lfs_subr.c revision 1.32
1/*	$NetBSD: lfs_subr.c,v 1.32 2003/02/19 12:58:53 yamt Exp $	*/
2
3/*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant@hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *      This product includes software developed by the NetBSD
21 *      Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38/*
39 * Copyright (c) 1991, 1993
40 *	The Regents of the University of California.  All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 *    notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in the
49 *    documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 *    must display the following acknowledgement:
52 *	This product includes software developed by the University of
53 *	California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 *    may be used to endorse or promote products derived from this software
56 *    without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 *	@(#)lfs_subr.c	8.4 (Berkeley) 5/8/95
71 */
72
73#include <sys/cdefs.h>
74__KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.32 2003/02/19 12:58:53 yamt Exp $");
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/namei.h>
79#include <sys/vnode.h>
80#include <sys/buf.h>
81#include <sys/mount.h>
82#include <sys/malloc.h>
83#include <sys/proc.h>
84
85#include <ufs/ufs/inode.h>
86#include <ufs/lfs/lfs.h>
87#include <ufs/lfs/lfs_extern.h>
88
89#include <uvm/uvm.h>
90
91/*
92 * Return buffer with the contents of block "offset" from the beginning of
93 * directory "ip".  If "res" is non-zero, fill it in with a pointer to the
94 * remaining space in the directory.
95 */
96int
97lfs_blkatoff(void *v)
98{
99	struct vop_blkatoff_args /* {
100		struct vnode *a_vp;
101		off_t a_offset;
102		char **a_res;
103		struct buf **a_bpp;
104		} */ *ap = v;
105	struct lfs *fs;
106	struct inode *ip;
107	struct buf *bp;
108	daddr_t lbn;
109	int bsize, error;
110
111	ip = VTOI(ap->a_vp);
112	fs = ip->i_lfs;
113	lbn = lblkno(fs, ap->a_offset);
114	bsize = blksize(fs, ip, lbn);
115
116	*ap->a_bpp = NULL;
117	if ((error = bread(ap->a_vp, lbn, bsize, NOCRED, &bp)) != 0) {
118		brelse(bp);
119		return (error);
120	}
121	if (ap->a_res)
122		*ap->a_res = (char *)bp->b_data + blkoff(fs, ap->a_offset);
123	*ap->a_bpp = bp;
124	return (0);
125}
126
127#ifdef LFS_DEBUG_MALLOC
128char *lfs_res_names[LFS_NB_COUNT] = {
129	"summary",
130	"superblock",
131	"ifile block",
132	"cluster",
133	"clean",
134};
135#endif
136
137int lfs_res_qty[LFS_NB_COUNT] = {
138	LFS_N_SUMMARIES,
139	LFS_N_SBLOCKS,
140	LFS_N_IBLOCKS,
141	LFS_N_CLUSTERS,
142	LFS_N_CLEAN,
143};
144
145void
146lfs_setup_resblks(struct lfs *fs)
147{
148	int i, j;
149	int maxbpp;
150
151	fs->lfs_resblk = (res_t *)malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
152				          M_WAITOK);
153	for (i = 0; i < LFS_N_TOTAL; i++) {
154		fs->lfs_resblk[i].inuse = 0;
155		fs->lfs_resblk[i].p = NULL;
156	}
157	for (i = 0; i < LFS_RESHASH_WIDTH; i++)
158		LIST_INIT(fs->lfs_reshash + i);
159
160	/*
161	 * These types of allocations can be larger than a page,
162	 * so we can't use the pool subsystem for them.
163	 */
164	for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
165		fs->lfs_resblk[i].p = malloc(fs->lfs_sumsize, M_SEGMENT,
166					    M_WAITOK);
167	for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
168		fs->lfs_resblk[i].p = malloc(LFS_SBPAD, M_SEGMENT, M_WAITOK);
169	for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
170		fs->lfs_resblk[i].p = malloc(fs->lfs_bsize, M_SEGMENT, M_WAITOK);
171	for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
172		fs->lfs_resblk[i].p = malloc(MAXPHYS, M_SEGMENT, M_WAITOK);
173	for (j = 0; j < LFS_N_CLEAN; j++, i++)
174		fs->lfs_resblk[i].p = malloc(MAXPHYS, M_SEGMENT, M_WAITOK);
175
176	/*
177	 * Initialize pools for small types (XXX is BPP small?)
