ip_input.c revision 1.3
1/*
2 * Copyright (c) 1982, 1986, 1988 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)ip_input.c	7.19 (Berkeley) 5/25/91
34 *	$Id: ip_input.c,v 1.3 1993/05/20 03:50:25 cgd Exp $
35 */
36
37#include "param.h"
38#include "systm.h"
39#include "malloc.h"
40#include "mbuf.h"
41#include "domain.h"
42#include "protosw.h"
43#include "socket.h"
44#include "errno.h"
45#include "time.h"
46#include "kernel.h"
47
48#include "../net/if.h"
49#include "../net/route.h"
50
51#include "in.h"
52#include "in_systm.h"
53#include "ip.h"
54#include "in_pcb.h"
55#include "in_var.h"
56#include "ip_var.h"
57#include "ip_icmp.h"
58
59#ifndef	IPFORWARDING
60#ifdef GATEWAY
61#define	IPFORWARDING	1	/* forward IP packets not for us */
62#else /* GATEWAY */
63#define	IPFORWARDING	0	/* don't forward IP packets not for us */
64#endif /* GATEWAY */
65#endif /* IPFORWARDING */
66#ifndef	IPSENDREDIRECTS
67#define	IPSENDREDIRECTS	1
68#endif
69int	ipforwarding = IPFORWARDING;
70int	ipsendredirects = IPSENDREDIRECTS;
71#ifdef DIAGNOSTIC
72int	ipprintfs = 0;
73#endif
74
75extern	struct domain inetdomain;
76extern	struct protosw inetsw[];
77u_char	ip_protox[IPPROTO_MAX];
78int	ipqmaxlen = IFQ_MAXLEN;
79struct	in_ifaddr *in_ifaddr;			/* first inet address */
80
81/*
82 * We need to save the IP options in case a protocol wants to respond
83 * to an incoming packet over the same route if the packet got here
84 * using IP source routing.  This allows connection establishment and
85 * maintenance when the remote end is on a network that is not known
86 * to us.
87 */
88int	ip_nhops = 0;
89static	struct ip_srcrt {
90	struct	in_addr dst;			/* final destination */
91	char	nop;				/* one NOP to align */
92	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
93	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
94} ip_srcrt;
95
96#ifdef GATEWAY
97extern	int if_index;
98u_long	*ip_ifmatrix;
99#endif
100
101/*
102 * IP initialization: fill in IP protocol switch table.
103 * All protocols not implemented in kernel go to raw IP protocol handler.
104 */
105ip_init()
106{
107	register struct protosw *pr;
108	register int i;
109
110	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
111	if (pr == 0)
112		panic("ip_init");
113	for (i = 0; i < IPPROTO_MAX; i++)
114		ip_protox[i] = pr - inetsw;
115	for (pr = inetdomain.dom_protosw;
116	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
117		if (pr->pr_domain->dom_family == PF_INET &&
118		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
119			ip_protox[pr->pr_protocol] = pr - inetsw;
120	ipq.next = ipq.prev = &ipq;
121	ip_id = time.tv_sec & 0xffff;
122	ipintrq.ifq_maxlen = ipqmaxlen;
123#ifdef GATEWAY
124	i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
125	if ((ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK)) == 0)
126		panic("no memory for ip_ifmatrix");
127#endif
128}
129
130struct	ip *ip_reass();
131struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
132struct	route ipforward_rt;
133
134/*
135 * Ip input routine.  Checksum and byte swap header.  If fragmented
136 * try to reassemble.  Process options.  Pass to next level.
137 */
138ipintr()
139{
140	register struct ip *ip;
141	register struct mbuf *m;
142	register struct ipq *fp;
143	register struct in_ifaddr *ia;
144	int hlen, s;
145#ifdef PARANOID
146	static int busy = 0;
147
148	if (busy)
149		panic("ipintr: called recursively\n");
150	++busy;
151#endif
152next:
153	/*
154	 * Get next datagram off input queue and get IP header
155	 * in first mbuf.
