ip_input.c revision 1.7
1/*
2 * Copyright (c) 1982, 1986, 1988 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)ip_input.c	7.19 (Berkeley) 5/25/91
34 *	$Id: ip_input.c,v 1.7 1994/01/08 23:50:45 mycroft Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/domain.h>
42#include <sys/protosw.h>
43#include <sys/socket.h>
44#include <sys/errno.h>
45#include <sys/time.h>
46#include <sys/kernel.h>
47
48#include <net/if.h>
49#include <net/route.h>
50
51#include <netinet/in.h>
52#include <netinet/in_systm.h>
53#include <netinet/ip.h>
54#include <netinet/in_pcb.h>
55#include <netinet/in_var.h>
56#include <netinet/ip_var.h>
57#include <netinet/ip_icmp.h>
58
59#ifndef	IPFORWARDING
60#ifdef GATEWAY
61#define	IPFORWARDING	1	/* forward IP packets not for us */
62#else /* GATEWAY */
63#define	IPFORWARDING	0	/* don't forward IP packets not for us */
64#endif /* GATEWAY */
65#endif /* IPFORWARDING */
66#ifndef	IPSENDREDIRECTS
67#define	IPSENDREDIRECTS	1
68#endif
69int	ipforwarding = IPFORWARDING;
70int	ipsendredirects = IPSENDREDIRECTS;
71#ifdef DIAGNOSTIC
72int	ipprintfs = 0;
73#endif
74
75extern	struct domain inetdomain;
76extern	struct protosw inetsw[];
77u_char	ip_protox[IPPROTO_MAX];
78int	ipqmaxlen = IFQ_MAXLEN;
79struct	in_ifaddr *in_ifaddr;			/* first inet address */
80
81/*
82 * We need to save the IP options in case a protocol wants to respond
83 * to an incoming packet over the same route if the packet got here
84 * using IP source routing.  This allows connection establishment and
85 * maintenance when the remote end is on a network that is not known
86 * to us.
87 */
88int	ip_nhops = 0;
89static	struct ip_srcrt {
90	struct	in_addr dst;			/* final destination */
91	char	nop;				/* one NOP to align */
92	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
93	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
94} ip_srcrt;
95
96#ifdef GATEWAY
97extern	int if_index;
98u_long	*ip_ifmatrix;
99#endif
100
101/*
102 * IP initialization: fill in IP protocol switch table.
103 * All protocols not implemented in kernel go to raw IP protocol handler.
104 */
105ip_init()
106{
107	register struct protosw *pr;
108	register int i;
109
110	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
111	if (pr == 0)
112		panic("ip_init");
113	for (i = 0; i < IPPROTO_MAX; i++)
114		ip_protox[i] = pr - inetsw;
115	for (pr = inetdomain.dom_protosw;
116	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
117		if (pr->pr_domain->dom_family == PF_INET &&
118		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
119			ip_protox[pr->pr_protocol] = pr - inetsw;
120	ipq.next = ipq.prev = &ipq;
121	ip_id = time.tv_sec & 0xffff;
122	ipintrq.ifq_maxlen = ipqmaxlen;
123#ifdef GATEWAY
124	i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
125	if ((ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK)) == 0)
126		panic("no memory for ip_ifmatrix");
127#endif
128}
129
130struct	ip *ip_reass();
131struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
132struct	route ipforward_rt;
133
134/*
135 * Ip input routine.  Checksum and byte swap header.  If fragmented
136 * try to reassemble.  Process options.  Pass to next level.
137 */
138ipintr()
139{
140	register struct ip *ip;
141	register struct mbuf *m;
142	register struct ipq *fp;
143	register struct in_ifaddr *ia;
144	int hlen, s;
145#ifdef PARANOID
146	static int busy = 0;
147
148	if (busy)
149		panic("ipintr: called recursively\n");
150	++busy;
151#endif
152next:
153	/*
154	 * Get next datagram off input queue and get IP header
155	 * in first mbuf.
