ip_input.c revision 1.274
1/*	$NetBSD: ip_input.c,v 1.274 2008/09/05 13:39:12 seanb Exp $	*/
2
3/*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32/*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix").  It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 *    notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 *    notice, this list of conditions and the following disclaimer in the
47 *    documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62/*
63 * Copyright (c) 1982, 1986, 1988, 1993
64 *	The Regents of the University of California.  All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 *    notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 *    notice, this list of conditions and the following disclaimer in the
73 *    documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 *    may be used to endorse or promote products derived from this software
76 *    without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
91 */
92
93#include <sys/cdefs.h>
94__KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.274 2008/09/05 13:39:12 seanb Exp $");
95
96#include "opt_inet.h"
97#include "opt_gateway.h"
98#include "opt_pfil_hooks.h"
99#include "opt_ipsec.h"
100#include "opt_mrouting.h"
101#include "opt_mbuftrace.h"
102#include "opt_inet_csum.h"
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/malloc.h>
107#include <sys/mbuf.h>
108#include <sys/domain.h>
109#include <sys/protosw.h>
110#include <sys/socket.h>
111#include <sys/socketvar.h>
112#include <sys/errno.h>
113#include <sys/time.h>
114#include <sys/kernel.h>
115#include <sys/pool.h>
116#include <sys/sysctl.h>
117#include <sys/kauth.h>
118
119#include <net/if.h>
120#include <net/if_dl.h>
121#include <net/route.h>
122#include <net/pfil.h>
123
124#include <netinet/in.h>
125#include <netinet/in_systm.h>
126#include <netinet/ip.h>
127#include <netinet/in_pcb.h>
128#include <netinet/in_proto.h>
129#include <netinet/in_var.h>
130#include <netinet/ip_var.h>
131#include <netinet/ip_private.h>
132#include <netinet/ip_icmp.h>
133/* just for gif_ttl */
134#include <netinet/in_gif.h>
135#include "gif.h"
136#include <net/if_gre.h>
137#include "gre.h"
138
139#ifdef MROUTING
140#include <netinet/ip_mroute.h>
141#endif
142
143#ifdef IPSEC
144#include <netinet6/ipsec.h>
145#include <netinet6/ipsec_private.h>
146#include <netkey/key.h>
147#endif
148#ifdef FAST_IPSEC
149#include <netipsec/ipsec.h>
150#include <netipsec/key.h>
151#endif	/* FAST_IPSEC*/
152
153#ifndef	IPFORWARDING
154#ifdef GATEWAY
155#define	IPFORWARDING	1	/* forward IP packets not for us */
156#else /* GATEWAY */
157#define	IPFORWARDING	0	/* don't forward IP packets not for us */
158#endif /* GATEWAY */
159#endif /* IPFORWARDING */
160#ifndef	IPSENDREDIRECTS
161#define	IPSENDREDIRECTS	1
162#endif
163#ifndef IPFORWSRCRT
164#define	IPFORWSRCRT	1	/* forward source-routed packets */
165#endif
166#ifndef IPALLOWSRCRT
167#define	IPALLOWSRCRT	1	/* allow source-routed packets */
168#endif
169#ifndef IPMTUDISC
170#define IPMTUDISC	1
171#endif
172#ifndef IPMTUDISCTIMEOUT
173#define IPMTUDISCTIMEOUT (10 * 60)	/* as per RFC 1191 */
174#endif
175
176/*
177 * Note: DIRECTED_BROADCAST is handled this way so that previous
178 * configuration using this option will Just Work.
179 */
180#ifndef IPDIRECTEDBCAST
181#ifdef DIRECTED_BROADCAST
182#define IPDIRECTEDBCAST	1
183#else
184#define	IPDIRECTEDBCAST	0
185#endif /* DIRECTED_BROADCAST */
186#endif /* IPDIRECTEDBCAST */
187int	ipforwarding = IPFORWARDING;
188int	ipsendredirects = IPSENDREDIRECTS;
189int	ip_defttl = IPDEFTTL;
190int	ip_forwsrcrt = IPFORWSRCRT;
191int	ip_directedbcast = IPDIRECTEDBCAST;
192int	ip_allowsrcrt = IPALLOWSRCRT;
193int	ip_mtudisc = IPMTUDISC;
194int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
195#ifdef DIAGNOSTIC
196int	ipprintfs = 0;
197#endif
198
199int	ip_do_randomid = 0;
200
201/*
202 * XXX - Setting ip_checkinterface mostly implements the receive side of
203 * the Strong ES model described in RFC 1122, but since the routing table
204 * and transmit implementation do not implement the Strong ES model,
205 * setting this to 1 results in an odd hybrid.
