ip_input.c revision 1.8
1/*
2 * Copyright (c) 1982, 1986, 1988 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)ip_input.c	7.19 (Berkeley) 5/25/91
34 *	$Id: ip_input.c,v 1.8 1994/01/09 01:06:13 mycroft Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/domain.h>
42#include <sys/protosw.h>
43#include <sys/socket.h>
44#include <sys/errno.h>
45#include <sys/time.h>
46#include <sys/kernel.h>
47
48#include <net/if.h>
49#include <net/route.h>
50
51#include <netinet/in.h>
52#include <netinet/in_systm.h>
53#include <netinet/ip.h>
54#include <netinet/in_pcb.h>
55#include <netinet/in_var.h>
56#include <netinet/ip_var.h>
57#include <netinet/ip_icmp.h>
58#include <netinet/ip_mroute.h>
59
60#ifndef	IPFORWARDING
61#ifdef GATEWAY
62#define	IPFORWARDING	1	/* forward IP packets not for us */
63#else /* GATEWAY */
64#define	IPFORWARDING	0	/* don't forward IP packets not for us */
65#endif /* GATEWAY */
66#endif /* IPFORWARDING */
67#ifndef	IPSENDREDIRECTS
68#define	IPSENDREDIRECTS	1
69#endif
70int	ipforwarding = IPFORWARDING;
71int	ipsendredirects = IPSENDREDIRECTS;
72#ifdef DIAGNOSTIC
73int	ipprintfs = 0;
74#endif
75
76extern	struct domain inetdomain;
77extern	struct protosw inetsw[];
78u_char	ip_protox[IPPROTO_MAX];
79int	ipqmaxlen = IFQ_MAXLEN;
80struct	in_ifaddr *in_ifaddr;			/* first inet address */
81
82/*
83 * We need to save the IP options in case a protocol wants to respond
84 * to an incoming packet over the same route if the packet got here
85 * using IP source routing.  This allows connection establishment and
86 * maintenance when the remote end is on a network that is not known
87 * to us.
88 */
89int	ip_nhops = 0;
90static	struct ip_srcrt {
91	struct	in_addr dst;			/* final destination */
92	char	nop;				/* one NOP to align */
93	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
94	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
95} ip_srcrt;
96
97#ifdef GATEWAY
98extern	int if_index;
99u_long	*ip_ifmatrix;
100#endif
101
102static void	ip_forward __P((struct mbuf *, int));
103static void	save_rte __P((u_char *, struct in_addr));
104
105/*
106 * IP initialization: fill in IP protocol switch table.
107 * All protocols not implemented in kernel go to raw IP protocol handler.
108 */
109void
110ip_init()
111{
112	register struct protosw *pr;
113	register int i;
114
115	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
116	if (pr == 0)
117		panic("ip_init");
118	for (i = 0; i < IPPROTO_MAX; i++)
119		ip_protox[i] = pr - inetsw;
120	for (pr = inetdomain.dom_protosw;
121	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
122		if (pr->pr_domain->dom_family == PF_INET &&
123		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
124			ip_protox[pr->pr_protocol] = pr - inetsw;
125	ipq.next = ipq.prev = &ipq;
126	ip_id = time.tv_sec & 0xffff;
127	ipintrq.ifq_maxlen = ipqmaxlen;
128#ifdef GATEWAY
129	i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
130	if ((ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK)) == 0)
131		panic("no memory for ip_ifmatrix");
132#endif
133}
134
135struct	ip *ip_reass();
136struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
137struct	route ipforward_rt;
138
139/*
140 * Ip input routine.  Checksum and byte swap header.  If fragmented
141 * try to reassemble.  Process options.  Pass to next level.
142 */
143void
144ipintr()
145{
146	register struct ip *ip;
147	register struct mbuf *m;
148	register struct ipq *fp;
149	register struct in_ifaddr *ia;
150	int hlen, s;
151#ifdef PARANOID
152	static int busy = 0;
153
154	if (busy)
155		panic("ipintr: called recursively\n");
156	++busy;
157#endif
158next:
159	/*
160	 * Get next datagram off input queue and get IP header
161	 * in first mbuf.