178	 */
179	maxbpp = ((fs->lfs_sumsize - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
180	maxbpp = MIN(maxbpp, fs->lfs_ssize / fs->lfs_fsize + 2);
181        pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0,
182		LFS_N_BPP, "lfsbpppl", &pool_allocator_nointr);
183        pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0,
184		LFS_N_CL, "lfsclpl", &pool_allocator_nointr);
185	pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0,
186		LFS_N_SEG, "lfssegpool", &pool_allocator_nointr);
187}
188
189void
190lfs_free_resblks(struct lfs *fs)
191{
192	int i;
193
194	pool_destroy(&fs->lfs_bpppool);
195	pool_destroy(&fs->lfs_segpool);
196	pool_destroy(&fs->lfs_clpool);
197
198	for (i = 0; i < LFS_N_TOTAL; i++) {
199		while(fs->lfs_resblk[i].inuse)
200			tsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0);
201		if (fs->lfs_resblk[i].p != NULL)
202			free(fs->lfs_resblk[i].p, M_SEGMENT);
203	}
204	free(fs->lfs_resblk, M_SEGMENT);
205}
206
207static unsigned int
208lfs_mhash(void *vp)
209{
210	return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
211}
212
213/*
214 * Return memory of the given size for the given purpose, or use one of a
215 * number of spare last-resort buffers, if malloc returns NULL.
216 */
217void *
218lfs_malloc(struct lfs *fs, size_t size, int type)
219{
220	struct lfs_res_blk *re;
221	void *r;
222	int i, s, start;
223	unsigned int h;
224
225	/* If no mem allocated for this type, it just waits */
226	if (lfs_res_qty[type] == 0)
227		return malloc(size, M_SEGMENT, M_WAITOK);
228
229	/* Otherwise try a quick malloc, and if it works, great */
230	if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL)
231		return r;
232
233	/*
234	 * If malloc returned NULL, we are forced to use one of our
235	 * reserve blocks.  We have on hand at least one summary block,
236	 * at least one cluster block, at least one superblock,
237	 * and several indirect blocks.
238	 */
239	/* skip over blocks of other types */
240	for (i = 0, start = 0; i < type; i++)
241		start += lfs_res_qty[i];
242	while (r == NULL) {
243		for (i = 0; i < lfs_res_qty[type]; i++) {
244			if (fs->lfs_resblk[start + i].inuse == 0) {
245				re = fs->lfs_resblk + start + i;
246				re->inuse = 1;
247				r = re->p;
248				h = lfs_mhash(r);
249				s = splbio();
250				LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
251				splx(s);
252				return r;
253			}
254		}
255#ifdef LFS_DEBUG_MALLOC
256		printf("sleeping on %s (%d)\n", lfs_res_names[type], lfs_res_qty[type]);
257#endif
258		tsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0);
259#ifdef LFS_DEBUG_MALLOC
260		printf("done sleeping on %s\n", lfs_res_names[type]);
261#endif
262	}
263	/* NOTREACHED */
264	return r;
265}
266
267void
268lfs_free(struct lfs *fs, void *p, int type)
269{
270	int s;
271	unsigned int h;
272	res_t *re;
273#ifdef DEBUG
274	int i;
275#endif
276
277	h = lfs_mhash(p);
278	s = splbio();
279	LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
280		if (re->p == p) {
281			KASSERT(re->inuse == 1);
282			LIST_REMOVE(re, res);
283			re->inuse = 0;
284			wakeup(&fs->lfs_resblk);
285			splx(s);
286			return;
287		}
288	}
289#ifdef DEBUG
290	for (i = 0; i < LFS_N_TOTAL; i++) {
291		if (fs->lfs_resblk[i].p == p)
292			panic("lfs_free: inconsist reserved block");
293	}
294#endif
295	splx(s);
296
297	/*
298	 * If we didn't find it, free it.