156	 */
157	s = splimp();
158	IF_DEQUEUE(&ipintrq, m);
159	splx(s);
160	if (m == 0) {
161#ifdef PARANOID
162		--busy;
163#endif
164		return;
165	}
166#ifdef	DIAGNOSTIC
167	if ((m->m_flags & M_PKTHDR) == 0)
168		panic("ipintr no HDR");
169#endif
170	/*
171	 * If no IP addresses have been set yet but the interfaces
172	 * are receiving, can't do anything with incoming packets yet.
173	 */
174	if (in_ifaddr == NULL)
175		goto bad;
176	ipstat.ips_total++;
177	if (m->m_len < sizeof (struct ip) &&
178	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
179		ipstat.ips_toosmall++;
180		goto next;
181	}
182	ip = mtod(m, struct ip *);
183	hlen = ip->ip_hl << 2;
184	if (hlen < sizeof(struct ip)) {	/* minimum header length */
185		ipstat.ips_badhlen++;
186		goto bad;
187	}
188	if (hlen > m->m_len) {
189		if ((m = m_pullup(m, hlen)) == 0) {
190			ipstat.ips_badhlen++;
191			goto next;
192		}
193		ip = mtod(m, struct ip *);
194	}
195	if (ip->ip_sum = in_cksum(m, hlen)) {
196		ipstat.ips_badsum++;
197		goto bad;
198	}
199
200	/*
201	 * Convert fields to host representation.
202	 */
203	NTOHS(ip->ip_len);
204	if (ip->ip_len < hlen) {
205		ipstat.ips_badlen++;
206		goto bad;
207	}
208	NTOHS(ip->ip_id);
209	NTOHS(ip->ip_off);
210
211	/*
212	 * Check that the amount of data in the buffers
213	 * is as at least much as the IP header would have us expect.
214	 * Trim mbufs if longer than we expect.
215	 * Drop packet if shorter than we expect.
216	 */
217	if (m->m_pkthdr.len < ip->ip_len) {
218		ipstat.ips_tooshort++;
219		goto bad;
220	}
221	if (m->m_pkthdr.len > ip->ip_len) {
222		if (m->m_len == m->m_pkthdr.len) {
223			m->m_len = ip->ip_len;
224			m->m_pkthdr.len = ip->ip_len;
225		} else
226			m_adj(m, ip->ip_len - m->m_pkthdr.len);
227	}
228
229	/*
230	 * Process options and, if not destined for us,
231	 * ship it on.  ip_dooptions returns 1 when an
232	 * error was detected (causing an icmp message
233	 * to be sent and the original packet to be freed).
234	 */
235	ip_nhops = 0;		/* for source routed packets */
236	if (hlen > sizeof (struct ip) && ip_dooptions(m))
237		goto next;
238
239	/*
240	 * Check our list of addresses, to see if the packet is for us.
241	 */
242	for (ia = in_ifaddr; ia; ia = ia->ia_next) {
243#define	satosin(sa)	((struct sockaddr_in *)(sa))
244
245		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
246			goto ours;
247		if (
248#ifdef	DIRECTED_BROADCAST
249		    ia->ia_ifp == m->m_pkthdr.rcvif &&
250#endif
251		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
252			u_long t;
253
254			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
255			    ip->ip_dst.s_addr)
256				goto ours;
257			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
258				goto ours;
259			/*
260			 * Look for all-0's host part (old broadcast addr),
261			 * either for subnet or net.
262			 */
263			t = ntohl(ip->ip_dst.s_addr);
264			if (t == ia->ia_subnet)
265				goto ours;
266			if (t == ia->ia_net)
267				goto ours;
268		}
269	}
270	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
271		goto ours;
272	if (ip->ip_dst.s_addr == INADDR_ANY)
273		goto ours;
274
275	/*
276	 * Not for us; forward if possible and desirable.
277	 */
278	if (ipforwarding == 0) {
279		ipstat.ips_cantforward++;
280		m_freem(m);
281	} else
282		ip_forward(m, 0);
283	goto next;
284
285ours:
286	/*
287	 * If offset or IP_MF are set, must reassemble.