156	 */
157	s = splimp();
158	IF_DEQUEUE(&ipintrq, m);
159	splx(s);
160	if (m == 0) {
161#ifdef PARANOID
162		--busy;
163#endif
164		return;
165	}
166#ifdef	DIAGNOSTIC
167	if ((m->m_flags & M_PKTHDR) == 0)
168		panic("ipintr no HDR");
169#endif
170	/*
171	 * If no IP addresses have been set yet but the interfaces
172	 * are receiving, can't do anything with incoming packets yet.
173	 */
174	if (in_ifaddr == NULL)
175		goto bad;
176	ipstat.ips_total++;
177	if (m->m_len < sizeof (struct ip) &&
178	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
179		ipstat.ips_toosmall++;
180		goto next;
181	}
182	ip = mtod(m, struct ip *);
183	hlen = ip->ip_hl << 2;
184	if (hlen < sizeof(struct ip)) {	/* minimum header length */
185		ipstat.ips_badhlen++;
186		goto bad;
187	}
188	if (hlen > m->m_len) {
189		if ((m = m_pullup(m, hlen)) == 0) {
190			ipstat.ips_badhlen++;
191			goto next;
192		}
193		ip = mtod(m, struct ip *);
194	}
195	if (ip->ip_sum = in_cksum(m, hlen)) {
196		ipstat.ips_badsum++;
197		goto bad;
198	}
199
200	/*
201	 * Convert fields to host representation.
202	 */
203	NTOHS(ip->ip_len);
204	if (ip->ip_len < hlen) {
205		ipstat.ips_badlen++;
206		goto bad;
207	}
208	NTOHS(ip->ip_id);
209	NTOHS(ip->ip_off);
210
211	/*
212	 * Check that the amount of data in the buffers
213	 * is as at least much as the IP header would have us expect.
214	 * Trim mbufs if longer than we expect.
215	 * Drop packet if shorter than we expect.
216	 */
217	if (m->m_pkthdr.len < ip->ip_len) {
218		ipstat.ips_tooshort++;
219		goto bad;
220	}
221	if (m->m_pkthdr.len > ip->ip_len) {
222		if (m->m_len == m->m_pkthdr.len) {
223			m->m_len = ip->ip_len;
224			m->m_pkthdr.len = ip->ip_len;
225		} else
226			m_adj(m, ip->ip_len - m->m_pkthdr.len);
227	}
228
229	/*
230	 * Process options and, if not destined for us,
231	 * ship it on.  ip_dooptions returns 1 when an
232	 * error was detected (causing an icmp message
233	 * to be sent and the original packet to be freed).
234	 */
235	ip_nhops = 0;		/* for source routed packets */
236	if (hlen > sizeof (struct ip) && ip_dooptions(m))
237		goto next;
238
239	/*
240	 * Check our list of addresses, to see if the packet is for us.
241	 */
242	for (ia = in_ifaddr; ia; ia = ia->ia_next) {
243#define	satosin(sa)	((struct sockaddr_in *)(sa))
244
245		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
246			goto ours;
247		if (
248#ifdef	DIRECTED_BROADCAST
249		    ia->ia_ifp == m->m_pkthdr.rcvif &&
250#endif
251		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
252			u_long t;
253
254			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
255			    ip->ip_dst.s_addr)
256				goto ours;
257			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
258				goto ours;
259			/*
260			 * Look for all-0's host part (old broadcast addr),
261			 * either for subnet or net.
262			 */
263			t = ntohl(ip->ip_dst.s_addr);
264			if (t == ia->ia_subnet)
265				goto ours;
266			if (t == ia->ia_net)
267				goto ours;
268		}
269	}
270#ifdef MULTICAST
271	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
272		struct in_multi *inm;
273#ifdef MROUTING
274		extern struct socket *ip_mrouter;
275
276		if (ip_mrouter) {
277			/*
278			 * If we are acting as a multicast router, all
279			 * incoming multicast packets are passed to the
280			 * kernel-level multicast forwarding function.
281			 * The packet is returned (relatively) intact; if
282			 * ip_mforward() returns a non-zero value, the packet
283			 * must be discarded, else it may be accepted below.
284			 *
285			 * (The IP ident field is put in the same byte order
286			 * as expected when ip_mforward() is called from
287			 * ip_output().)