162	 */
163	s = splimp();
164	IF_DEQUEUE(&ipintrq, m);
165	splx(s);
166	if (m == 0) {
167#ifdef PARANOID
168		--busy;
169#endif
170		return;
171	}
172#ifdef	DIAGNOSTIC
173	if ((m->m_flags & M_PKTHDR) == 0)
174		panic("ipintr no HDR");
175#endif
176	/*
177	 * If no IP addresses have been set yet but the interfaces
178	 * are receiving, can't do anything with incoming packets yet.
179	 */
180	if (in_ifaddr == NULL)
181		goto bad;
182	ipstat.ips_total++;
183	if (m->m_len < sizeof (struct ip) &&
184	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
185		ipstat.ips_toosmall++;
186		goto next;
187	}
188	ip = mtod(m, struct ip *);
189	hlen = ip->ip_hl << 2;
190	if (hlen < sizeof(struct ip)) {	/* minimum header length */
191		ipstat.ips_badhlen++;
192		goto bad;
193	}
194	if (hlen > m->m_len) {
195		if ((m = m_pullup(m, hlen)) == 0) {
196			ipstat.ips_badhlen++;
197			goto next;
198		}
199		ip = mtod(m, struct ip *);
200	}
201	if (ip->ip_sum = in_cksum(m, hlen)) {
202		ipstat.ips_badsum++;
203		goto bad;
204	}
205
206	/*
207	 * Convert fields to host representation.
208	 */
209	NTOHS(ip->ip_len);
210	if (ip->ip_len < hlen) {
211		ipstat.ips_badlen++;
212		goto bad;
213	}
214	NTOHS(ip->ip_id);
215	NTOHS(ip->ip_off);
216
217	/*
218	 * Check that the amount of data in the buffers
219	 * is as at least much as the IP header would have us expect.
220	 * Trim mbufs if longer than we expect.
221	 * Drop packet if shorter than we expect.
222	 */
223	if (m->m_pkthdr.len < ip->ip_len) {
224		ipstat.ips_tooshort++;
225		goto bad;
226	}
227	if (m->m_pkthdr.len > ip->ip_len) {
228		if (m->m_len == m->m_pkthdr.len) {
229			m->m_len = ip->ip_len;
230			m->m_pkthdr.len = ip->ip_len;
231		} else
232			m_adj(m, ip->ip_len - m->m_pkthdr.len);
233	}
234
235	/*
236	 * Process options and, if not destined for us,
237	 * ship it on.  ip_dooptions returns 1 when an
238	 * error was detected (causing an icmp message
239	 * to be sent and the original packet to be freed).
240	 */
241	ip_nhops = 0;		/* for source routed packets */
242	if (hlen > sizeof (struct ip) && ip_dooptions(m))
243		goto next;
244
245	/*
246	 * Check our list of addresses, to see if the packet is for us.
247	 */
248	for (ia = in_ifaddr; ia; ia = ia->ia_next) {
249#define	satosin(sa)	((struct sockaddr_in *)(sa))
250
251		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
252			goto ours;
253		if (
254#ifdef	DIRECTED_BROADCAST
255		    ia->ia_ifp == m->m_pkthdr.rcvif &&
256#endif
257		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
258			u_long t;
259
260			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
261			    ip->ip_dst.s_addr)
262				goto ours;
263			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
264				goto ours;
265			/*
266			 * Look for all-0's host part (old broadcast addr),
267			 * either for subnet or net.
268			 */
269			t = ntohl(ip->ip_dst.s_addr);
270			if (t == ia->ia_subnet)
271				goto ours;
272			if (t == ia->ia_net)
273				goto ours;
274		}
275	}
276#ifdef MULTICAST
277	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
278		struct in_multi *inm;
279#ifdef MROUTING
280		extern struct socket *ip_mrouter;
281
282		if (ip_mrouter) {
283			/*
284			 * If we are acting as a multicast router, all
285			 * incoming multicast packets are passed to the
286			 * kernel-level multicast forwarding function.
287			 * The packet is returned (relatively) intact; if
288			 * ip_mforward() returns a non-zero value, the packet
289			 * must be discarded, else it may be accepted below.
290			 *
291			 * (The IP ident field is put in the same byte order
292			 * as expected when ip_mforward() is called from
293			 * ip_output().)