288	 * Otherwise, nothing need be done.
289	 * (We could look in the reassembly queue to see
290	 * if the packet was previously fragmented,
291	 * but it's not worth the time; just let them time out.)
292	 */
293	if (ip->ip_off &~ IP_DF) {
294		if (m->m_flags & M_EXT) {		/* XXX */
295			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
296				ipstat.ips_toosmall++;
297				goto next;
298			}
299			ip = mtod(m, struct ip *);
300		}
301		/*
302		 * Look for queue of fragments
303		 * of this datagram.
304		 */
305		for (fp = ipq.next; fp != &ipq; fp = fp->next)
306			if (ip->ip_id == fp->ipq_id &&
307			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
308			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
309			    ip->ip_p == fp->ipq_p)
310				goto found;
311		fp = 0;
312found:
313
314		/*
315		 * Adjust ip_len to not reflect header,
316		 * set ip_mff if more fragments are expected,
317		 * convert offset of this to bytes.
318		 */
319		ip->ip_len -= hlen;
320		((struct ipasfrag *)ip)->ipf_mff = 0;
321		if (ip->ip_off & IP_MF)
322			((struct ipasfrag *)ip)->ipf_mff = 1;
323		ip->ip_off <<= 3;
324
325		/*
326		 * If datagram marked as having more fragments
327		 * or if this is not the first fragment,
328		 * attempt reassembly; if it succeeds, proceed.
329		 */
330		if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
331			ipstat.ips_fragments++;
332			ip = ip_reass((struct ipasfrag *)ip, fp);
333			if (ip == 0)
334				goto next;
335			else
336				ipstat.ips_reassembled++;
337			m = dtom(ip);
338		} else
339			if (fp)
340				ip_freef(fp);
341	} else
342		ip->ip_len -= hlen;
343
344	/*
345	 * Switch out to protocol's input routine.
346	 */
347	ipstat.ips_delivered++;
348	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
349	goto next;
350bad:
351	m_freem(m);
352	goto next;
353}
354
355/*
356 * Take incoming datagram fragment and try to
357 * reassemble it into whole datagram.  If a chain for
358 * reassembly of this datagram already exists, then it
359 * is given as fp; otherwise have to make a chain.
360 */
361struct ip *
362ip_reass(ip, fp)
363	register struct ipasfrag *ip;
364	register struct ipq *fp;
365{
366	register struct mbuf *m = dtom(ip);
367	register struct ipasfrag *q;
368	struct mbuf *t;
369	int hlen = ip->ip_hl << 2;
370	int i, next;
371
372	/*
373	 * Presence of header sizes in mbufs
374	 * would confuse code below.
375	 */
376	m->m_data += hlen;
377	m->m_len -= hlen;
378
379	/*
380	 * If first fragment to arrive, create a reassembly queue.
381	 */
382	if (fp == 0) {
383		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
384			goto dropfrag;
385		fp = mtod(t, struct ipq *);
386		insque(fp, &ipq);
387		fp->ipq_ttl = IPFRAGTTL;
388		fp->ipq_p = ip->ip_p;
389		fp->ipq_id = ip->ip_id;
390		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
391		fp->ipq_src = ((struct ip *)ip)->ip_src;
392		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
393		q = (struct ipasfrag *)fp;
394		goto insert;
395	}
396
397	/*
398	 * Find a segment which begins after this one does.
399	 */
400	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
401		if (q->ip_off > ip->ip_off)
402			break;
403
404	/*
405	 * If there is a preceding segment, it may provide some of
406	 * our data already.  If so, drop the data from the incoming
407	 * segment.  If it provides all of our data, drop us.
408	 */
409	if (q->ipf_prev != (struct ipasfrag *)fp) {
410		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
411		if (i > 0) {
412			if (i >= ip->ip_len)
413				goto dropfrag;
414			m_adj(dtom(ip), i);
415			ip->ip_off += i;
416			ip->ip_len -= i;
417		}
418	}
419
420	/*
421	 * While we overlap succeeding segments trim them or,
422	 * if they are completely covered, dequeue them.