288			 */
289			ip->ip_id = htons(ip->ip_id);
290			if (ip_mforward(ip, m->m_pkthdr.rcvif, m) != 0) {
291				m_freem(m);
292				goto next;
293			}
294			ip->ip_id = ntohs(ip->ip_id);
295
296			/*
297			 * The process-level routing demon needs to receive
298			 * all multicast IGMP packets, whether or not this
299			 * host belongs to their destination groups.
300			 */
301			if (ip->ip_p == IPPROTO_IGMP)
302				goto ours;
303		}
304#endif
305		/*
306		 * See if we belong to the destination multicast group on the
307		 * arrival interface.
308		 */
309		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
310		if (inm == NULL) {
311			m_freem(m);
312			goto next;
313		}
314		goto ours;
315	}
316#endif
317	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
318		goto ours;
319	if (ip->ip_dst.s_addr == INADDR_ANY)
320		goto ours;
321
322	/*
323	 * Not for us; forward if possible and desirable.
324	 */
325	if (ipforwarding == 0) {
326		ipstat.ips_cantforward++;
327		m_freem(m);
328	} else
329		ip_forward(m, 0);
330	goto next;
331
332ours:
333	/*
334	 * If offset or IP_MF are set, must reassemble.
335	 * Otherwise, nothing need be done.
336	 * (We could look in the reassembly queue to see
337	 * if the packet was previously fragmented,
338	 * but it's not worth the time; just let them time out.)
339	 */
340	if (ip->ip_off &~ IP_DF) {
341		if (m->m_flags & M_EXT) {		/* XXX */
342			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
343				ipstat.ips_toosmall++;
344				goto next;
345			}
346			ip = mtod(m, struct ip *);
347		}
348		/*
349		 * Look for queue of fragments
350		 * of this datagram.
351		 */
352		for (fp = ipq.next; fp != &ipq; fp = fp->next)
353			if (ip->ip_id == fp->ipq_id &&
354			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
355			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
356			    ip->ip_p == fp->ipq_p)
357				goto found;
358		fp = 0;
359found:
360
361		/*
362		 * Adjust ip_len to not reflect header,
363		 * set ip_mff if more fragments are expected,
364		 * convert offset of this to bytes.
365		 */
366		ip->ip_len -= hlen;
367		((struct ipasfrag *)ip)->ipf_mff = 0;
368		if (ip->ip_off & IP_MF)
369			((struct ipasfrag *)ip)->ipf_mff = 1;
370		ip->ip_off <<= 3;
371
372		/*
373		 * If datagram marked as having more fragments
374		 * or if this is not the first fragment,
375		 * attempt reassembly; if it succeeds, proceed.
376		 */
377		if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
378			ipstat.ips_fragments++;
379			ip = ip_reass((struct ipasfrag *)ip, fp);
380			if (ip == 0)
381				goto next;
382			else
383				ipstat.ips_reassembled++;
384			m = dtom(ip);
385		} else
386			if (fp)
387				ip_freef(fp);
388	} else
389		ip->ip_len -= hlen;
390
391	/*
392	 * Switch out to protocol's input routine.
393	 */
394	ipstat.ips_delivered++;
395	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
396	goto next;
397bad:
398	m_freem(m);
399	goto next;
400}
401
402/*
403 * Take incoming datagram fragment and try to
404 * reassemble it into whole datagram.  If a chain for
405 * reassembly of this datagram already exists, then it
406 * is given as fp; otherwise have to make a chain.
407 */
408struct ip *
409ip_reass(ip, fp)
410	register struct ipasfrag *ip;
411	register struct ipq *fp;
412{
413	register struct mbuf *m = dtom(ip);
414	register struct ipasfrag *q;
415	struct mbuf *t;
416	int hlen = ip->ip_hl << 2;
417	int i, next;
418
419	/*
420	 * Presence of header sizes in mbufs
421	 * would confuse code below.
422	 */
423	m->m_data += hlen;
424	m->m_len -= hlen;
425
426	/*
427	 * If first fragment to arrive, create a reassembly queue.
428	 */
429	if (fp == 0) {
430		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
431			goto dropfrag;
432		fp = mtod(t, struct ipq *);
433		insque(fp, &ipq);
434		fp->ipq_ttl = IPFRAGTTL;
435		fp->ipq_p = ip->ip_p;
436		fp->ipq_id = ip->ip_id;
437		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
438		fp->ipq_src = ((struct ip *)ip)->ip_src;
439		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
440		q = (struct ipasfrag *)fp;
441		goto insert;
442	}
443
444	/*
445	 * Find a segment which begins after this one does.