206 *
207 * XXX - ip_checkinterface currently must be disabled if you use ipnat
208 * to translate the destination address to another local interface.
209 *
210 * XXX - ip_checkinterface must be disabled if you add IP aliases
211 * to the loopback interface instead of the interface where the
212 * packets for those addresses are received.
213 */
214int	ip_checkinterface = 0;
215
216
217struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
218
219int	ipqmaxlen = IFQ_MAXLEN;
220u_long	in_ifaddrhash;				/* size of hash table - 1 */
221int	in_ifaddrentries;			/* total number of addrs */
222struct in_ifaddrhead in_ifaddrhead;
223struct	in_ifaddrhashhead *in_ifaddrhashtbl;
224u_long	in_multihash;				/* size of hash table - 1 */
225int	in_multientries;			/* total number of addrs */
226struct	in_multihashhead *in_multihashtbl;
227struct	ifqueue ipintrq;
228uint16_t ip_id;
229
230percpu_t *ipstat_percpu;
231
232#ifdef PFIL_HOOKS
233struct pfil_head inet_pfil_hook;
234#endif
235
236/*
237 * Cached copy of nmbclusters. If nbclusters is different,
238 * recalculate IP parameters derived from nmbclusters.
239 */
240static int	ip_nmbclusters;			/* copy of nmbclusters */
241static void	ip_nmbclusters_changed(void);	/* recalc limits */
242
243#define CHECK_NMBCLUSTER_PARAMS()				\
244do {								\
245	if (__predict_false(ip_nmbclusters != nmbclusters))	\
246		ip_nmbclusters_changed();			\
247} while (/*CONSTCOND*/0)
248
249/* IP datagram reassembly queues (hashed) */
250#define IPREASS_NHASH_LOG2      6
251#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
252#define IPREASS_HMASK           (IPREASS_NHASH - 1)
253#define IPREASS_HASH(x,y) \
254	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
255struct ipqhead ipq[IPREASS_NHASH];
256int	ipq_locked;
257static int	ip_nfragpackets;	/* packets in reass queue */
258static int	ip_nfrags;		/* total fragments in reass queues */
259
260int	ip_maxfragpackets = 200;	/* limit on packets. XXX sysctl */
261int	ip_maxfrags;		        /* limit on fragments. XXX sysctl */
262
263
264/*
265 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
266 * IP reassembly queue buffer managment.
267 *
268 * We keep a count of total IP fragments (NB: not fragmented packets!)
269 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
270 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
271 * total fragments in  reassembly queues.This AIMD policy avoids
272 * repeatedly deleting single packets under heavy fragmentation load
273 * (e.g., from lossy NFS peers).
274 */
275static u_int	ip_reass_ttl_decr(u_int ticks);
276static void	ip_reass_drophalf(void);
277
278
279static inline int ipq_lock_try(void);
280static inline void ipq_unlock(void);
281
282static inline int
283ipq_lock_try(void)
284{
285	int s;
286
287	/*
288	 * Use splvm() -- we're blocking things that would cause
289	 * mbuf allocation.
290	 */
291	s = splvm();
292	if (ipq_locked) {
293		splx(s);
294		return (0);
295	}
296	ipq_locked = 1;
297	splx(s);
298	return (1);
299}
300
301static inline void
302ipq_unlock(void)
303{
304	int s;
305
306	s = splvm();
307	ipq_locked = 0;
308	splx(s);
309}
310
311#ifdef DIAGNOSTIC
312#define	IPQ_LOCK()							\
313do {									\
314	if (ipq_lock_try() == 0) {					\
315		printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
316		panic("ipq_lock");					\
317	}								\
318} while (/*CONSTCOND*/ 0)
319#define	IPQ_LOCK_CHECK()						\
320do {									\
321	if (ipq_locked == 0) {						\
322		printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
323		panic("ipq lock check");				\
324	}								\
325} while (/*CONSTCOND*/ 0)
326#else
327#define	IPQ_LOCK()		(void) ipq_lock_try()
328#define	IPQ_LOCK_CHECK()	/* nothing */
329#endif
330
331#define	IPQ_UNLOCK()		ipq_unlock()
332
333POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL,
334    IPL_SOFTNET);
335POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL,
336    IPL_VM);
337
338#ifdef INET_CSUM_COUNTERS
339#include <sys/device.h>
340
341struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342    NULL, "inet", "hwcsum bad");
343struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
344    NULL, "inet", "hwcsum ok");
345struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346    NULL, "inet", "swcsum");
347
348#define	INET_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
349
350EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
351EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
352EVCNT_ATTACH_STATIC(ip_swcsum);
353
354#else
355
356#define	INET_CSUM_COUNTER_INCR(ev)	/* nothing */
357
358#endif /* INET_CSUM_COUNTERS */
359
360/*
361 * We need to save the IP options in case a protocol wants to respond
362 * to an incoming packet over the same route if the packet got here
363 * using IP source routing.  This allows connection establishment and
364 * maintenance when the remote end is on a network that is not known
365 * to us.