294			 */
295			ip->ip_id = htons(ip->ip_id);
296			if (ip_mforward(ip, m->m_pkthdr.rcvif, m) != 0) {
297				m_freem(m);
298				goto next;
299			}
300			ip->ip_id = ntohs(ip->ip_id);
301
302			/*
303			 * The process-level routing demon needs to receive
304			 * all multicast IGMP packets, whether or not this
305			 * host belongs to their destination groups.
306			 */
307			if (ip->ip_p == IPPROTO_IGMP)
308				goto ours;
309		}
310#endif
311		/*
312		 * See if we belong to the destination multicast group on the
313		 * arrival interface.
314		 */
315		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
316		if (inm == NULL) {
317			m_freem(m);
318			goto next;
319		}
320		goto ours;
321	}
322#endif
323	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
324		goto ours;
325	if (ip->ip_dst.s_addr == INADDR_ANY)
326		goto ours;
327
328	/*
329	 * Not for us; forward if possible and desirable.
330	 */
331	if (ipforwarding == 0) {
332		ipstat.ips_cantforward++;
333		m_freem(m);
334	} else
335		ip_forward(m, 0);
336	goto next;
337
338ours:
339	/*
340	 * If offset or IP_MF are set, must reassemble.
341	 * Otherwise, nothing need be done.
342	 * (We could look in the reassembly queue to see
343	 * if the packet was previously fragmented,
344	 * but it's not worth the time; just let them time out.)
345	 */
346	if (ip->ip_off &~ IP_DF) {
347		if (m->m_flags & M_EXT) {		/* XXX */
348			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
349				ipstat.ips_toosmall++;
350				goto next;
351			}
352			ip = mtod(m, struct ip *);
353		}
354		/*
355		 * Look for queue of fragments
356		 * of this datagram.
357		 */
358		for (fp = ipq.next; fp != &ipq; fp = fp->next)
359			if (ip->ip_id == fp->ipq_id &&
360			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
361			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
362			    ip->ip_p == fp->ipq_p)
363				goto found;
364		fp = 0;
365found:
366
367		/*
368		 * Adjust ip_len to not reflect header,
369		 * set ip_mff if more fragments are expected,
370		 * convert offset of this to bytes.
371		 */
372		ip->ip_len -= hlen;
373		((struct ipasfrag *)ip)->ipf_mff = 0;
374		if (ip->ip_off & IP_MF)
375			((struct ipasfrag *)ip)->ipf_mff = 1;
376		ip->ip_off <<= 3;
377
378		/*
379		 * If datagram marked as having more fragments
380		 * or if this is not the first fragment,
381		 * attempt reassembly; if it succeeds, proceed.
382		 */
383		if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
384			ipstat.ips_fragments++;
385			ip = ip_reass((struct ipasfrag *)ip, fp);
386			if (ip == 0)
387				goto next;
388			else
389				ipstat.ips_reassembled++;
390			m = dtom(ip);
391		} else
392			if (fp)
393				ip_freef(fp);
394	} else
395		ip->ip_len -= hlen;
396
397	/*
398	 * Switch out to protocol's input routine.
399	 */
400	ipstat.ips_delivered++;
401	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
402	goto next;
403bad:
404	m_freem(m);
405	goto next;
406}
407
408/*
409 * Take incoming datagram fragment and try to
410 * reassemble it into whole datagram.  If a chain for
411 * reassembly of this datagram already exists, then it
412 * is given as fp; otherwise have to make a chain.
413 */
414struct ip *
415ip_reass(ip, fp)
416	register struct ipasfrag *ip;
417	register struct ipq *fp;
418{
419	register struct mbuf *m = dtom(ip);
420	register struct ipasfrag *q;
421	struct mbuf *t;
422	int hlen = ip->ip_hl << 2;
423	int i, next;
424
425	/*
426	 * Presence of header sizes in mbufs
427	 * would confuse code below.
428	 */
429	m->m_data += hlen;
430	m->m_len -= hlen;
431
432	/*
433	 * If first fragment to arrive, create a reassembly queue.