446	 */
447	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
448		if (q->ip_off > ip->ip_off)
449			break;
450
451	/*
452	 * If there is a preceding segment, it may provide some of
453	 * our data already.  If so, drop the data from the incoming
454	 * segment.  If it provides all of our data, drop us.
455	 */
456	if (q->ipf_prev != (struct ipasfrag *)fp) {
457		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
458		if (i > 0) {
459			if (i >= ip->ip_len)
460				goto dropfrag;
461			m_adj(dtom(ip), i);
462			ip->ip_off += i;
463			ip->ip_len -= i;
464		}
465	}
466
467	/*
468	 * While we overlap succeeding segments trim them or,
469	 * if they are completely covered, dequeue them.
470	 */
471	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
472		i = (ip->ip_off + ip->ip_len) - q->ip_off;
473		if (i < q->ip_len) {
474			q->ip_len -= i;
475			q->ip_off += i;
476			m_adj(dtom(q), i);
477			break;
478		}
479		q = q->ipf_next;
480		m_freem(dtom(q->ipf_prev));
481		ip_deq(q->ipf_prev);
482	}
483
484insert:
485	/*
486	 * Stick new segment in its place;
487	 * check for complete reassembly.
488	 */
489	ip_enq(ip, q->ipf_prev);
490	next = 0;
491	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
492		if (q->ip_off != next)
493			return (0);
494		next += q->ip_len;
495	}
496	if (q->ipf_prev->ipf_mff)
497		return (0);
498
499	/*
500	 * Reassembly is complete; concatenate fragments.
501	 */
502	q = fp->ipq_next;
503	m = dtom(q);
504	t = m->m_next;
505	m->m_next = 0;
506	m_cat(m, t);
507	q = q->ipf_next;
508	while (q != (struct ipasfrag *)fp) {
509		t = dtom(q);
510		q = q->ipf_next;
511		m_cat(m, t);
512	}
513
514	/*
515	 * Create header for new ip packet by
516	 * modifying header of first packet;
517	 * dequeue and discard fragment reassembly header.
518	 * Make header visible.
519	 */
520	ip = fp->ipq_next;
521	ip->ip_len = next;
522	((struct ip *)ip)->ip_src = fp->ipq_src;
523	((struct ip *)ip)->ip_dst = fp->ipq_dst;
524	remque(fp);
525	(void) m_free(dtom(fp));
526	m = dtom(ip);
527	m->m_len += (ip->ip_hl << 2);
528	m->m_data -= (ip->ip_hl << 2);
529	/* some debugging cruft by sklower, below, will go away soon */
530	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
531		register int plen = 0;
532		for (t = m; m; m = m->m_next)
533			plen += m->m_len;
534		t->m_pkthdr.len = plen;
535	}
536	return ((struct ip *)ip);
537
538dropfrag:
539	ipstat.ips_fragdropped++;
540	m_freem(m);
541	return (0);
542}
543
544/*
545 * Free a fragment reassembly header and all
546 * associated datagrams.
547 */
548ip_freef(fp)
549	struct ipq *fp;
550{
551	register struct ipasfrag *q, *p;
552
553	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
554		p = q->ipf_next;
555		ip_deq(q);
556		m_freem(dtom(q));
557	}
558	remque(fp);
559	(void) m_free(dtom(fp));
560}
561
562/*
563 * Put an ip fragment on a reassembly chain.
564 * Like insque, but pointers in middle of structure.
565 */
566ip_enq(p, prev)
567	register struct ipasfrag *p, *prev;
568{
569
570	p->ipf_prev = prev;
571	p->ipf_next = prev->ipf_next;
572	prev->ipf_next->ipf_prev = p;
573	prev->ipf_next = p;
574}
575
576/*
577 * To ip_enq as remque is to insque.
578 */
579ip_deq(p)
580	register struct ipasfrag *p;
581{
582
583	p->ipf_prev->ipf_next = p->ipf_next;
584	p->ipf_next->ipf_prev = p->ipf_prev;
585}
586
587/*
588 * IP timer processing;
589 * if a timer expires on a reassembly
590 * queue, discard it.