366 */
367int	ip_nhops = 0;
368static	struct ip_srcrt {
369	struct	in_addr dst;			/* final destination */
370	char	nop;				/* one NOP to align */
371	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
372	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
373} ip_srcrt;
374
375static void save_rte(u_char *, struct in_addr);
376
377#ifdef MBUFTRACE
378struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
379struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
380#endif
381
382/*
383 * Compute IP limits derived from the value of nmbclusters.
384 */
385static void
386ip_nmbclusters_changed(void)
387{
388	ip_maxfrags = nmbclusters / 4;
389	ip_nmbclusters =  nmbclusters;
390}
391
392/*
393 * IP initialization: fill in IP protocol switch table.
394 * All protocols not implemented in kernel go to raw IP protocol handler.
395 */
396void
397ip_init(void)
398{
399	const struct protosw *pr;
400	int i;
401
402	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
403	if (pr == 0)
404		panic("ip_init");
405	for (i = 0; i < IPPROTO_MAX; i++)
406		ip_protox[i] = pr - inetsw;
407	for (pr = inetdomain.dom_protosw;
408	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
409		if (pr->pr_domain->dom_family == PF_INET &&
410		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
411			ip_protox[pr->pr_protocol] = pr - inetsw;
412
413	for (i = 0; i < IPREASS_NHASH; i++)
414	    	LIST_INIT(&ipq[i]);
415
416	ip_initid();
417	ip_id = time_second & 0xfffff;
418
419	ipintrq.ifq_maxlen = ipqmaxlen;
420	ip_nmbclusters_changed();
421
422	TAILQ_INIT(&in_ifaddrhead);
423	in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
424	    &in_ifaddrhash);
425	in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
426	    &in_multihash);
427	ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
428#ifdef GATEWAY
429	ipflow_init(ip_hashsize);
430#endif
431
432#ifdef PFIL_HOOKS
433	/* Register our Packet Filter hook. */
434	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
435	inet_pfil_hook.ph_af   = AF_INET;
436	i = pfil_head_register(&inet_pfil_hook);
437	if (i != 0)
438		printf("ip_init: WARNING: unable to register pfil hook, "
439		    "error %d\n", i);
440#endif /* PFIL_HOOKS */
441
442#ifdef MBUFTRACE
443	MOWNER_ATTACH(&ip_tx_mowner);
444	MOWNER_ATTACH(&ip_rx_mowner);
445#endif /* MBUFTRACE */
446
447	ipstat_percpu = percpu_alloc(sizeof(uint64_t) * IP_NSTATS);
448}
449
450struct	sockaddr_in ipaddr = {
451	.sin_len = sizeof(ipaddr),
452	.sin_family = AF_INET,
453};
454struct	route ipforward_rt;
455
456/*
457 * IP software interrupt routine
458 */
459void
460ipintr(void)
461{
462	int s;
463	struct mbuf *m;
464
465	mutex_enter(softnet_lock);
466	KERNEL_LOCK(1, NULL);
467	while (!IF_IS_EMPTY(&ipintrq)) {
468		s = splnet();
469		IF_DEQUEUE(&ipintrq, m);
470		splx(s);
471		if (m == NULL)
472			break;
473		ip_input(m);
474	}
475	KERNEL_UNLOCK_ONE(NULL);
476	mutex_exit(softnet_lock);
477}
478
479/*
480 * Ip input routine.  Checksum and byte swap header.  If fragmented
481 * try to reassemble.  Process options.  Pass to next level.
482 */
483void
484ip_input(struct mbuf *m)
485{
486	struct ip *ip = NULL;
487	struct ipq *fp;
488	struct in_ifaddr *ia;
489	struct ifaddr *ifa;
490	struct ipqent *ipqe;
491	int hlen = 0, mff, len;
492	int downmatch;
493	int checkif;
494	int srcrt = 0;
495	int s;
496	u_int hash;
497#ifdef FAST_IPSEC
498	struct m_tag *mtag;
499	struct tdb_ident *tdbi;
500	struct secpolicy *sp;
501	int error;
502#endif /* FAST_IPSEC */
503
504	MCLAIM(m, &ip_rx_mowner);
505#ifdef	DIAGNOSTIC
506	if ((m->m_flags & M_PKTHDR) == 0)
507		panic("ipintr no HDR");
508#endif
509
510	/*
511	 * If no IP addresses have been set yet but the interfaces
512	 * are receiving, can't do anything with incoming packets yet.