434	 */
435	if (fp == 0) {
436		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
437			goto dropfrag;
438		fp = mtod(t, struct ipq *);
439		insque(fp, &ipq);
440		fp->ipq_ttl = IPFRAGTTL;
441		fp->ipq_p = ip->ip_p;
442		fp->ipq_id = ip->ip_id;
443		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
444		fp->ipq_src = ((struct ip *)ip)->ip_src;
445		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
446		q = (struct ipasfrag *)fp;
447		goto insert;
448	}
449
450	/*
451	 * Find a segment which begins after this one does.
452	 */
453	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
454		if (q->ip_off > ip->ip_off)
455			break;
456
457	/*
458	 * If there is a preceding segment, it may provide some of
459	 * our data already.  If so, drop the data from the incoming
460	 * segment.  If it provides all of our data, drop us.
461	 */
462	if (q->ipf_prev != (struct ipasfrag *)fp) {
463		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
464		if (i > 0) {
465			if (i >= ip->ip_len)
466				goto dropfrag;
467			m_adj(dtom(ip), i);
468			ip->ip_off += i;
469			ip->ip_len -= i;
470		}
471	}
472
473	/*
474	 * While we overlap succeeding segments trim them or,
475	 * if they are completely covered, dequeue them.
476	 */
477	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
478		i = (ip->ip_off + ip->ip_len) - q->ip_off;
479		if (i < q->ip_len) {
480			q->ip_len -= i;
481			q->ip_off += i;
482			m_adj(dtom(q), i);
483			break;
484		}
485		q = q->ipf_next;
486		m_freem(dtom(q->ipf_prev));
487		ip_deq(q->ipf_prev);
488	}
489
490insert:
491	/*
492	 * Stick new segment in its place;
493	 * check for complete reassembly.
494	 */
495	ip_enq(ip, q->ipf_prev);
496	next = 0;
497	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
498		if (q->ip_off != next)
499			return (0);
500		next += q->ip_len;
501	}
502	if (q->ipf_prev->ipf_mff)
503		return (0);
504
505	/*
506	 * Reassembly is complete; concatenate fragments.
507	 */
508	q = fp->ipq_next;
509	m = dtom(q);
510	t = m->m_next;
511	m->m_next = 0;
512	m_cat(m, t);
513	q = q->ipf_next;
514	while (q != (struct ipasfrag *)fp) {
515		t = dtom(q);
516		q = q->ipf_next;
517		m_cat(m, t);
518	}
519
520	/*
521	 * Create header for new ip packet by
522	 * modifying header of first packet;
523	 * dequeue and discard fragment reassembly header.
524	 * Make header visible.
525	 */
526	ip = fp->ipq_next;
527	ip->ip_len = next;
528	((struct ip *)ip)->ip_src = fp->ipq_src;
529	((struct ip *)ip)->ip_dst = fp->ipq_dst;
530	remque(fp);
531	(void) m_free(dtom(fp));
532	m = dtom(ip);
533	m->m_len += (ip->ip_hl << 2);
534	m->m_data -= (ip->ip_hl << 2);
535	/* some debugging cruft by sklower, below, will go away soon */
536	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
537		register int plen = 0;
538		for (t = m; m; m = m->m_next)
539			plen += m->m_len;
540		t->m_pkthdr.len = plen;
541	}
542	return ((struct ip *)ip);
543
544dropfrag:
545	ipstat.ips_fragdropped++;
546	m_freem(m);
547	return (0);
548}
549
550/*
551 * Free a fragment reassembly header and all
552 * associated datagrams.
553 */
554void
555ip_freef(fp)
556	struct ipq *fp;
557{
558	register struct ipasfrag *q, *p;
559
560	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
561		p = q->ipf_next;
562		ip_deq(q);
563		m_freem(dtom(q));
564	}
565	remque(fp);
566	(void) m_free(dtom(fp));
567}
568
569/*
570 * Put an ip fragment on a reassembly chain.
571 * Like insque, but pointers in middle of structure.
572 */
573void
574ip_enq(p, prev)
575	register struct ipasfrag *p, *prev;
576{
577
578	p->ipf_prev = prev;
579	p->ipf_next = prev->ipf_next;
580	prev->ipf_next->ipf_prev = p;
581	prev->ipf_next = p;
582}
583
584/*
585 * To ip_enq as remque is to insque.