423	 */
424	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
425		i = (ip->ip_off + ip->ip_len) - q->ip_off;
426		if (i < q->ip_len) {
427			q->ip_len -= i;
428			q->ip_off += i;
429			m_adj(dtom(q), i);
430			break;
431		}
432		q = q->ipf_next;
433		m_freem(dtom(q->ipf_prev));
434		ip_deq(q->ipf_prev);
435	}
436
437insert:
438	/*
439	 * Stick new segment in its place;
440	 * check for complete reassembly.
441	 */
442	ip_enq(ip, q->ipf_prev);
443	next = 0;
444	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
445		if (q->ip_off != next)
446			return (0);
447		next += q->ip_len;
448	}
449	if (q->ipf_prev->ipf_mff)
450		return (0);
451
452	/*
453	 * Reassembly is complete; concatenate fragments.
454	 */
455	q = fp->ipq_next;
456	m = dtom(q);
457	t = m->m_next;
458	m->m_next = 0;
459	m_cat(m, t);
460	q = q->ipf_next;
461	while (q != (struct ipasfrag *)fp) {
462		t = dtom(q);
463		q = q->ipf_next;
464		m_cat(m, t);
465	}
466
467	/*
468	 * Create header for new ip packet by
469	 * modifying header of first packet;
470	 * dequeue and discard fragment reassembly header.
471	 * Make header visible.
472	 */
473	ip = fp->ipq_next;
474	ip->ip_len = next;
475	((struct ip *)ip)->ip_src = fp->ipq_src;
476	((struct ip *)ip)->ip_dst = fp->ipq_dst;
477	remque(fp);
478	(void) m_free(dtom(fp));
479	m = dtom(ip);
480	m->m_len += (ip->ip_hl << 2);
481	m->m_data -= (ip->ip_hl << 2);
482	/* some debugging cruft by sklower, below, will go away soon */
483	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
484		register int plen = 0;
485		for (t = m; m; m = m->m_next)
486			plen += m->m_len;
487		t->m_pkthdr.len = plen;
488	}
489	return ((struct ip *)ip);
490
491dropfrag:
492	ipstat.ips_fragdropped++;
493	m_freem(m);
494	return (0);
495}
496
497/*
498 * Free a fragment reassembly header and all
499 * associated datagrams.
500 */
501ip_freef(fp)
502	struct ipq *fp;
503{
504	register struct ipasfrag *q, *p;
505
506	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
507		p = q->ipf_next;
508		ip_deq(q);
509		m_freem(dtom(q));
510	}
511	remque(fp);
512	(void) m_free(dtom(fp));
513}
514
515/*
516 * Put an ip fragment on a reassembly chain.
517 * Like insque, but pointers in middle of structure.
518 */
519ip_enq(p, prev)
520	register struct ipasfrag *p, *prev;
521{
522
523	p->ipf_prev = prev;
524	p->ipf_next = prev->ipf_next;
525	prev->ipf_next->ipf_prev = p;
526	prev->ipf_next = p;
527}
528
529/*
530 * To ip_enq as remque is to insque.
531 */
532ip_deq(p)
533	register struct ipasfrag *p;
534{
535
536	p->ipf_prev->ipf_next = p->ipf_next;
537	p->ipf_next->ipf_prev = p->ipf_prev;
538}
539
540/*
541 * IP timer processing;
542 * if a timer expires on a reassembly
543 * queue, discard it.
544 */
545ip_slowtimo()
546{
547	register struct ipq *fp;
548	int s = splnet();
549
550	fp = ipq.next;
551	if (fp == 0) {
552		splx(s);
553		return;
554	}
555	while (fp != &ipq) {
556		--fp->ipq_ttl;
557		fp = fp->next;
558		if (fp->prev->ipq_ttl == 0) {
559			ipstat.ips_fragtimeout++;
560			ip_freef(fp->prev);
561		}
562	}
563	splx(s);
564}
565
566/*
567 * Drain off all datagram fragments.