513	 */
514	if (TAILQ_FIRST(&in_ifaddrhead) == 0)
515		goto bad;
516	IP_STATINC(IP_STAT_TOTAL);
517	/*
518	 * If the IP header is not aligned, slurp it up into a new
519	 * mbuf with space for link headers, in the event we forward
520	 * it.  Otherwise, if it is aligned, make sure the entire
521	 * base IP header is in the first mbuf of the chain.
522	 */
523	if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
524		if ((m = m_copyup(m, sizeof(struct ip),
525				  (max_linkhdr + 3) & ~3)) == NULL) {
526			/* XXXJRT new stat, please */
527			IP_STATINC(IP_STAT_TOOSMALL);
528			return;
529		}
530	} else if (__predict_false(m->m_len < sizeof (struct ip))) {
531		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
532			IP_STATINC(IP_STAT_TOOSMALL);
533			return;
534		}
535	}
536	ip = mtod(m, struct ip *);
537	if (ip->ip_v != IPVERSION) {
538		IP_STATINC(IP_STAT_BADVERS);
539		goto bad;
540	}
541	hlen = ip->ip_hl << 2;
542	if (hlen < sizeof(struct ip)) {	/* minimum header length */
543		IP_STATINC(IP_STAT_BADHLEN);
544		goto bad;
545	}
546	if (hlen > m->m_len) {
547		if ((m = m_pullup(m, hlen)) == 0) {
548			IP_STATINC(IP_STAT_BADHLEN);
549			return;
550		}
551		ip = mtod(m, struct ip *);
552	}
553
554	/*
555	 * RFC1122: packets with a multicast source address are
556	 * not allowed.
557	 */
558	if (IN_MULTICAST(ip->ip_src.s_addr)) {
559		IP_STATINC(IP_STAT_BADADDR);
560		goto bad;
561	}
562
563	/* 127/8 must not appear on wire - RFC1122 */
564	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
565	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
566		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
567			IP_STATINC(IP_STAT_BADADDR);
568			goto bad;
569		}
570	}
571
572	switch (m->m_pkthdr.csum_flags &
573		((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
574		 M_CSUM_IPv4_BAD)) {
575	case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
576		INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
577		goto badcsum;
578
579	case M_CSUM_IPv4:
580		/* Checksum was okay. */
581		INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
582		break;
583
584	default:
585		/*
586		 * Must compute it ourselves.  Maybe skip checksum on
587		 * loopback interfaces.
588		 */
589		if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
590				     IFF_LOOPBACK) || ip_do_loopback_cksum)) {
591			INET_CSUM_COUNTER_INCR(&ip_swcsum);
592			if (in_cksum(m, hlen) != 0)
593				goto badcsum;
594		}
595		break;
596	}
597
598	/* Retrieve the packet length. */
599	len = ntohs(ip->ip_len);
600
601	/*
602	 * Check for additional length bogosity
603	 */
604	if (len < hlen) {
605		IP_STATINC(IP_STAT_BADLEN);
606		goto bad;
607	}
608
609	/*
610	 * Check that the amount of data in the buffers
611	 * is as at least much as the IP header would have us expect.
612	 * Trim mbufs if longer than we expect.
613	 * Drop packet if shorter than we expect.
614	 */
615	if (m->m_pkthdr.len < len) {
616		IP_STATINC(IP_STAT_TOOSHORT);
617		goto bad;
618	}
619	if (m->m_pkthdr.len > len) {
620		if (m->m_len == m->m_pkthdr.len) {
621			m->m_len = len;
622			m->m_pkthdr.len = len;
623		} else
624			m_adj(m, len - m->m_pkthdr.len);
625	}
626
627#if defined(IPSEC)
628	/* ipflow (IP fast forwarding) is not compatible with IPsec. */
629	m->m_flags &= ~M_CANFASTFWD;
630#else
631	/*
632	 * Assume that we can create a fast-forward IP flow entry
633	 * based on this packet.