586 */
587void
588ip_deq(p)
589	register struct ipasfrag *p;
590{
591
592	p->ipf_prev->ipf_next = p->ipf_next;
593	p->ipf_next->ipf_prev = p->ipf_prev;
594}
595
596/*
597 * IP timer processing;
598 * if a timer expires on a reassembly
599 * queue, discard it.
600 */
601void
602ip_slowtimo()
603{
604	register struct ipq *fp;
605	int s = splnet();
606
607	fp = ipq.next;
608	if (fp == 0) {
609		splx(s);
610		return;
611	}
612	while (fp != &ipq) {
613		--fp->ipq_ttl;
614		fp = fp->next;
615		if (fp->prev->ipq_ttl == 0) {
616			ipstat.ips_fragtimeout++;
617			ip_freef(fp->prev);
618		}
619	}
620	splx(s);
621}
622
623/*
624 * Drain off all datagram fragments.
625 */
626void
627ip_drain()
628{
629
630	while (ipq.next != &ipq) {
631		ipstat.ips_fragdropped++;
632		ip_freef(ipq.next);
633	}
634}
635
636extern struct in_ifaddr *ifptoia();
637struct in_ifaddr *ip_rtaddr();
638
639/*
640 * Do option processing on a datagram,
641 * possibly discarding it if bad options are encountered,
642 * or forwarding it if source-routed.
643 * Returns 1 if packet has been forwarded/freed,
644 * 0 if the packet should be processed further.
645 */
646int
647ip_dooptions(m)
648	struct mbuf *m;
649{
650	register struct ip *ip = mtod(m, struct ip *);
651	register u_char *cp;
652	register struct ip_timestamp *ipt;
653	register struct in_ifaddr *ia;
654	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
655	struct in_addr *sin;
656	n_time ntime;
657
658	cp = (u_char *)(ip + 1);
659	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
660	for (; cnt > 0; cnt -= optlen, cp += optlen) {
661		opt = cp[IPOPT_OPTVAL];
662		if (opt == IPOPT_EOL)
663			break;
664		if (opt == IPOPT_NOP)
665			optlen = 1;
666		else {
667			optlen = cp[IPOPT_OLEN];
668			if (optlen <= 0 || optlen > cnt) {
669				code = &cp[IPOPT_OLEN] - (u_char *)ip;
670				goto bad;
671			}
672		}
673		switch (opt) {
674
675		default:
676			break;
677
678		/*
679		 * Source routing with record.
680		 * Find interface with current destination address.
681		 * If none on this machine then drop if strictly routed,
682		 * or do nothing if loosely routed.
683		 * Record interface address and bring up next address
684		 * component.  If strictly routed make sure next
685		 * address is on directly accessible net.
686		 */
687		case IPOPT_LSRR:
688		case IPOPT_SSRR:
689			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
690				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
691				goto bad;
692			}
693			ipaddr.sin_addr = ip->ip_dst;
694			ia = (struct in_ifaddr *)
695				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
696			if (ia == 0) {
697				if (opt == IPOPT_SSRR) {
698					type = ICMP_UNREACH;
699					code = ICMP_UNREACH_SRCFAIL;
700					goto bad;
701				}
702				/*
703				 * Loose routing, and not at next destination
704				 * yet; nothing to do except forward.
705				 */
706				break;
707			}
708			off--;			/* 0 origin */
709			if (off > optlen - sizeof(struct in_addr)) {
710				/*
711				 * End of source route.  Should be for us.
712				 */
713				save_rte(cp, ip->ip_src);
714				break;
715			}
716			/*
717			 * locate outgoing interface
718			 */
719			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
720			    sizeof(ipaddr.sin_addr));
721			if (opt == IPOPT_SSRR) {
722#define	INA	struct in_ifaddr *
723#define	SA	struct sockaddr *
724			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
725				ia = in_iaonnetof(in_netof(ipaddr.sin_addr));
726			} else
727				ia = ip_rtaddr(ipaddr.sin_addr);
728			if (ia == 0) {
729				type = ICMP_UNREACH;
730				code = ICMP_UNREACH_SRCFAIL;
731				goto bad;
732			}
733			ip->ip_dst = ipaddr.sin_addr;
734			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
735			    (caddr_t)(cp + off), sizeof(struct in_addr));
736			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
737			forward = 1;
738			break;
739
740		case IPOPT_RR:
741			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
742				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
743				goto bad;
744			}
745			/*
746			 * If no space remains, ignore.