591 */
592ip_slowtimo()
593{
594	register struct ipq *fp;
595	int s = splnet();
596
597	fp = ipq.next;
598	if (fp == 0) {
599		splx(s);
600		return;
601	}
602	while (fp != &ipq) {
603		--fp->ipq_ttl;
604		fp = fp->next;
605		if (fp->prev->ipq_ttl == 0) {
606			ipstat.ips_fragtimeout++;
607			ip_freef(fp->prev);
608		}
609	}
610	splx(s);
611}
612
613/*
614 * Drain off all datagram fragments.
615 */
616ip_drain()
617{
618
619	while (ipq.next != &ipq) {
620		ipstat.ips_fragdropped++;
621		ip_freef(ipq.next);
622	}
623}
624
625extern struct in_ifaddr *ifptoia();
626struct in_ifaddr *ip_rtaddr();
627
628/*
629 * Do option processing on a datagram,
630 * possibly discarding it if bad options are encountered,
631 * or forwarding it if source-routed.
632 * Returns 1 if packet has been forwarded/freed,
633 * 0 if the packet should be processed further.
634 */
635ip_dooptions(m)
636	struct mbuf *m;
637{
638	register struct ip *ip = mtod(m, struct ip *);
639	register u_char *cp;
640	register struct ip_timestamp *ipt;
641	register struct in_ifaddr *ia;
642	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
643	struct in_addr *sin;
644	n_time ntime;
645
646	cp = (u_char *)(ip + 1);
647	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
648	for (; cnt > 0; cnt -= optlen, cp += optlen) {
649		opt = cp[IPOPT_OPTVAL];
650		if (opt == IPOPT_EOL)
651			break;
652		if (opt == IPOPT_NOP)
653			optlen = 1;
654		else {
655			optlen = cp[IPOPT_OLEN];
656			if (optlen <= 0 || optlen > cnt) {
657				code = &cp[IPOPT_OLEN] - (u_char *)ip;
658				goto bad;
659			}
660		}
661		switch (opt) {
662
663		default:
664			break;
665
666		/*
667		 * Source routing with record.
668		 * Find interface with current destination address.
669		 * If none on this machine then drop if strictly routed,
670		 * or do nothing if loosely routed.
671		 * Record interface address and bring up next address
672		 * component.  If strictly routed make sure next
673		 * address is on directly accessible net.
674		 */
675		case IPOPT_LSRR:
676		case IPOPT_SSRR:
677			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
678				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
679				goto bad;
680			}
681			ipaddr.sin_addr = ip->ip_dst;
682			ia = (struct in_ifaddr *)
683				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
684			if (ia == 0) {
685				if (opt == IPOPT_SSRR) {
686					type = ICMP_UNREACH;
687					code = ICMP_UNREACH_SRCFAIL;
688					goto bad;
689				}
690				/*
691				 * Loose routing, and not at next destination
692				 * yet; nothing to do except forward.
693				 */
694				break;
695			}
696			off--;			/* 0 origin */
697			if (off > optlen - sizeof(struct in_addr)) {
698				/*
699				 * End of source route.  Should be for us.
700				 */
701				save_rte(cp, ip->ip_src);
702				break;
703			}
704			/*
705			 * locate outgoing interface
706			 */
707			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
708			    sizeof(ipaddr.sin_addr));
709			if (opt == IPOPT_SSRR) {
710#define	INA	struct in_ifaddr *
711#define	SA	struct sockaddr *
712			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
713				ia = in_iaonnetof(in_netof(ipaddr.sin_addr));
714			} else
715				ia = ip_rtaddr(ipaddr.sin_addr);
716			if (ia == 0) {
717				type = ICMP_UNREACH;
718				code = ICMP_UNREACH_SRCFAIL;
719				goto bad;
720			}
721			ip->ip_dst = ipaddr.sin_addr;
722			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
723			    (caddr_t)(cp + off), sizeof(struct in_addr));
724			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
725			forward = 1;
726			break;
727
728		case IPOPT_RR:
729			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
730				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
731				goto bad;
732			}
733			/*
734			 * If no space remains, ignore.