634	 */
635	m->m_flags |= M_CANFASTFWD;
636#endif
637
638#ifdef PFIL_HOOKS
639	/*
640	 * Run through list of hooks for input packets.  If there are any
641	 * filters which require that additional packets in the flow are
642	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
643	 * Note that filters must _never_ set this flag, as another filter
644	 * in the list may have previously cleared it.
645	 */
646	/*
647	 * let ipfilter look at packet on the wire,
648	 * not the decapsulated packet.
649	 */
650#ifdef IPSEC
651	if (!ipsec_getnhist(m))
652#elif defined(FAST_IPSEC)
653	if (!ipsec_indone(m))
654#else
655	if (1)
656#endif
657	{
658		struct in_addr odst;
659
660		odst = ip->ip_dst;
661		if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
662		    PFIL_IN) != 0)
663			return;
664		if (m == NULL)
665			return;
666		ip = mtod(m, struct ip *);
667		hlen = ip->ip_hl << 2;
668		/*
669		 * XXX The setting of "srcrt" here is to prevent ip_forward()
670		 * from generating ICMP redirects for packets that have
671		 * been redirected by a hook back out on to the same LAN that
672		 * they came from and is not an indication that the packet
673		 * is being inffluenced by source routing options.  This
674		 * allows things like
675		 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
676		 * where tlp0 is both on the 1.1.1.0/24 network and is the
677		 * default route for hosts on 1.1.1.0/24.  Of course this
678		 * also requires a "map tlp0 ..." to complete the story.
679		 * One might argue whether or not this kind of network config.
680		 * should be supported in this manner...
681		 */
682		srcrt = (odst.s_addr != ip->ip_dst.s_addr);
683	}
684#endif /* PFIL_HOOKS */
685
686#ifdef ALTQ
687	/* XXX Temporary until ALTQ is changed to use a pfil hook */
688	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
689		/* packet dropped by traffic conditioner */
690		return;
691	}
692#endif
693
694	/*
695	 * Process options and, if not destined for us,
696	 * ship it on.  ip_dooptions returns 1 when an
697	 * error was detected (causing an icmp message
698	 * to be sent and the original packet to be freed).
699	 */
700	ip_nhops = 0;		/* for source routed packets */
701	if (hlen > sizeof (struct ip) && ip_dooptions(m))
702		return;
703
704	/*
705	 * Enable a consistency check between the destination address
706	 * and the arrival interface for a unicast packet (the RFC 1122
707	 * strong ES model) if IP forwarding is disabled and the packet
708	 * is not locally generated.
709	 *
710	 * XXX - Checking also should be disabled if the destination
711	 * address is ipnat'ed to a different interface.
712	 *
713	 * XXX - Checking is incompatible with IP aliases added
714	 * to the loopback interface instead of the interface where
715	 * the packets are received.
716	 *
717	 * XXX - We need to add a per ifaddr flag for this so that
718	 * we get finer grain control.
719	 */
720	checkif = ip_checkinterface && (ipforwarding == 0) &&
721	    (m->m_pkthdr.rcvif != NULL) &&
722	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
723
724	/*
725	 * Check our list of addresses, to see if the packet is for us.
726	 *
727	 * Traditional 4.4BSD did not consult IFF_UP at all.
728	 * The behavior here is to treat addresses on !IFF_UP interface
729	 * as not mine.
730	 */
731	downmatch = 0;
732	LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
733		if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
734			if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
735				continue;
736			if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
737				break;
738			else
739				downmatch++;
740		}
741	}
742	if (ia != NULL)
743		goto ours;
744	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
745		IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
746			if (ifa->ifa_addr->sa_family != AF_INET)
747				continue;
748			ia = ifatoia(ifa);
749			if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
750			    in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
751			    /*
752			     * Look for all-0's host part (old broadcast addr),
753			     * either for subnet or net.
754			     */
755			    ip->ip_dst.s_addr == ia->ia_subnet ||
756			    ip->ip_dst.s_addr == ia->ia_net)
757				goto ours;
758			/*
759			 * An interface with IP address zero accepts
760			 * all packets that arrive on that interface.
761			 */
762			if (in_nullhost(ia->ia_addr.sin_addr))
763				goto ours;
764		}
765	}
766	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
767		struct in_multi *inm;
768#ifdef MROUTING
769		extern struct socket *ip_mrouter;
770
771		if (ip_mrouter) {
772			/*
773			 * If we are acting as a multicast router, all
774			 * incoming multicast packets are passed to the
775			 * kernel-level multicast forwarding function.
776			 * The packet is returned (relatively) intact; if
777			 * ip_mforward() returns a non-zero value, the packet
778			 * must be discarded, else it may be accepted below.