747			 */
748			off--;			/* 0 origin */
749			if (off > optlen - sizeof(struct in_addr))
750				break;
751			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
752			    sizeof(ipaddr.sin_addr));
753			/*
754			 * locate outgoing interface; if we're the destination,
755			 * use the incoming interface (should be same).
756			 */
757			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
758			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
759				type = ICMP_UNREACH;
760				code = ICMP_UNREACH_HOST;
761				goto bad;
762			}
763			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
764			    (caddr_t)(cp + off), sizeof(struct in_addr));
765			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
766			break;
767
768		case IPOPT_TS:
769			code = cp - (u_char *)ip;
770			ipt = (struct ip_timestamp *)cp;
771			if (ipt->ipt_len < 5)
772				goto bad;
773			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
774				if (++ipt->ipt_oflw == 0)
775					goto bad;
776				break;
777			}
778			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
779			switch (ipt->ipt_flg) {
780
781			case IPOPT_TS_TSONLY:
782				break;
783
784			case IPOPT_TS_TSANDADDR:
785				if (ipt->ipt_ptr + sizeof(n_time) +
786				    sizeof(struct in_addr) > ipt->ipt_len)
787					goto bad;
788				ia = ifptoia(m->m_pkthdr.rcvif);
789				bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
790				    (caddr_t)sin, sizeof(struct in_addr));
791				ipt->ipt_ptr += sizeof(struct in_addr);
792				break;
793
794			case IPOPT_TS_PRESPEC:
795				if (ipt->ipt_ptr + sizeof(n_time) +
796				    sizeof(struct in_addr) > ipt->ipt_len)
797					goto bad;
798				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
799				    sizeof(struct in_addr));
800				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
801					continue;
802				ipt->ipt_ptr += sizeof(struct in_addr);
803				break;
804
805			default:
806				goto bad;
807			}
808			ntime = iptime();
809			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
810			    sizeof(n_time));
811			ipt->ipt_ptr += sizeof(n_time);
812		}
813	}
814	if (forward) {
815		ip_forward(m, 1);
816		return (1);
817	} else
818		return (0);
819bad:
820    {
821	register struct in_addr foo = {};
822	icmp_error(m, type, code, foo);
823    }
824	return (1);
825}
826
827/*
828 * Given address of next destination (final or next hop),
829 * return internet address info of interface to be used to get there.
830 */
831struct in_ifaddr *
832ip_rtaddr(dst)
833	 struct in_addr dst;
834{
835	register struct sockaddr_in *sin;
836
837	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
838
839	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
840		if (ipforward_rt.ro_rt) {
841			RTFREE(ipforward_rt.ro_rt);
842			ipforward_rt.ro_rt = 0;
843		}
844		sin->sin_family = AF_INET;
845		sin->sin_len = sizeof(*sin);
846		sin->sin_addr = dst;
847
848		rtalloc(&ipforward_rt);
849	}
850	if (ipforward_rt.ro_rt == 0)
851		return ((struct in_ifaddr *)0);
852	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
853}
854
855/*
856 * Save incoming source route for use in replies,
857 * to be picked up later by ip_srcroute if the receiver is interested.
858 */
859static void
860save_rte(option, dst)
861	u_char *option;
862	struct in_addr dst;
863{
864	unsigned olen;
865
866	olen = option[IPOPT_OLEN];
867#ifdef DIAGNOSTIC
868	if (ipprintfs)
869		printf("save_rte: olen %d\n", olen);
870#endif
871	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
872		return;
873	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
874	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
875	ip_srcrt.dst = dst;
876}
877
878/*
879 * Retrieve incoming source route for use in replies,
880 * in the same form used by setsockopt.
881 * The first hop is placed before the options, will be removed later.
882 */
883struct mbuf *
884ip_srcroute()
885{
886	register struct in_addr *p, *q;
887	register struct mbuf *m;
888
889	if (ip_nhops == 0)
890		return ((struct mbuf *)0);
891	m = m_get(M_DONTWAIT, MT_SOOPTS);
892	if (m == 0)
893		return ((struct mbuf *)0);
894
895#define	OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
896
897	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
898	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
899	    OPTSIZ;
900#ifdef DIAGNOSTIC
901	if (ipprintfs)
902		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
903#endif
904
905	/*
906	 * First save first hop for return route
907	 */
908	p = &ip_srcrt.route[ip_nhops - 1];
909	*(mtod(m, struct in_addr *)) = *p--;
910#ifdef DIAGNOSTIC
911	if (ipprintfs)
912		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
913#endif
914
915	/*
916	 * Copy option fields and padding (nop) to mbuf.