299	 */
300	free(p, M_SEGMENT);
301}
302
303/*
304 * lfs_seglock --
305 *	Single thread the segment writer.
306 */
307int
308lfs_seglock(struct lfs *fs, unsigned long flags)
309{
310	struct segment *sp;
311
312	if (fs->lfs_seglock) {
313		if (fs->lfs_lockpid == curproc->p_pid) {
314			++fs->lfs_seglock;
315			fs->lfs_sp->seg_flags |= flags;
316			return 0;
317		} else if (flags & SEGM_PAGEDAEMON)
318			return EWOULDBLOCK;
319		else while (fs->lfs_seglock)
320			(void)tsleep(&fs->lfs_seglock, PRIBIO + 1,
321				     "lfs seglock", 0);
322	}
323
324	fs->lfs_seglock = 1;
325	fs->lfs_lockpid = curproc->p_pid;
326
327	/* Drain fragment size changes out */
328	lockmgr(&fs->lfs_fraglock, LK_EXCLUSIVE, 0);
329
330	sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
331	sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
332	sp->seg_flags = flags;
333	sp->vp = NULL;
334	sp->seg_iocount = 0;
335	(void) lfs_initseg(fs);
336
337	/*
338	 * Keep a cumulative count of the outstanding I/O operations.  If the
339	 * disk drive catches up with us it could go to zero before we finish,
340	 * so we artificially increment it by one until we've scheduled all of
341	 * the writes we intend to do.
342	 */
343	++fs->lfs_iocount;
344	return 0;
345}
346
347static void lfs_unmark_dirop(struct lfs *);
348
349static void
350lfs_unmark_dirop(struct lfs *fs)
351{
352	struct inode *ip, *nip;
353	struct vnode *vp;
354	extern int lfs_dirvcount;
355
356	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
357		nip = TAILQ_NEXT(ip, i_lfs_dchain);
358		vp = ITOV(ip);
359
360		if (VOP_ISLOCKED(vp) &&
361                           vp->v_lock.lk_lockholder != curproc->p_pid) {
362			continue;
363		}
364		if ((VTOI(vp)->i_flag & IN_ADIROP) == 0) {
365			--lfs_dirvcount;
366			vp->v_flag &= ~VDIROP;
367			TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
368			wakeup(&lfs_dirvcount);
369			fs->lfs_unlockvp = vp;
370			vrele(vp);
371			fs->lfs_unlockvp = NULL;
372		}
373	}
374}
375
376#ifndef LFS_NO_AUTO_SEGCLEAN
377static void
378lfs_auto_segclean(struct lfs *fs)
379{
380	int i, error;
381
382	/*
383	 * Now that we've swapped lfs_activesb, but while we still
384	 * hold the segment lock, run through the segment list marking
385	 * the empty ones clean.
386	 * XXX - do we really need to do them all at once?
387	 */
388	for (i = 0; i < fs->lfs_nseg; i++) {
389		if ((fs->lfs_suflags[0][i] &
390		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
391		    (SEGUSE_DIRTY | SEGUSE_EMPTY) &&
392		    (fs->lfs_suflags[1][i] &
393		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
394		    (SEGUSE_DIRTY | SEGUSE_EMPTY)) {
395
396			if ((error = lfs_do_segclean(fs, i)) != 0) {
397#ifdef DEBUG
398				printf("lfs_auto_segclean: lfs_do_segclean returned %d for seg %d\n", error, i);
399#endif /* DEBUG */
400			}
401		}
402		fs->lfs_suflags[1 - fs->lfs_activesb][i] =
403			fs->lfs_suflags[fs->lfs_activesb][i];
404	}
405}
406#endif /* LFS_AUTO_SEGCLEAN */
407
408/*
409 * lfs_segunlock --
410 *	Single thread the segment writer.