779			 *
780			 * (The IP ident field is put in the same byte order
781			 * as expected when ip_mforward() is called from
782			 * ip_output().)
783			 */
784			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
785				IP_STATINC(IP_STAT_CANTFORWARD);
786				m_freem(m);
787				return;
788			}
789
790			/*
791			 * The process-level routing demon needs to receive
792			 * all multicast IGMP packets, whether or not this
793			 * host belongs to their destination groups.
794			 */
795			if (ip->ip_p == IPPROTO_IGMP)
796				goto ours;
797			IP_STATINC(IP_STAT_CANTFORWARD);
798		}
799#endif
800		/*
801		 * See if we belong to the destination multicast group on the
802		 * arrival interface.
803		 */
804		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
805		if (inm == NULL) {
806			IP_STATINC(IP_STAT_CANTFORWARD);
807			m_freem(m);
808			return;
809		}
810		goto ours;
811	}
812	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
813	    in_nullhost(ip->ip_dst))
814		goto ours;
815
816	/*
817	 * Not for us; forward if possible and desirable.
818	 */
819	if (ipforwarding == 0) {
820		IP_STATINC(IP_STAT_CANTFORWARD);
821		m_freem(m);
822	} else {
823		/*
824		 * If ip_dst matched any of my address on !IFF_UP interface,
825		 * and there's no IFF_UP interface that matches ip_dst,
826		 * send icmp unreach.  Forwarding it will result in in-kernel
827		 * forwarding loop till TTL goes to 0.
828		 */
829		if (downmatch) {
830			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
831			IP_STATINC(IP_STAT_CANTFORWARD);
832			return;
833		}
834#ifdef IPSEC
835		if (ipsec4_in_reject(m, NULL)) {
836			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
837			goto bad;
838		}
839#endif
840#ifdef FAST_IPSEC
841		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
842		s = splsoftnet();
843		if (mtag != NULL) {
844			tdbi = (struct tdb_ident *)(mtag + 1);
845			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
846		} else {
847			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
848						   IP_FORWARDING, &error);
849		}
850		if (sp == NULL) {	/* NB: can happen if error */
851			splx(s);
852			/*XXX error stat???*/
853			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
854			goto bad;
855		}
856
857		/*
858		 * Check security policy against packet attributes.
859		 */
860		error = ipsec_in_reject(sp, m);
861		KEY_FREESP(&sp);
862		splx(s);
863		if (error) {
864			IP_STATINC(IP_STAT_CANTFORWARD);
865			goto bad;
866		}
867
868		/*
869		 * Peek at the outbound SP for this packet to determine if
870		 * it's a Fast Forward candidate.
871		 */
872		mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
873		if (mtag != NULL)
874			m->m_flags &= ~M_CANFASTFWD;
875		else {
876			s = splsoftnet();
877			sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
878			    (IP_FORWARDING |
879			     (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
880			    &error, NULL);
881			if (sp != NULL) {
882				m->m_flags &= ~M_CANFASTFWD;
883				KEY_FREESP(&sp);
884			}
885			splx(s);
886		}
887#endif	/* FAST_IPSEC */
888
889		ip_forward(m, srcrt);
890	}
891	return;
892
893ours:
894	/*
895	 * If offset or IP_MF are set, must reassemble.
896	 * Otherwise, nothing need be done.
897	 * (We could look in the reassembly queue to see
898	 * if the packet was previously fragmented,
899	 * but it's not worth the time; just let them time out.)
900	 */
901	if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
902		uint16_t off;
903		/*
904		 * Prevent TCP blind data attacks by not allowing non-initial
905		 * fragments to start at less than 68 bytes (minimal fragment
906		 * size) and making sure the first fragment is at least 68
907		 * bytes.
908		 */
909		off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
910		if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
911			IP_STATINC(IP_STAT_BADFRAGS);
912			goto bad;
913		}
914		/*
915		 * Look for queue of fragments
916		 * of this datagram.
917		 */
918		IPQ_LOCK();
919		hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
920		LIST_FOREACH(fp, &ipq[hash], ipq_q) {
921			if (ip->ip_id == fp->ipq_id &&
922			    in_hosteq(ip->ip_src, fp->ipq_src) &&
923			    in_hosteq(ip->ip_dst, fp->ipq_dst) &&
924			    ip->ip_p == fp->ipq_p) {
925				/*
926				 * Make sure the TOS is matches previous
927				 * fragments.