735			 */
736			off--;			/* 0 origin */
737			if (off > optlen - sizeof(struct in_addr))
738				break;
739			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
740			    sizeof(ipaddr.sin_addr));
741			/*
742			 * locate outgoing interface; if we're the destination,
743			 * use the incoming interface (should be same).
744			 */
745			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
746			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
747				type = ICMP_UNREACH;
748				code = ICMP_UNREACH_HOST;
749				goto bad;
750			}
751			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
752			    (caddr_t)(cp + off), sizeof(struct in_addr));
753			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
754			break;
755
756		case IPOPT_TS:
757			code = cp - (u_char *)ip;
758			ipt = (struct ip_timestamp *)cp;
759			if (ipt->ipt_len < 5)
760				goto bad;
761			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
762				if (++ipt->ipt_oflw == 0)
763					goto bad;
764				break;
765			}
766			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
767			switch (ipt->ipt_flg) {
768
769			case IPOPT_TS_TSONLY:
770				break;
771
772			case IPOPT_TS_TSANDADDR:
773				if (ipt->ipt_ptr + sizeof(n_time) +
774				    sizeof(struct in_addr) > ipt->ipt_len)
775					goto bad;
776				ia = ifptoia(m->m_pkthdr.rcvif);
777				bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
778				    (caddr_t)sin, sizeof(struct in_addr));
779				ipt->ipt_ptr += sizeof(struct in_addr);
780				break;
781
782			case IPOPT_TS_PRESPEC:
783				if (ipt->ipt_ptr + sizeof(n_time) +
784				    sizeof(struct in_addr) > ipt->ipt_len)
785					goto bad;
786				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
787				    sizeof(struct in_addr));
788				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
789					continue;
790				ipt->ipt_ptr += sizeof(struct in_addr);
791				break;
792
793			default:
794				goto bad;
795			}
796			ntime = iptime();
797			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
798			    sizeof(n_time));
799			ipt->ipt_ptr += sizeof(n_time);
800		}
801	}
802	if (forward) {
803		ip_forward(m, 1);
804		return (1);
805	} else
806		return (0);
807bad:
808    {
809	register struct in_addr foo = {};
810	icmp_error(m, type, code, foo);
811    }
812	return (1);
813}
814
815/*
816 * Given address of next destination (final or next hop),
817 * return internet address info of interface to be used to get there.
818 */
819struct in_ifaddr *
820ip_rtaddr(dst)
821	 struct in_addr dst;
822{
823	register struct sockaddr_in *sin;
824
825	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
826
827	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
828		if (ipforward_rt.ro_rt) {
829			RTFREE(ipforward_rt.ro_rt);
830			ipforward_rt.ro_rt = 0;
831		}
832		sin->sin_family = AF_INET;
833		sin->sin_len = sizeof(*sin);
834		sin->sin_addr = dst;
835
836		rtalloc(&ipforward_rt);
837	}
838	if (ipforward_rt.ro_rt == 0)
839		return ((struct in_ifaddr *)0);
840	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
841}
842
843/*
844 * Save incoming source route for use in replies,
845 * to be picked up later by ip_srcroute if the receiver is interested.
846 */
847save_rte(option, dst)
848	u_char *option;
849	struct in_addr dst;
850{
851	unsigned olen;
852
853	olen = option[IPOPT_OLEN];
854#ifdef DIAGNOSTIC
855	if (ipprintfs)
856		printf("save_rte: olen %d\n", olen);
857#endif
858	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
859		return;
860	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
861	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
862	ip_srcrt.dst = dst;
863}
864
865/*
866 * Retrieve incoming source route for use in replies,
867 * in the same form used by setsockopt.
868 * The first hop is placed before the options, will be removed later.
869 */
870struct mbuf *
871ip_srcroute()
872{
873	register struct in_addr *p, *q;
874	register struct mbuf *m;
875
876	if (ip_nhops == 0)
877		return ((struct mbuf *)0);
878	m = m_get(M_DONTWAIT, MT_SOOPTS);
879	if (m == 0)
880		return ((struct mbuf *)0);
881
882#define	OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
883
884	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
885	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
886	    OPTSIZ;
887#ifdef DIAGNOSTIC
888	if (ipprintfs)
889		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
890#endif
891
892	/*
893	 * First save first hop for return route
894	 */
895	p = &ip_srcrt.route[ip_nhops - 1];
896	*(mtod(m, struct in_addr *)) = *p--;
897#ifdef DIAGNOSTIC
898	if (ipprintfs)
899		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
900#endif
901
902	/*
903	 * Copy option fields and padding (nop) to mbuf.
