lwproc.c revision 1.24
1/*      $NetBSD: lwproc.c,v 1.24 2013/10/27 20:25:45 pooka Exp $	*/
2
3/*
4 * Copyright (c) 2010, 2011 Antti Kantee.  All Rights Reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__KERNEL_RCSID(0, "$NetBSD: lwproc.c,v 1.24 2013/10/27 20:25:45 pooka Exp $");
30
31#include <sys/param.h>
32#include <sys/atomic.h>
33#include <sys/filedesc.h>
34#include <sys/kauth.h>
35#include <sys/kmem.h>
36#include <sys/lwp.h>
37#include <sys/pool.h>
38#include <sys/proc.h>
39#include <sys/queue.h>
40#include <sys/resourcevar.h>
41#include <sys/uidinfo.h>
42
43#include <rump/rumpuser.h>
44
45#include "rump_private.h"
46
47struct emul *emul_default = &emul_netbsd;
48
49static void
50lwproc_proc_free(struct proc *p)
51{
52	kauth_cred_t cred;
53
54	mutex_enter(proc_lock);
55
56	KASSERT(p->p_nlwps == 0);
57	KASSERT(LIST_EMPTY(&p->p_lwps));
58	KASSERT(p->p_stat == SACTIVE || p->p_stat == SDYING ||
59	    p->p_stat == SDEAD);
60
61	LIST_REMOVE(p, p_list);
62	LIST_REMOVE(p, p_sibling);
63	proc_free_pid(p->p_pid); /* decrements nprocs */
64	proc_leavepgrp(p); /* releases proc_lock */
65
66	cred = p->p_cred;
67	chgproccnt(kauth_cred_getuid(cred), -1);
68	if (rump_proc_vfs_release)
69		rump_proc_vfs_release(p);
70
71	lim_free(p->p_limit);
72	pstatsfree(p->p_stats);
73	kauth_cred_free(p->p_cred);
74	proc_finispecific(p);
75
76	mutex_obj_free(p->p_lock);
77	mutex_destroy(&p->p_stmutex);
78	mutex_destroy(&p->p_auxlock);
79	rw_destroy(&p->p_reflock);
80	cv_destroy(&p->p_waitcv);
81	cv_destroy(&p->p_lwpcv);
82
83	/* non-kernel vmspaces are not shared */
84	if (!RUMP_LOCALPROC_P(p)) {
85		KASSERT(p->p_vmspace->vm_refcnt == 1);
86		kmem_free(p->p_vmspace, sizeof(*p->p_vmspace));
87	}
88
89	proc_free_mem(p);
90}
91
92/*
93 * Allocate a new process.  Mostly mimic fork by
94 * copying the properties of the parent.  However, there are some
95 * differences.
96 *
97 * Switch to the new lwp and return a pointer to it.
98 */
99static struct proc *
100lwproc_newproc(struct proc *parent, int flags)
101{
102	uid_t uid = kauth_cred_getuid(parent->p_cred);
103	struct proc *p;
104
105	/* maxproc not enforced */
106	atomic_inc_uint(&nprocs);
107
108	/* allocate process */
109	p = proc_alloc();
110	memset(&p->p_startzero, 0,
111	    offsetof(struct proc, p_endzero)
112	      - offsetof(struct proc, p_startzero));
113	memcpy(&p->p_startcopy, &parent->p_startcopy,
114	    offsetof(struct proc, p_endcopy)
115	      - offsetof(struct proc, p_startcopy));
116
117	/* some other garbage we need to zero */
118	p->p_sigacts = NULL;
119	p->p_aio = NULL;
120	p->p_dtrace = NULL;
121	p->p_mqueue_cnt = p->p_exitsig = 0;
122	p->p_flag = p->p_sflag = p->p_slflag = p->p_lflag = p->p_stflag = 0;
123	p->p_trace_enabled = 0;
124	p->p_xstat = p->p_acflag = 0;
125	p->p_stackbase = 0;
126
127	p->p_stats = pstatscopy(parent->p_stats);
128
129	p->p_vmspace = vmspace_kernel();
130	p->p_emul = emul_default;
131	if (*parent->p_comm)
132		strcpy(p->p_comm, parent->p_comm);
133	else
134		strcpy(p->p_comm, "rumproc");
135
136	if ((flags & RUMP_RFCFDG) == 0)
137		KASSERT(parent == curproc);
138	if (flags & RUMP_RFFDG)
139		p->p_fd = fd_copy();
140	else if (flags & RUMP_RFCFDG)
141		p->p_fd = fd_init(NULL);
142	else
143		fd_share(p);
144
145	lim_addref(parent->p_limit);
146	p->p_limit = parent->p_limit;
147
148	LIST_INIT(&p->p_lwps);
149	LIST_INIT(&p->p_children);
150
151	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
152	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
153	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
154	rw_init(&p->p_reflock);
155	cv_init(&p->p_waitcv, "pwait");
156	cv_init(&p->p_lwpcv, "plwp");
157
158	p->p_pptr = parent;
159	p->p_ppid = parent->p_pid;
160	p->p_stat = SACTIVE;
161
162	kauth_proc_fork(parent, p);
163
164	/* initialize cwd in rump kernels with vfs */