928				 */
929				if (ip->ip_tos != fp->ipq_tos) {
930					IP_STATINC(IP_STAT_BADFRAGS);
931					goto bad;
932				}
933				goto found;
934			}
935		}
936		fp = 0;
937found:
938
939		/*
940		 * Adjust ip_len to not reflect header,
941		 * set ipqe_mff if more fragments are expected,
942		 * convert offset of this to bytes.
943		 */
944		ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
945		mff = (ip->ip_off & htons(IP_MF)) != 0;
946		if (mff) {
947		        /*
948		         * Make sure that fragments have a data length
949			 * that's a non-zero multiple of 8 bytes.
950		         */
951			if (ntohs(ip->ip_len) == 0 ||
952			    (ntohs(ip->ip_len) & 0x7) != 0) {
953				IP_STATINC(IP_STAT_BADFRAGS);
954				IPQ_UNLOCK();
955				goto bad;
956			}
957		}
958		ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
959
960		/*
961		 * If datagram marked as having more fragments
962		 * or if this is not the first fragment,
963		 * attempt reassembly; if it succeeds, proceed.
964		 */
965		if (mff || ip->ip_off != htons(0)) {
966			IP_STATINC(IP_STAT_FRAGMENTS);
967			s = splvm();
968			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
969			splx(s);
970			if (ipqe == NULL) {
971				IP_STATINC(IP_STAT_RCVMEMDROP);
972				IPQ_UNLOCK();
973				goto bad;
974			}
975			ipqe->ipqe_mff = mff;
976			ipqe->ipqe_m = m;
977			ipqe->ipqe_ip = ip;
978			m = ip_reass(ipqe, fp, &ipq[hash]);
979			if (m == 0) {
980				IPQ_UNLOCK();
981				return;
982			}
983			IP_STATINC(IP_STAT_REASSEMBLED);
984			ip = mtod(m, struct ip *);
985			hlen = ip->ip_hl << 2;
986			ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
987		} else
988			if (fp)
989				ip_freef(fp);
990		IPQ_UNLOCK();
991	}
992
993#if defined(IPSEC)
994	/*
995	 * enforce IPsec policy checking if we are seeing last header.
996	 * note that we do not visit this with protocols with pcb layer
997	 * code - like udp/tcp/raw ip.
998	 */
999	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
1000	    ipsec4_in_reject(m, NULL)) {
1001		IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1002		goto bad;
1003	}
1004#endif
1005#ifdef FAST_IPSEC
1006	/*
1007	 * enforce IPsec policy checking if we are seeing last header.
1008	 * note that we do not visit this with protocols with pcb layer
1009	 * code - like udp/tcp/raw ip.
1010	 */
1011	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
1012		/*
1013		 * Check if the packet has already had IPsec processing
1014		 * done.  If so, then just pass it along.  This tag gets
1015		 * set during AH, ESP, etc. input handling, before the
1016		 * packet is returned to the ip input queue for delivery.
1017		 */
1018		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1019		s = splsoftnet();
1020		if (mtag != NULL) {
1021			tdbi = (struct tdb_ident *)(mtag + 1);
1022			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1023		} else {
1024			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1025						   IP_FORWARDING, &error);
1026		}
1027		if (sp != NULL) {
1028			/*
1029			 * Check security policy against packet attributes.
1030			 */
1031			error = ipsec_in_reject(sp, m);
1032			KEY_FREESP(&sp);
1033		} else {
1034			/* XXX error stat??? */
1035			error = EINVAL;
1036DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1037		}
1038		splx(s);
1039		if (error)
1040			goto bad;
1041	}
1042#endif /* FAST_IPSEC */
1043
1044	/*
1045	 * Switch out to protocol's input routine.
1046	 */
1047#if IFA_STATS
1048	if (ia && ip)
1049		ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1050#endif
1051	IP_STATINC(IP_STAT_DELIVERED);
1052    {
1053	int off = hlen, nh = ip->ip_p;
1054
1055	(*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1056	return;
1057    }
1058bad:
1059	m_freem(m);
1060	return;
1061
1062badcsum:
1063	IP_STATINC(IP_STAT_BADSUM);
1064	m_freem(m);
1065}
1066
1067/*
1068 * Take incoming datagram fragment and try to
1069 * reassemble it into whole datagram.  If a chain for
1070 * reassembly of this datagram already exists, then it
1071 * is given as fp; otherwise have to make a chain.
1072 */
1073struct mbuf *
1074ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1075{
1076	struct mbuf *m = ipqe->ipqe_m;
1077	struct ipqent *nq, *p, *q;
1078	struct ip *ip;
1079	struct mbuf *t;
1080	int hlen = ipqe->ipqe_ip->ip_hl << 2;
1081	int i, next, s;
1082
1083	IPQ_LOCK_CHECK();
1084
1085	/*
1086	 * Presence of header sizes in mbufs
1087	 * would confuse code below.