904	 */
905	ip_srcrt.nop = IPOPT_NOP;
906	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
907	bcopy((caddr_t)&ip_srcrt.nop,
908	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
909	q = (struct in_addr *)(mtod(m, caddr_t) +
910	    sizeof(struct in_addr) + OPTSIZ);
911#undef OPTSIZ
912	/*
913	 * Record return path as an IP source route,
914	 * reversing the path (pointers are now aligned).
915	 */
916	while (p >= ip_srcrt.route) {
917#ifdef DIAGNOSTIC
918		if (ipprintfs)
919			printf(" %lx", ntohl(q->s_addr));
920#endif
921		*q++ = *p--;
922	}
923	/*
924	 * Last hop goes to final destination.
925	 */
926	*q = ip_srcrt.dst;
927#ifdef DIAGNOSTIC
928	if (ipprintfs)
929		printf(" %lx\n", ntohl(q->s_addr));
930#endif
931	return (m);
932}
933
934/*
935 * Strip out IP options, at higher
936 * level protocol in the kernel.
937 * Second argument is buffer to which options
938 * will be moved, and return value is their length.
939 * XXX should be deleted; last arg currently ignored.
940 */
941ip_stripoptions(m, mopt)
942	register struct mbuf *m;
943	struct mbuf *mopt;
944{
945	register int i;
946	struct ip *ip = mtod(m, struct ip *);
947	register caddr_t opts;
948	int olen;
949
950	olen = (ip->ip_hl<<2) - sizeof (struct ip);
951	opts = (caddr_t)(ip + 1);
952	i = m->m_len - (sizeof (struct ip) + olen);
953	bcopy(opts  + olen, opts, (unsigned)i);
954	m->m_len -= olen;
955	if (m->m_flags & M_PKTHDR)
956		m->m_pkthdr.len -= olen;
957	ip->ip_hl = sizeof(struct ip) >> 2;
958}
959
960u_char inetctlerrmap[PRC_NCMDS] = {
961	0,		0,		0,		0,
962	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
963	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
964	EMSGSIZE,	EHOSTUNREACH,	0,		0,
965	0,		0,		0,		0,
966	ENOPROTOOPT
967};
968
969/*
970 * Forward a packet.  If some error occurs return the sender
971 * an icmp packet.  Note we can't always generate a meaningful
972 * icmp message because icmp doesn't have a large enough repertoire
973 * of codes and types.
974 *
975 * If not forwarding, just drop the packet.  This could be confusing
976 * if ipforwarding was zero but some routing protocol was advancing
977 * us as a gateway to somewhere.  However, we must let the routing
978 * protocol deal with that.
979 *
980 * The srcrt parameter indicates whether the packet is being forwarded
981 * via a source route.
982 */
983ip_forward(m, srcrt)
984	struct mbuf *m;
985	int srcrt;
986{
987	register struct ip *ip = mtod(m, struct ip *);
988	register struct sockaddr_in *sin;
989	register struct rtentry *rt;
990	int error, type = 0, code;
991	struct mbuf *mcopy;
992	struct in_addr dest;
993
994	dest.s_addr = 0;
995#ifdef DIAGNOSTIC
996	if (ipprintfs)
997		printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
998			ip->ip_dst, ip->ip_ttl);
999#endif
1000	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1001		ipstat.ips_cantforward++;
1002		m_freem(m);
1003		return;
1004	}
1005	HTONS(ip->ip_id);
1006	if (ip->ip_ttl <= IPTTLDEC) {
1007		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest);
1008		return;
1009	}
1010	ip->ip_ttl -= IPTTLDEC;
1011
1012	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1013	if ((rt = ipforward_rt.ro_rt) == 0 ||
1014	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1015		if (ipforward_rt.ro_rt) {
1016			RTFREE(ipforward_rt.ro_rt);
1017			ipforward_rt.ro_rt = 0;
1018		}
1019		sin->sin_family = AF_INET;
1020		sin->sin_len = sizeof(*sin);
1021		sin->sin_addr = ip->ip_dst;
1022
1023		rtalloc(&ipforward_rt);
1024		if (ipforward_rt.ro_rt == 0) {
1025			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest);
1026			return;
1027		}
1028		rt = ipforward_rt.ro_rt;
1029	}
1030
1031	/*
1032	 * Save at most 64 bytes of the packet in case
1033	 * we need to generate an ICMP message to the src.
