simple_unlock(&fs->lfs_interlock);
272			return;
273		}
274	}
275#ifdef DEBUG
276	for (i = 0; i < LFS_N_TOTAL; i++) {
277		if (fs->lfs_resblk[i].p == p)
278			panic("lfs_free: inconsistent reserved block");
279	}
280#endif
281	splx(s);
282	simple_unlock(&fs->lfs_interlock);
283
284	/*
285	 * If we didn't find it, free it.
286	 */
287	free(p, M_SEGMENT);
288}
289
290/*
291 * lfs_seglock --
292 *	Single thread the segment writer.
293 */
294int
295lfs_seglock(struct lfs *fs, unsigned long flags)
296{
297	struct segment *sp;
298
299	simple_lock(&fs->lfs_interlock);
300	if (fs->lfs_seglock) {
301		if (fs->lfs_lockpid == curproc->p_pid &&
302		    fs->lfs_locklwp == curlwp->l_lid) {
303			simple_unlock(&fs->lfs_interlock);
304			++fs->lfs_seglock;
305			fs->lfs_sp->seg_flags |= flags;
306			return 0;
307		} else if (flags & SEGM_PAGEDAEMON) {
308			simple_unlock(&fs->lfs_interlock);
309			return EWOULDBLOCK;
310		} else {
311			while (fs->lfs_seglock) {
312				(void)ltsleep(&fs->lfs_seglock, PRIBIO + 1,
313					"lfs seglock", 0, &fs->lfs_interlock);
314			}
315		}
316	}
317
318	fs->lfs_seglock = 1;
319	fs->lfs_lockpid = curproc->p_pid;
320	fs->lfs_locklwp = curlwp->l_lid;
321	simple_unlock(&fs->lfs_interlock);
322	fs->lfs_cleanind = 0;
323
324#ifdef DEBUG
325	LFS_ENTER_LOG("seglock", __FILE__, __LINE__, 0, flags, curproc->p_pid);
326#endif
327	/* Drain fragment size changes out */
328	rw_enter(&fs->lfs_fraglock, RW_WRITER);
329
330	sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
331	sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
332	sp->seg_flags = flags;
333	sp->vp = NULL;
334	sp->seg_iocount = 0;
335	(void) lfs_initseg(fs);
336
337	/*
338	 * Keep a cumulative count of the outstanding I/O operations.  If the
339	 * disk drive catches up with us it could go to zero before we finish,
340	 * so we artificially increment it by one until we've scheduled all of
341	 * the writes we intend to do.
342	 */
343	simple_lock(&fs->lfs_interlock);
344	++fs->lfs_iocount;
345	simple_unlock(&fs->lfs_interlock);
346	return 0;
347}
348
349static void lfs_unmark_dirop(struct lfs *);
350
351static void
352lfs_unmark_dirop(struct lfs *fs)
353{
354	struct inode *ip, *nip;
355	struct vnode *vp;
356	int doit;
357
358	ASSERT_NO_SEGLOCK(fs);
359	simple_lock(&fs->lfs_interlock);
360	doit = !(fs->lfs_flags & LFS_UNDIROP);
361	if (doit)
362		fs->lfs_flags |= LFS_UNDIROP;
363	if (!doit) {
364		simple_unlock(&fs->lfs_interlock);
365		return;
366	}
367
368	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
369		nip = TAILQ_NEXT(ip, i_lfs_dchain);
370		simple_unlock(&fs->lfs_interlock);
371		vp = ITOV(ip);
372
373		simple_lock(&vp->v_interlock);
374		if (VOP_ISLOCKED(vp) == LK_EXCLOTHER) {
375			simple_lock(&fs->lfs_interlock);
376			simple_unlock(&vp->v_interlock);
377			continue;
378		}
379		if ((VTOI(vp)->i_flag & (IN_ADIROP | IN_ALLMOD)) == 0) {
380			simple_lock(&fs->lfs_interlock);
381			simple_lock(&lfs_subsys_lock);
382			--lfs_dirvcount;
383			simple_unlock(&lfs_subsys_lock);
384			--fs->lfs_dirvcount;
385			vp->v_flag &= ~VDIROP;
386			TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
387			simple_unlock(&fs->lfs_interlock);
388			wakeup(&lfs_dirvcount);
389			simple_unlock(&vp->v_interlock);
390			simple_lock(&fs->lfs_interlock);
391			fs->lfs_unlockvp = vp;
392			simple_unlock(&fs->lfs_interlock);
393			vrele(vp);
394			simple_lock(&fs->lfs_interlock);
395			fs->lfs_unlockvp = NULL;
396			simple_unlock(&fs->lfs_interlock);
397		} else
398			simple_unlock(&vp->v_interlock);
399		simple_lock(&fs->lfs_interlock);
400	}
401
402	fs->lfs_flags &= ~LFS_UNDIROP;
403	simple_unlock(&fs->lfs_interlock);
404	wakeup(&fs->lfs_flags);
405}
406
407static void
408lfs_auto_segclean(struct lfs *fs)
409{
410	int i, error, s, waited;
411
412	ASSERT_SEGLOCK(fs);
413	/*
414	 * Now that we've swapped lfs_activesb, but while we still
415	 * hold the segment lock, run through the segment list marking
416	 * the empty ones clean.