165	if (rump_proc_vfs_init)
166		rump_proc_vfs_init(p);
167
168	chgproccnt(uid, 1); /* not enforced */
169
170	/* publish proc various proc lists */
171	mutex_enter(proc_lock);
172	LIST_INSERT_HEAD(&allproc, p, p_list);
173	LIST_INSERT_HEAD(&parent->p_children, p, p_sibling);
174	LIST_INSERT_AFTER(parent, p, p_pglist);
175	mutex_exit(proc_lock);
176
177	return p;
178}
179
180static void
181lwproc_freelwp(struct lwp *l)
182{
183	struct proc *p;
184
185	p = l->l_proc;
186	mutex_enter(p->p_lock);
187
188	KASSERT(l->l_flag & LW_WEXIT);
189	KASSERT(l->l_refcnt == 0);
190
191	/* ok, zero references, continue with nuke */
192	LIST_REMOVE(l, l_sibling);
193	KASSERT(p->p_nlwps >= 1);
194	if (--p->p_nlwps == 0) {
195		KASSERT(p != &proc0);
196		p->p_stat = SDEAD;
197	}
198	cv_broadcast(&p->p_lwpcv); /* nobody sleeps on this in a rump kernel? */
199	kauth_cred_free(l->l_cred);
200	mutex_exit(p->p_lock);
201
202	mutex_enter(proc_lock);
203	LIST_REMOVE(l, l_list);
204	mutex_exit(proc_lock);
205
206	if (l->l_name)
207		kmem_free(l->l_name, MAXCOMLEN);
208	lwp_finispecific(l);
209
210	rumpuser_curlwpop(RUMPUSER_LWP_DESTROY, l);
211	membar_exit();
212	kmem_free(l, sizeof(*l));
213
214	if (p->p_stat == SDEAD)
215		lwproc_proc_free(p);
216}
217
218extern kmutex_t unruntime_lock;
219
220/*
221 * called with p_lock held, releases lock before return
222 */
223static void
224lwproc_makelwp(struct proc *p, struct lwp *l, bool doswitch, bool procmake)
225{
226
227	p->p_nlwps++;
228	l->l_refcnt = 1;
229	l->l_proc = p;
230
231	l->l_lid = p->p_nlwpid++;
232	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
233
234	l->l_fd = p->p_fd;
235	l->l_cpu = rump_cpu;
236	l->l_target_cpu = rump_cpu; /* Initial target CPU always the same */
237	l->l_stat = LSRUN;
238	l->l_mutex = &unruntime_lock;
239	TAILQ_INIT(&l->l_ld_locks);
240	mutex_exit(p->p_lock);
241
242	lwp_update_creds(l);
243	lwp_initspecific(l);
244
245	membar_enter();
246	rumpuser_curlwpop(RUMPUSER_LWP_CREATE, l);
247	if (doswitch) {
248		rump_lwproc_switch(l);
249	}
250
251	/* filedesc already has refcount 1 when process is created */
252	if (!procmake) {
253		fd_hold(l);
254	}
255
256	mutex_enter(proc_lock);
257	LIST_INSERT_HEAD(&alllwp, l, l_list);
258	mutex_exit(proc_lock);
259}
260
261struct lwp *
262rump__lwproc_alloclwp(struct proc *p)
263{
264	struct lwp *l;
265	bool newproc = false;
266
267	if (p == NULL) {
268		p = lwproc_newproc(&proc0, 0);
269		newproc = true;
270	}
271
272	l = kmem_zalloc(sizeof(*l), KM_SLEEP);
273
274	mutex_enter(p->p_lock);
275	KASSERT((p->p_sflag & PS_RUMP_LWPEXIT) == 0);
276	lwproc_makelwp(p, l, false, newproc);
277
278	return l;
279}
280
281int
282rump_lwproc_newlwp(pid_t pid)
283{
284	struct proc *p;
285	struct lwp *l;
286
287	l = kmem_zalloc(sizeof(*l), KM_SLEEP);
288	mutex_enter(proc_lock);
289	p = proc_find_raw(pid);
290	if (p == NULL) {
291		mutex_exit(proc_lock);
292		kmem_free(l, sizeof(*l));
293		return ESRCH;
294	}
295	mutex_enter(p->p_lock);
296	if (p->p_sflag & PS_RUMP_LWPEXIT) {
297		mutex_exit(proc_lock);
298		mutex_exit(p->p_lock);
299		kmem_free(l, sizeof(*l));
300		return EBUSY;
301	}
302	mutex_exit(proc_lock);
303	lwproc_makelwp(p, l, true, false);
304
305	return 0;
306}
307
308int
309rump_lwproc_rfork(int flags)
310{
311	struct proc *p;
312	struct lwp *l;
313
314	if (flags & ~(RUMP_RFFDG|RUMP_RFCFDG) ||
315	    (~flags & (RUMP_RFFDG|RUMP_RFCFDG)) == 0)
316		return EINVAL;
317
318	p = lwproc_newproc(curproc, flags);
319	l = kmem_zalloc(sizeof(*l), KM_SLEEP);
320	mutex_enter(p->p_lock);
321	KASSERT((p->p_sflag & PS_RUMP_LWPEXIT) == 0);
322	lwproc_makelwp(p, l, true, true);
323
324	return 0;
325}
326
327/*
328 * Switch to a new process/thread.  Release previous one if
329 * deemed to be exiting.  This is considered a slow path for
330 * rump kernel entry.