1034	 */
1035	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1036
1037#ifdef GATEWAY
1038	ip_ifmatrix[rt->rt_ifp->if_index +
1039	     if_index * m->m_pkthdr.rcvif->if_index]++;
1040#endif
1041	/*
1042	 * If forwarding packet using same interface that it came in on,
1043	 * perhaps should send a redirect to sender to shortcut a hop.
1044	 * Only send redirect if source is sending directly to us,
1045	 * and if packet was not source routed (or has any options).
1046	 * Also, don't send redirect if forwarding using a default route
1047	 * or a route modified by a redirect.
1048	 */
1049#define	satosin(sa)	((struct sockaddr_in *)(sa))
1050	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1051	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1052	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1053	    ipsendredirects && !srcrt) {
1054		struct in_ifaddr *ia;
1055		u_long src = ntohl(ip->ip_src.s_addr);
1056		u_long dst = ntohl(ip->ip_dst.s_addr);
1057
1058		if ((ia = ifptoia(m->m_pkthdr.rcvif)) &&
1059		   (src & ia->ia_subnetmask) == ia->ia_subnet) {
1060		    if (rt->rt_flags & RTF_GATEWAY)
1061			dest = satosin(rt->rt_gateway)->sin_addr;
1062		    else
1063			dest = ip->ip_dst;
1064		    /*
1065		     * If the destination is reached by a route to host,
1066		     * is on a subnet of a local net, or is directly
1067		     * on the attached net (!), use host redirect.
1068		     * (We may be the correct first hop for other subnets.)
1069		     */
1070#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1071		    type = ICMP_REDIRECT;
1072		    if ((rt->rt_flags & RTF_HOST) ||
1073		        (rt->rt_flags & RTF_GATEWAY) == 0)
1074			    code = ICMP_REDIRECT_HOST;
1075		    else if (RTA(rt)->ia_subnetmask != RTA(rt)->ia_netmask &&
1076		        (dst & RTA(rt)->ia_netmask) ==  RTA(rt)->ia_net)
1077			    code = ICMP_REDIRECT_HOST;
1078		    else
1079			    code = ICMP_REDIRECT_NET;
1080#ifdef DIAGNOSTIC
1081		    if (ipprintfs)
1082		        printf("redirect (%d) to %x\n", code, dest.s_addr);
1083#endif
1084		}
1085	}
1086
1087	error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING);
1088	if (error)
1089		ipstat.ips_cantforward++;
1090	else {
1091		ipstat.ips_forward++;
1092		if (type)
1093			ipstat.ips_redirectsent++;
1094		else {
1095			if (mcopy)
1096				m_freem(mcopy);
1097			return;
1098		}
1099	}
1100	if (mcopy == NULL)
1101		return;
1102	switch (error) {
1103
1104	case 0:				/* forwarded, but need redirect */
1105		/* type, code set above */
1106		break;
1107
1108	case ENETUNREACH:		/* shouldn't happen, checked above */
1109	case EHOSTUNREACH:
1110	case ENETDOWN:
1111	case EHOSTDOWN:
1112	default:
1113		type = ICMP_UNREACH;
1114		code = ICMP_UNREACH_HOST;
1115		break;
1116
1117	case EMSGSIZE:
1118		type = ICMP_UNREACH;
1119		code = ICMP_UNREACH_NEEDFRAG;
1120		ipstat.ips_cantfrag++;
1121		break;
1122
1123	case ENOBUFS:
1124		type = ICMP_SOURCEQUENCH;
1125		code = 0;
1126		break;
1127	}
1128	icmp_error(mcopy, type, code, dest);
1129}
1130