568 */
569ip_drain()
570{
571
572	while (ipq.next != &ipq) {
573		ipstat.ips_fragdropped++;
574		ip_freef(ipq.next);
575	}
576}
577
578extern struct in_ifaddr *ifptoia();
579struct in_ifaddr *ip_rtaddr();
580
581/*
582 * Do option processing on a datagram,
583 * possibly discarding it if bad options are encountered,
584 * or forwarding it if source-routed.
585 * Returns 1 if packet has been forwarded/freed,
586 * 0 if the packet should be processed further.
587 */
588ip_dooptions(m)
589	struct mbuf *m;
590{
591	register struct ip *ip = mtod(m, struct ip *);
592	register u_char *cp;
593	register struct ip_timestamp *ipt;
594	register struct in_ifaddr *ia;
595	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
596	struct in_addr *sin;
597	n_time ntime;
598
599	cp = (u_char *)(ip + 1);
600	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
601	for (; cnt > 0; cnt -= optlen, cp += optlen) {
602		opt = cp[IPOPT_OPTVAL];
603		if (opt == IPOPT_EOL)
604			break;
605		if (opt == IPOPT_NOP)
606			optlen = 1;
607		else {
608			optlen = cp[IPOPT_OLEN];
609			if (optlen <= 0 || optlen > cnt) {
610				code = &cp[IPOPT_OLEN] - (u_char *)ip;
611				goto bad;
612			}
613		}
614		switch (opt) {
615
616		default:
617			break;
618
619		/*
620		 * Source routing with record.
621		 * Find interface with current destination address.
622		 * If none on this machine then drop if strictly routed,
623		 * or do nothing if loosely routed.
624		 * Record interface address and bring up next address
625		 * component.  If strictly routed make sure next
626		 * address is on directly accessible net.
627		 */
628		case IPOPT_LSRR:
629		case IPOPT_SSRR:
630			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
631				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
632				goto bad;
633			}
634			ipaddr.sin_addr = ip->ip_dst;
635			ia = (struct in_ifaddr *)
636				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
637			if (ia == 0) {
638				if (opt == IPOPT_SSRR) {
639					type = ICMP_UNREACH;
640					code = ICMP_UNREACH_SRCFAIL;
641					goto bad;
642				}
643				/*
644				 * Loose routing, and not at next destination
645				 * yet; nothing to do except forward.
646				 */
647				break;
648			}
649			off--;			/* 0 origin */
650			if (off > optlen - sizeof(struct in_addr)) {
651				/*
652				 * End of source route.  Should be for us.
653				 */
654				save_rte(cp, ip->ip_src);
655				break;
656			}
657			/*
658			 * locate outgoing interface
659			 */
660			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
661			    sizeof(ipaddr.sin_addr));
662			if (opt == IPOPT_SSRR) {
663#define	INA	struct in_ifaddr *
664#define	SA	struct sockaddr *
665			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
666				ia = in_iaonnetof(in_netof(ipaddr.sin_addr));
667			} else
668				ia = ip_rtaddr(ipaddr.sin_addr);
669			if (ia == 0) {
670				type = ICMP_UNREACH;
671				code = ICMP_UNREACH_SRCFAIL;
672				goto bad;
673			}
674			ip->ip_dst = ipaddr.sin_addr;
675			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
676			    (caddr_t)(cp + off), sizeof(struct in_addr));
677			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
678			forward = 1;
679			break;
680
681		case IPOPT_RR:
682			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
683				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
684				goto bad;
685			}
686			/*
687			 * If no space remains, ignore.
688			 */
689			off--;			/* 0 origin */
690			if (off > optlen - sizeof(struct in_addr))
691				break;
692			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
693			    sizeof(ipaddr.sin_addr));
694			/*
695			 * locate outgoing interface; if we're the destination,
696			 * use the incoming interface (should be same).