417	 * XXX - do we really need to do them all at once?
418	 */
419	waited = 0;
420	for (i = 0; i < fs->lfs_nseg; i++) {
421		if ((fs->lfs_suflags[0][i] &
422		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
423		    (SEGUSE_DIRTY | SEGUSE_EMPTY) &&
424		    (fs->lfs_suflags[1][i] &
425		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
426		    (SEGUSE_DIRTY | SEGUSE_EMPTY)) {
427
428			/* Make sure the sb is written before we clean */
429			simple_lock(&fs->lfs_interlock);
430			s = splbio();
431			while (waited == 0 && fs->lfs_sbactive)
432				ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs asb",
433					0, &fs->lfs_interlock);
434			splx(s);
435			simple_unlock(&fs->lfs_interlock);
436			waited = 1;
437
438			if ((error = lfs_do_segclean(fs, i)) != 0) {
439				DLOG((DLOG_CLEAN, "lfs_auto_segclean: lfs_do_segclean returned %d for seg %d\n", error, i));
440			}
441		}
442		fs->lfs_suflags[1 - fs->lfs_activesb][i] =
443			fs->lfs_suflags[fs->lfs_activesb][i];
444	}
445}
446
447/*
448 * lfs_segunlock --
449 *	Single thread the segment writer.
450 */
451void
452lfs_segunlock(struct lfs *fs)
453{
454	struct segment *sp;
455	unsigned long sync, ckp;
456	struct buf *bp;
457	int do_unmark_dirop = 0;
458
459	sp = fs->lfs_sp;
460
461	simple_lock(&fs->lfs_interlock);
462	LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
463	if (fs->lfs_seglock == 1) {
464		if ((sp->seg_flags & (SEGM_PROT | SEGM_CLEAN)) == 0 &&
465		    LFS_STARVED_FOR_SEGS(fs) == 0)
466			do_unmark_dirop = 1;
467		simple_unlock(&fs->lfs_interlock);
468		sync = sp->seg_flags & SEGM_SYNC;
469		ckp = sp->seg_flags & SEGM_CKP;
470
471		/* We should have a segment summary, and nothing else */
472		KASSERT(sp->cbpp == sp->bpp + 1);
473
474		/* Free allocated segment summary */
475		fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
476		bp = *sp->bpp;
477		lfs_freebuf(fs, bp);
478
479		pool_put(&fs->lfs_bpppool, sp->bpp);
480		sp->bpp = NULL;
481
482		/*
483		 * If we're not sync, we're done with sp, get rid of it.
484		 * Otherwise, we keep a local copy around but free
485		 * fs->lfs_sp so another process can use it (we have to
486		 * wait but they don't have to wait for us).
487		 */
488		if (!sync)
489			pool_put(&fs->lfs_segpool, sp);
490		fs->lfs_sp = NULL;
491
492		/*
493		 * If the I/O count is non-zero, sleep until it reaches zero.
494		 * At the moment, the user's process hangs around so we can
495		 * sleep.
496		 */
497		simple_lock(&fs->lfs_interlock);
498		if (--fs->lfs_iocount == 0) {
499			LFS_DEBUG_COUNTLOCKED("lfs_segunlock");
500		}
501		if (fs->lfs_iocount <= 1)
502			wakeup(&fs->lfs_iocount);
503		simple_unlock(&fs->lfs_interlock);
504		/*
505		 * If we're not checkpointing, we don't have to block
506		 * other processes to wait for a synchronous write
507		 * to complete.
508		 */
509		if (!ckp) {
510#ifdef DEBUG
511			LFS_ENTER_LOG("segunlock_std", __FILE__, __LINE__, 0, 0, curproc->p_pid);
512#endif
513			simple_lock(&fs->lfs_interlock);
514			--fs->lfs_seglock;
515			fs->lfs_lockpid = 0;
516			fs->lfs_locklwp = 0;
517			simple_unlock(&fs->lfs_interlock);
518			wakeup(&fs->lfs_seglock);
519		}
520		/*
521		 * We let checkpoints happen asynchronously.  That means
522		 * that during recovery, we have to roll forward between
523		 * the two segments described by the first and second
524		 * superblocks to make sure that the checkpoint described
525		 * by a superblock completed.