917	 */
918	ip_srcrt.nop = IPOPT_NOP;
919	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
920	bcopy((caddr_t)&ip_srcrt.nop,
921	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
922	q = (struct in_addr *)(mtod(m, caddr_t) +
923	    sizeof(struct in_addr) + OPTSIZ);
924#undef OPTSIZ
925	/*
926	 * Record return path as an IP source route,
927	 * reversing the path (pointers are now aligned).
928	 */
929	while (p >= ip_srcrt.route) {
930#ifdef DIAGNOSTIC
931		if (ipprintfs)
932			printf(" %lx", ntohl(q->s_addr));
933#endif
934		*q++ = *p--;
935	}
936	/*
937	 * Last hop goes to final destination.
938	 */
939	*q = ip_srcrt.dst;
940#ifdef DIAGNOSTIC
941	if (ipprintfs)
942		printf(" %lx\n", ntohl(q->s_addr));
943#endif
944	return (m);
945}
946
947/*
948 * Strip out IP options, at higher
949 * level protocol in the kernel.
950 * Second argument is buffer to which options
951 * will be moved, and return value is their length.
952 * XXX should be deleted; last arg currently ignored.
953 */
954void
955ip_stripoptions(m, mopt)
956	register struct mbuf *m;
957	struct mbuf *mopt;
958{
959	register int i;
960	struct ip *ip = mtod(m, struct ip *);
961	register caddr_t opts;
962	int olen;
963
964	olen = (ip->ip_hl<<2) - sizeof (struct ip);
965	opts = (caddr_t)(ip + 1);
966	i = m->m_len - (sizeof (struct ip) + olen);
967	bcopy(opts  + olen, opts, (unsigned)i);
968	m->m_len -= olen;
969	if (m->m_flags & M_PKTHDR)
970		m->m_pkthdr.len -= olen;
971	ip->ip_hl = sizeof(struct ip) >> 2;
972}
973
974u_char inetctlerrmap[PRC_NCMDS] = {
975	0,		0,		0,		0,
976	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
977	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
978	EMSGSIZE,	EHOSTUNREACH,	0,		0,
979	0,		0,		0,		0,
980	ENOPROTOOPT
981};
982
983/*
984 * Forward a packet.  If some error occurs return the sender
985 * an icmp packet.  Note we can't always generate a meaningful
986 * icmp message because icmp doesn't have a large enough repertoire
987 * of codes and types.
988 *
989 * If not forwarding, just drop the packet.  This could be confusing
990 * if ipforwarding was zero but some routing protocol was advancing
991 * us as a gateway to somewhere.  However, we must let the routing
992 * protocol deal with that.
993 *
994 * The srcrt parameter indicates whether the packet is being forwarded
995 * via a source route.
996 */
997static void
998ip_forward(m, srcrt)
999	struct mbuf *m;
1000	int srcrt;
1001{
1002	register struct ip *ip = mtod(m, struct ip *);
1003	register struct sockaddr_in *sin;
1004	register struct rtentry *rt;
1005	int error, type = 0, code;
1006	struct mbuf *mcopy;
1007	struct in_addr dest;
1008
1009	dest.s_addr = 0;
1010#ifdef DIAGNOSTIC
1011	if (ipprintfs)
1012		printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1013			ip->ip_dst, ip->ip_ttl);
1014#endif
1015	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1016		ipstat.ips_cantforward++;
1017		m_freem(m);
1018		return;
1019	}
1020	HTONS(ip->ip_id);
1021	if (ip->ip_ttl <= IPTTLDEC) {
1022		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest);
1023		return;
1024	}
1025	ip->ip_ttl -= IPTTLDEC;
1026
1027	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1028	if ((rt = ipforward_rt.ro_rt) == 0 ||
1029	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1030		if (ipforward_rt.ro_rt) {
1031			RTFREE(ipforward_rt.ro_rt);
1032			ipforward_rt.ro_rt = 0;
1033		}
1034		sin->sin_family = AF_INET;
1035		sin->sin_len = sizeof(*sin);
1036		sin->sin_addr = ip->ip_dst;
1037
1038		rtalloc(&ipforward_rt);
1039		if (ipforward_rt.ro_rt == 0) {
1040			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest);
1041			return;
1042		}
1043		rt = ipforward_rt.ro_rt;
1044	}
1045
1046	/*
1047	 * Save at most 64 bytes of the packet in case
1048	 * we need to generate an ICMP message to the src.