697			 */
698			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
699			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
700				type = ICMP_UNREACH;
701				code = ICMP_UNREACH_HOST;
702				goto bad;
703			}
704			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
705			    (caddr_t)(cp + off), sizeof(struct in_addr));
706			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
707			break;
708
709		case IPOPT_TS:
710			code = cp - (u_char *)ip;
711			ipt = (struct ip_timestamp *)cp;
712			if (ipt->ipt_len < 5)
713				goto bad;
714			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
715				if (++ipt->ipt_oflw == 0)
716					goto bad;
717				break;
718			}
719			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
720			switch (ipt->ipt_flg) {
721
722			case IPOPT_TS_TSONLY:
723				break;
724
725			case IPOPT_TS_TSANDADDR:
726				if (ipt->ipt_ptr + sizeof(n_time) +
727				    sizeof(struct in_addr) > ipt->ipt_len)
728					goto bad;
729				ia = ifptoia(m->m_pkthdr.rcvif);
730				bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
731				    (caddr_t)sin, sizeof(struct in_addr));
732				ipt->ipt_ptr += sizeof(struct in_addr);
733				break;
734
735			case IPOPT_TS_PRESPEC:
736				if (ipt->ipt_ptr + sizeof(n_time) +
737				    sizeof(struct in_addr) > ipt->ipt_len)
738					goto bad;
739				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
740				    sizeof(struct in_addr));
741				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
742					continue;
743				ipt->ipt_ptr += sizeof(struct in_addr);
744				break;
745
746			default:
747				goto bad;
748			}
749			ntime = iptime();
750			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
751			    sizeof(n_time));
752			ipt->ipt_ptr += sizeof(n_time);
753		}
754	}
755	if (forward) {
756		ip_forward(m, 1);
757		return (1);
758	} else
759		return (0);
760bad:
761	icmp_error(m, type, code);
762	return (1);
763}
764
765/*
766 * Given address of next destination (final or next hop),
767 * return internet address info of interface to be used to get there.
768 */
769struct in_ifaddr *
770ip_rtaddr(dst)
771	 struct in_addr dst;
772{
773	register struct sockaddr_in *sin;
774
775	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
776
777	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
778		if (ipforward_rt.ro_rt) {
779			RTFREE(ipforward_rt.ro_rt);
780			ipforward_rt.ro_rt = 0;
781		}
782		sin->sin_family = AF_INET;
783		sin->sin_len = sizeof(*sin);
784		sin->sin_addr = dst;
785
786		rtalloc(&ipforward_rt);
787	}
788	if (ipforward_rt.ro_rt == 0)
789		return ((struct in_ifaddr *)0);
790	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
791}
792
793/*
794 * Save incoming source route for use in replies,
795 * to be picked up later by ip_srcroute if the receiver is interested.
796 */
797save_rte(option, dst)
798	u_char *option;
799	struct in_addr dst;
800{
801	unsigned olen;
802
803	olen = option[IPOPT_OLEN];
804#ifdef DIAGNOSTIC
805	if (ipprintfs)
806		printf("save_rte: olen %d\n", olen);
807#endif
808	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
809		return;
810	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
811	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
812	ip_srcrt.dst = dst;
813}
814
815/*
816 * Retrieve incoming source route for use in replies,
817 * in the same form used by setsockopt.
818 * The first hop is placed before the options, will be removed later.
819 */
820struct mbuf *
821ip_srcroute()
822{
823	register struct in_addr *p, *q;
824	register struct mbuf *m;
825
826	if (ip_nhops == 0)
827		return ((struct mbuf *)0);
828	m = m_get(M_DONTWAIT, MT_SOOPTS);
829	if (m == 0)
830		return ((struct mbuf *)0);
831
832#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
833
834	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
835	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
836	    OPTSIZ;
837#ifdef DIAGNOSTIC
838	if (ipprintfs)
839		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
840#endif
841
842	/*
843	 * First save first hop for return route
844	 */
845	p = &ip_srcrt.route[ip_nhops - 1];
846	*(mtod(m, struct in_addr *)) = *p--;
847#ifdef DIAGNOSTIC
848	if (ipprintfs)
849		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
850#endif
851
852	/*
853	 * Copy option fields and padding (nop) to mbuf.