331 */
332void
333rump_lwproc_switch(struct lwp *newlwp)
334{
335	struct lwp *l = curlwp;
336
337	KASSERT(!(l->l_flag & LW_WEXIT) || newlwp);
338
339	if (__predict_false(newlwp && (newlwp->l_pflag & LP_RUNNING)))
340		panic("lwp %p (%d:%d) already running",
341		    newlwp, newlwp->l_proc->p_pid, newlwp->l_lid);
342
343	if (newlwp == NULL) {
344		l->l_pflag &= ~LP_RUNNING;
345		l->l_flag |= LW_RUMP_CLEAR;
346		return;
347	}
348
349	/* fd_free() must be called from curlwp context.  talk about ugh */
350	if (l->l_flag & LW_WEXIT) {
351		fd_free();
352	}
353
354	KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
355	rumpuser_curlwpop(RUMPUSER_LWP_CLEAR, l);
356
357	newlwp->l_cpu = newlwp->l_target_cpu = l->l_cpu;
358	newlwp->l_mutex = l->l_mutex;
359	newlwp->l_pflag |= LP_RUNNING;
360
361	rumpuser_curlwpop(RUMPUSER_LWP_SET, newlwp);
362	curcpu()->ci_curlwp = newlwp;
363	KERNEL_LOCK(newlwp->l_biglocks, NULL);
364
365	/*
366	 * Check if the thread should get a signal.  This is
367	 * mostly to satisfy the "record" rump sigmodel.
368	 */
369	mutex_enter(newlwp->l_proc->p_lock);
370	if (sigispending(newlwp, 0)) {
371		newlwp->l_flag |= LW_PENDSIG;
372	}
373	mutex_exit(newlwp->l_proc->p_lock);
374
375	l->l_mutex = &unruntime_lock;
376	l->l_pflag &= ~LP_RUNNING;
377	l->l_flag &= ~LW_PENDSIG;
378	l->l_stat = LSRUN;
379
380	if (l->l_flag & LW_WEXIT) {
381		lwproc_freelwp(l);
382	}
383}
384
385/*
386 * Mark the current thread to be released upon return from
387 * kernel.
388 */
389void
390rump_lwproc_releaselwp(void)
391{
392	struct lwp *l = curlwp;
393
394	if (l->l_refcnt == 0 || l->l_flag & LW_WEXIT)
395		panic("releasing non-pertinent lwp");
396
397	rump__lwproc_lwprele();
398	KASSERT(l->l_refcnt == 0 && (l->l_flag & LW_WEXIT));
399}
400
401/*
402 * In-kernel routines used to add and remove references for the
403 * current thread.  The main purpose is to make it possible for
404 * implicit threads to persist over scheduling operations in
405 * rump kernel drivers.  Note that we don't need p_lock in a
406 * rump kernel, since we do refcounting only for curlwp.
407 */
408void
409rump__lwproc_lwphold(void)
410{
411	struct lwp *l = curlwp;
412
413	l->l_refcnt++;
414	l->l_flag &= ~LW_WEXIT;
415}
416
417void
418rump__lwproc_lwprele(void)
419{
420	struct lwp *l = curlwp;
421
422	l->l_refcnt--;
423	if (l->l_refcnt == 0)
424		l->l_flag |= LW_WEXIT;
425}
426
427struct lwp *
428rump_lwproc_curlwp(void)
429{
430	struct lwp *l = curlwp;
431
432	if (l->l_flag & LW_WEXIT)
433		return NULL;
434	return l;
435}
436
437/* this interface is under construction (like the proverbial 90's web page) */
438int rump_i_know_what_i_am_doing_with_sysents = 0;
439void
440rump_lwproc_sysent_usenative()
441{
442
443	if (!rump_i_know_what_i_am_doing_with_sysents)
444		panic("don't use rump_lwproc_sysent_usenative()");
445	curproc->p_emul = &emul_netbsd;
446}
447