411 */
412void
413lfs_segunlock(struct lfs *fs)
414{
415	struct segment *sp;
416	unsigned long sync, ckp;
417	struct buf *bp;
418#ifdef LFS_MALLOC_SUMMARY
419	extern int locked_queue_count;
420	extern long locked_queue_bytes;
421#endif
422
423	sp = fs->lfs_sp;
424
425	if (fs->lfs_seglock == 1) {
426		if ((sp->seg_flags & SEGM_PROT) == 0)
427			lfs_unmark_dirop(fs);
428		sync = sp->seg_flags & SEGM_SYNC;
429		ckp = sp->seg_flags & SEGM_CKP;
430		if (sp->bpp != sp->cbpp) {
431			/* Free allocated segment summary */
432			fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
433			bp = *sp->bpp;
434#ifdef LFS_MALLOC_SUMMARY
435			lfs_freebuf(fs, bp);
436#else
437			s = splbio();
438			bremfree(bp);
439			bp->b_flags |= B_DONE|B_INVAL;
440			bp->b_flags &= ~B_DELWRI;
441			reassignbuf(bp,bp->b_vp);
442			splx(s);
443			brelse(bp);
444#endif
445		} else
446			printf ("unlock to 0 with no summary");
447
448		pool_put(&fs->lfs_bpppool, sp->bpp);
449		sp->bpp = NULL;
450		/* The sync case holds a reference in `sp' to be freed below */
451		if (!sync)
452			pool_put(&fs->lfs_segpool, sp);
453		fs->lfs_sp = NULL;
454
455		/*
456		 * If the I/O count is non-zero, sleep until it reaches zero.
457		 * At the moment, the user's process hangs around so we can
458		 * sleep.
459		 */
460		if (--fs->lfs_iocount == 0) {
461			lfs_countlocked(&locked_queue_count,
462					&locked_queue_bytes, "lfs_segunlock");
463			wakeup(&locked_queue_count);
464			wakeup(&fs->lfs_iocount);
465		}
466		/*
467		 * If we're not checkpointing, we don't have to block
468		 * other processes to wait for a synchronous write
469		 * to complete.
470		 */
471		if (!ckp) {
472			--fs->lfs_seglock;
473			fs->lfs_lockpid = 0;
474			wakeup(&fs->lfs_seglock);
475		}
476		/*
477		 * We let checkpoints happen asynchronously.  That means
478		 * that during recovery, we have to roll forward between
479		 * the two segments described by the first and second
480		 * superblocks to make sure that the checkpoint described
481		 * by a superblock completed.
482		 */
483		while (ckp && sync && fs->lfs_iocount)
484			(void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
485				     "lfs_iocount", 0);
486		while (sync && sp->seg_iocount) {
487			(void)tsleep(&sp->seg_iocount, PRIBIO + 1,
488				     "seg_iocount", 0);
489			/* printf("sleeping on iocount %x == %d\n", sp, sp->seg_iocount); */
490		}
491		if (sync)
492			pool_put(&fs->lfs_segpool, sp);
493		if (ckp) {
494			fs->lfs_nactive = 0;
495			/* If we *know* everything's on disk, write both sbs */
496			/* XXX should wait for this one  */
497			if (sync)
498				lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
499			lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
500#ifndef LFS_NO_AUTO_SEGCLEAN
501			lfs_auto_segclean(fs);
502#endif
503			fs->lfs_activesb = 1 - fs->lfs_activesb;
504			--fs->lfs_seglock;
505			fs->lfs_lockpid = 0;
506			wakeup(&fs->lfs_seglock);
507		}
508		/* Reenable fragment size changes */
509		lockmgr(&fs->lfs_fraglock, LK_RELEASE, 0);
510	} else if (fs->lfs_seglock == 0) {
511		panic ("Seglock not held");
512	} else {
513		--fs->lfs_seglock;
514	}
515}
516