854	 */
855	ip_srcrt.nop = IPOPT_NOP;
856	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
857	bcopy((caddr_t)&ip_srcrt.nop,
858	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
859	q = (struct in_addr *)(mtod(m, caddr_t) +
860	    sizeof(struct in_addr) + OPTSIZ);
861#undef OPTSIZ
862	/*
863	 * Record return path as an IP source route,
864	 * reversing the path (pointers are now aligned).
865	 */
866	while (p >= ip_srcrt.route) {
867#ifdef DIAGNOSTIC
868		if (ipprintfs)
869			printf(" %lx", ntohl(q->s_addr));
870#endif
871		*q++ = *p--;
872	}
873	/*
874	 * Last hop goes to final destination.
875	 */
876	*q = ip_srcrt.dst;
877#ifdef DIAGNOSTIC
878	if (ipprintfs)
879		printf(" %lx\n", ntohl(q->s_addr));
880#endif
881	return (m);
882}
883
884/*
885 * Strip out IP options, at higher
886 * level protocol in the kernel.
887 * Second argument is buffer to which options
888 * will be moved, and return value is their length.
889 * XXX should be deleted; last arg currently ignored.
890 */
891ip_stripoptions(m, mopt)
892	register struct mbuf *m;
893	struct mbuf *mopt;
894{
895	register int i;
896	struct ip *ip = mtod(m, struct ip *);
897	register caddr_t opts;
898	int olen;
899
900	olen = (ip->ip_hl<<2) - sizeof (struct ip);
901	opts = (caddr_t)(ip + 1);
902	i = m->m_len - (sizeof (struct ip) + olen);
903	bcopy(opts  + olen, opts, (unsigned)i);
904	m->m_len -= olen;
905	if (m->m_flags & M_PKTHDR)
906		m->m_pkthdr.len -= olen;
907	ip->ip_hl = sizeof(struct ip) >> 2;
908}
909
910u_char inetctlerrmap[PRC_NCMDS] = {
911	0,		0,		0,		0,
912	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
913	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
914	EMSGSIZE,	EHOSTUNREACH,	0,		0,
915	0,		0,		0,		0,
916	ENOPROTOOPT
917};
918
919/*
920 * Forward a packet.  If some error occurs return the sender
921 * an icmp packet.  Note we can't always generate a meaningful
922 * icmp message because icmp doesn't have a large enough repertoire
923 * of codes and types.
924 *
925 * If not forwarding, just drop the packet.  This could be confusing
926 * if ipforwarding was zero but some routing protocol was advancing
927 * us as a gateway to somewhere.  However, we must let the routing
928 * protocol deal with that.
929 *
930 * The srcrt parameter indicates whether the packet is being forwarded
931 * via a source route.
932 */
933ip_forward(m, srcrt)
934	struct mbuf *m;
935	int srcrt;
936{
937	register struct ip *ip = mtod(m, struct ip *);
938	register struct sockaddr_in *sin;
939	register struct rtentry *rt;
940	int error, type = 0, code;
941	struct mbuf *mcopy;
942	struct in_addr dest;
943
944	dest.s_addr = 0;
945#ifdef DIAGNOSTIC
946	if (ipprintfs)
947		printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
948			ip->ip_dst, ip->ip_ttl);
949#endif
950	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
951		ipstat.ips_cantforward++;
952		m_freem(m);
953		return;
954	}
955	HTONS(ip->ip_id);
956	if (ip->ip_ttl <= IPTTLDEC) {
957		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest);
958		return;
959	}
960	ip->ip_ttl -= IPTTLDEC;
961
962	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
963	if ((rt = ipforward_rt.ro_rt) == 0 ||
964	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
965		if (ipforward_rt.ro_rt) {
966			RTFREE(ipforward_rt.ro_rt);
967			ipforward_rt.ro_rt = 0;
968		}
969		sin->sin_family = AF_INET;
970		sin->sin_len = sizeof(*sin);
971		sin->sin_addr = ip->ip_dst;
972
973		rtalloc(&ipforward_rt);
974		if (ipforward_rt.ro_rt == 0) {
975			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest);
976			return;
977		}
978		rt = ipforward_rt.ro_rt;
979	}
980
981	/*
982	 * Save at most 64 bytes of the packet in case
983	 * we need to generate an ICMP message to the src.