526		 */
527		simple_lock(&fs->lfs_interlock);
528		while (ckp && sync && fs->lfs_iocount)
529			(void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
530				      "lfs_iocount", 0, &fs->lfs_interlock);
531		while (sync && sp->seg_iocount) {
532			(void)ltsleep(&sp->seg_iocount, PRIBIO + 1,
533				     "seg_iocount", 0, &fs->lfs_interlock);
534			DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", sp, sp->seg_iocount));
535		}
536		simple_unlock(&fs->lfs_interlock);
537		if (sync)
538			pool_put(&fs->lfs_segpool, sp);
539
540		if (ckp) {
541			fs->lfs_nactive = 0;
542			/* If we *know* everything's on disk, write both sbs */
543			/* XXX should wait for this one	 */
544			if (sync)
545				lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
546			lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
547			if (!(fs->lfs_ivnode->v_mount->mnt_iflag & IMNT_UNMOUNT)) {
548				lfs_auto_segclean(fs);
549				/* If sync, we can clean the remainder too */
550				if (sync)
551					lfs_auto_segclean(fs);
552			}
553			fs->lfs_activesb = 1 - fs->lfs_activesb;
554#ifdef DEBUG
555			LFS_ENTER_LOG("segunlock_ckp", __FILE__, __LINE__, 0, 0, curproc->p_pid);
556#endif
557			simple_lock(&fs->lfs_interlock);
558			--fs->lfs_seglock;
559			fs->lfs_lockpid = 0;
560			fs->lfs_locklwp = 0;
561			simple_unlock(&fs->lfs_interlock);
562			wakeup(&fs->lfs_seglock);
563		}
564		/* Reenable fragment size changes */
565		rw_exit(&fs->lfs_fraglock);
566		if (do_unmark_dirop)
567			lfs_unmark_dirop(fs);
568	} else if (fs->lfs_seglock == 0) {
569		simple_unlock(&fs->lfs_interlock);
570		panic ("Seglock not held");
571	} else {
572		--fs->lfs_seglock;
573		simple_unlock(&fs->lfs_interlock);
574	}
575}
576
577/*
578 * Drain dirops and start writer.
579 *
580 * No simple_locks are held when we enter and none are held when we return.
581 */
582int
583lfs_writer_enter(struct lfs *fs, const char *wmesg)
584{
585	int error = 0;
586
587	ASSERT_MAYBE_SEGLOCK(fs);
588	simple_lock(&fs->lfs_interlock);
589
590	/* disallow dirops during flush */
591	fs->lfs_writer++;
592
593	while (fs->lfs_dirops > 0) {
594		++fs->lfs_diropwait;
595		error = ltsleep(&fs->lfs_writer, PRIBIO+1, wmesg, 0,
596				&fs->lfs_interlock);
597		--fs->lfs_diropwait;
598	}
599
600	if (error)
601		fs->lfs_writer--;
602
603	simple_unlock(&fs->lfs_interlock);
604
605	return error;
606}
607
608void
609lfs_writer_leave(struct lfs *fs)
610{
611	bool dowakeup;
612
613	ASSERT_MAYBE_SEGLOCK(fs);
614	simple_lock(&fs->lfs_interlock);
615	dowakeup = !(--fs->lfs_writer);
616	simple_unlock(&fs->lfs_interlock);
617	if (dowakeup)
618		wakeup(&fs->lfs_dirops);
619}
620
621/*
622 * Unlock, wait for the cleaner, then relock to where we were before.
623 * To be used only at a fairly high level, to address a paucity of free
624 * segments propagated back from lfs_gop_write().
625 */
626void
627lfs_segunlock_relock(struct lfs *fs)
628{
629	int n = fs->lfs_seglock;
630	u_int16_t seg_flags;
631	CLEANERINFO *cip;
632	struct buf *bp;
633
634	if (n == 0)
635		return;
636
637	/* Write anything we've already gathered to disk */
638	lfs_writeseg(fs, fs->lfs_sp);
639
640	/* Tell cleaner */
641	LFS_CLEANERINFO(cip, fs, bp);
642	cip->flags |= LFS_CLEANER_MUST_CLEAN;
643	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
644
645	/* Save segment flags for later */
646	seg_flags = fs->lfs_sp->seg_flags;
647
648	fs->lfs_sp->seg_flags |= SEGM_PROT; /* Don't unmark dirop nodes */
649	while(fs->lfs_seglock)
650		lfs_segunlock(fs);
651
652	/* Wait for the cleaner */
653	lfs_wakeup_cleaner(fs);
654	simple_lock(&fs->lfs_interlock);
655	while (LFS_STARVED_FOR_SEGS(fs))
656		ltsleep(&fs->lfs_avail, PRIBIO, "relock", 0,
657			&fs->lfs_interlock);
658	simple_unlock(&fs->lfs_interlock);
659
660	/* Put the segment lock back the way it was. */
661	while(n--)
662		lfs_seglock(fs, seg_flags);
663
664	/* Cleaner can relax now */
665	LFS_CLEANERINFO(cip, fs, bp);
666	cip->flags &= ~LFS_CLEANER_MUST_CLEAN;
667	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
668
669	return;
670}
671
672/*
673 * Wake up the cleaner, provided that nowrap is not set.
674 */
675void
676lfs_wakeup_cleaner(struct lfs *fs)
677{
678	if (fs->lfs_nowrap > 0)
679		return;
680
681	wakeup(&fs->lfs_nextseg);
682	wakeup(&lfs_allclean_wakeup);
683}
684