1049	 */
1050	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1051
1052#ifdef GATEWAY
1053	ip_ifmatrix[rt->rt_ifp->if_index +
1054	     if_index * m->m_pkthdr.rcvif->if_index]++;
1055#endif
1056	/*
1057	 * If forwarding packet using same interface that it came in on,
1058	 * perhaps should send a redirect to sender to shortcut a hop.
1059	 * Only send redirect if source is sending directly to us,
1060	 * and if packet was not source routed (or has any options).
1061	 * Also, don't send redirect if forwarding using a default route
1062	 * or a route modified by a redirect.
1063	 */
1064#define	satosin(sa)	((struct sockaddr_in *)(sa))
1065	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1066	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1067	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1068	    ipsendredirects && !srcrt) {
1069		struct in_ifaddr *ia;
1070		u_long src = ntohl(ip->ip_src.s_addr);
1071		u_long dst = ntohl(ip->ip_dst.s_addr);
1072
1073		if ((ia = ifptoia(m->m_pkthdr.rcvif)) &&
1074		   (src & ia->ia_subnetmask) == ia->ia_subnet) {
1075		    if (rt->rt_flags & RTF_GATEWAY)
1076			dest = satosin(rt->rt_gateway)->sin_addr;
1077		    else
1078			dest = ip->ip_dst;
1079		    /*
1080		     * If the destination is reached by a route to host,
1081		     * is on a subnet of a local net, or is directly
1082		     * on the attached net (!), use host redirect.
1083		     * (We may be the correct first hop for other subnets.)
1084		     */
1085#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1086		    type = ICMP_REDIRECT;
1087		    if ((rt->rt_flags & RTF_HOST) ||
1088		        (rt->rt_flags & RTF_GATEWAY) == 0)
1089			    code = ICMP_REDIRECT_HOST;
1090		    else if (RTA(rt)->ia_subnetmask != RTA(rt)->ia_netmask &&
1091		        (dst & RTA(rt)->ia_netmask) ==  RTA(rt)->ia_net)
1092			    code = ICMP_REDIRECT_HOST;
1093		    else
1094			    code = ICMP_REDIRECT_NET;
1095#ifdef DIAGNOSTIC
1096		    if (ipprintfs)
1097		        printf("redirect (%d) to %x\n", code, dest.s_addr);
1098#endif
1099		}
1100	}
1101
1102	error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING);
1103	if (error)
1104		ipstat.ips_cantforward++;
1105	else {
1106		ipstat.ips_forward++;
1107		if (type)
1108			ipstat.ips_redirectsent++;
1109		else {
1110			if (mcopy)
1111				m_freem(mcopy);
1112			return;
1113		}
1114	}
1115	if (mcopy == NULL)
1116		return;
1117	switch (error) {
1118
1119	case 0:				/* forwarded, but need redirect */
1120		/* type, code set above */
1121		break;
1122
1123	case ENETUNREACH:		/* shouldn't happen, checked above */
1124	case EHOSTUNREACH:
1125	case ENETDOWN:
1126	case EHOSTDOWN:
1127	default:
1128		type = ICMP_UNREACH;
1129		code = ICMP_UNREACH_HOST;
1130		break;
1131
1132	case EMSGSIZE:
1133		type = ICMP_UNREACH;
1134		code = ICMP_UNREACH_NEEDFRAG;
1135		ipstat.ips_cantfrag++;
1136		break;
1137
1138	case ENOBUFS:
1139		type = ICMP_SOURCEQUENCH;
1140		code = 0;
1141		break;
1142	}
1143	icmp_error(mcopy, type, code, dest);
1144}
1145