984	 */
985	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
986
987#ifdef GATEWAY
988	ip_ifmatrix[rt->rt_ifp->if_index +
989	     if_index * m->m_pkthdr.rcvif->if_index]++;
990#endif
991	/*
992	 * If forwarding packet using same interface that it came in on,
993	 * perhaps should send a redirect to sender to shortcut a hop.
994	 * Only send redirect if source is sending directly to us,
995	 * and if packet was not source routed (or has any options).
996	 * Also, don't send redirect if forwarding using a default route
997	 * or a route modified by a redirect.
998	 */
999#define	satosin(sa)	((struct sockaddr_in *)(sa))
1000	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1001	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1002	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1003	    ipsendredirects && !srcrt) {
1004		struct in_ifaddr *ia;
1005		u_long src = ntohl(ip->ip_src.s_addr);
1006		u_long dst = ntohl(ip->ip_dst.s_addr);
1007
1008		if ((ia = ifptoia(m->m_pkthdr.rcvif)) &&
1009		   (src & ia->ia_subnetmask) == ia->ia_subnet) {
1010		    if (rt->rt_flags & RTF_GATEWAY)
1011			dest = satosin(rt->rt_gateway)->sin_addr;
1012		    else
1013			dest = ip->ip_dst;
1014		    /*
1015		     * If the destination is reached by a route to host,
1016		     * is on a subnet of a local net, or is directly
1017		     * on the attached net (!), use host redirect.
1018		     * (We may be the correct first hop for other subnets.)
1019		     */
1020#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1021		    type = ICMP_REDIRECT;
1022		    if ((rt->rt_flags & RTF_HOST) ||
1023		        (rt->rt_flags & RTF_GATEWAY) == 0)
1024			    code = ICMP_REDIRECT_HOST;
1025		    else if (RTA(rt)->ia_subnetmask != RTA(rt)->ia_netmask &&
1026		        (dst & RTA(rt)->ia_netmask) ==  RTA(rt)->ia_net)
1027			    code = ICMP_REDIRECT_HOST;
1028		    else
1029			    code = ICMP_REDIRECT_NET;
1030#ifdef DIAGNOSTIC
1031		    if (ipprintfs)
1032		        printf("redirect (%d) to %x\n", code, dest.s_addr);
1033#endif
1034		}
1035	}
1036
1037	error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING);
1038	if (error)
1039		ipstat.ips_cantforward++;
1040	else {
1041		ipstat.ips_forward++;
1042		if (type)
1043			ipstat.ips_redirectsent++;
1044		else {
1045			if (mcopy)
1046				m_freem(mcopy);
1047			return;
1048		}
1049	}
1050	if (mcopy == NULL)
1051		return;
1052	switch (error) {
1053
1054	case 0:				/* forwarded, but need redirect */
1055		/* type, code set above */
1056		break;
1057
1058	case ENETUNREACH:		/* shouldn't happen, checked above */
1059	case EHOSTUNREACH:
1060	case ENETDOWN:
1061	case EHOSTDOWN:
1062	default:
1063		type = ICMP_UNREACH;
1064		code = ICMP_UNREACH_HOST;
1065		break;
1066
1067	case EMSGSIZE:
1068		type = ICMP_UNREACH;
1069		code = ICMP_UNREACH_NEEDFRAG;
1070		ipstat.ips_cantfrag++;
1071		break;
1072
1073	case ENOBUFS:
1074		type = ICMP_SOURCEQUENCH;
1075		code = 0;
1076		break;
1077	}
1078	icmp_error(mcopy, type, code, dest);
1079}
1080