1088	 */
1089	m->m_data += hlen;
1090	m->m_len -= hlen;
1091
1092#ifdef	notyet
1093	/* make sure fragment limit is up-to-date */
1094	CHECK_NMBCLUSTER_PARAMS();
1095
1096	/* If we have too many fragments, drop the older half. */
1097	if (ip_nfrags >= ip_maxfrags)
1098		ip_reass_drophalf(void);
1099#endif
1100
1101	/*
1102	 * We are about to add a fragment; increment frag count.
1103	 */
1104	ip_nfrags++;
1105
1106	/*
1107	 * If first fragment to arrive, create a reassembly queue.
1108	 */
1109	if (fp == 0) {
1110		/*
1111		 * Enforce upper bound on number of fragmented packets
1112		 * for which we attempt reassembly;
1113		 * If maxfrag is 0, never accept fragments.
1114		 * If maxfrag is -1, accept all fragments without limitation.
1115		 */
1116		if (ip_maxfragpackets < 0)
1117			;
1118		else if (ip_nfragpackets >= ip_maxfragpackets)
1119			goto dropfrag;
1120		ip_nfragpackets++;
1121		MALLOC(fp, struct ipq *, sizeof (struct ipq),
1122		    M_FTABLE, M_NOWAIT);
1123		if (fp == NULL)
1124			goto dropfrag;
1125		LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1126		fp->ipq_nfrags = 1;
1127		fp->ipq_ttl = IPFRAGTTL;
1128		fp->ipq_p = ipqe->ipqe_ip->ip_p;
1129		fp->ipq_id = ipqe->ipqe_ip->ip_id;
1130		fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
1131		TAILQ_INIT(&fp->ipq_fragq);
1132		fp->ipq_src = ipqe->ipqe_ip->ip_src;
1133		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1134		p = NULL;
1135		goto insert;
1136	} else {
1137		fp->ipq_nfrags++;
1138	}
1139
1140	/*
1141	 * Find a segment which begins after this one does.
1142	 */
1143	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1144	    p = q, q = TAILQ_NEXT(q, ipqe_q))
1145		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1146			break;
1147
1148	/*
1149	 * If there is a preceding segment, it may provide some of
1150	 * our data already.  If so, drop the data from the incoming
1151	 * segment.  If it provides all of our data, drop us.
1152	 */
1153	if (p != NULL) {
1154		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1155		    ntohs(ipqe->ipqe_ip->ip_off);
1156		if (i > 0) {
1157			if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1158				goto dropfrag;
1159			m_adj(ipqe->ipqe_m, i);
1160			ipqe->ipqe_ip->ip_off =
1161			    htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1162			ipqe->ipqe_ip->ip_len =
1163			    htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1164		}
1165	}
1166
1167	/*
1168	 * While we overlap succeeding segments trim them or,
1169	 * if they are completely covered, dequeue them.
1170	 */
1171	for (; q != NULL &&
1172	    ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1173	    ntohs(q->ipqe_ip->ip_off); q = nq) {
1174		i = (ntohs(ipqe->ipqe_ip->ip_off) +
1175		    ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1176		if (i < ntohs(q->ipqe_ip->ip_len)) {
1177			q->ipqe_ip->ip_len =
1178			    htons(ntohs(q->ipqe_ip->ip_len) - i);
1179			q->ipqe_ip->ip_off =
1180			    htons(ntohs(q->ipqe_ip->ip_off) + i);
1181			m_adj(q->ipqe_m, i);
1182			break;
1183		}
1184		nq = TAILQ_NEXT(q, ipqe_q);
1185		m_freem(q->ipqe_m);
1186		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1187		s = splvm();
1188		pool_put(&ipqent_pool, q);
1189		splx(s);
1190		fp->ipq_nfrags--;
1191		ip_nfrags--;
1192	}
1193
1194insert:
1195	/*
1196	 * Stick new segment in its place;
1197	 * check for complete reassembly.
1198	 */
1199	if (p == NULL) {
1200		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1201	} else {
1202		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1203	}
1204	next = 0;
1205	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1206	    p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1207		if (ntohs(q->ipqe_ip->ip_off) != next)
1208			return (0);
1209		next += ntohs(q->ipqe_ip->ip_len);
1210	}
1211	if (p->ipqe_mff)
1212		return (0);
1213
1214	/*
1215	 * Reassembly is complete.  Check for a bogus message size and
1216	 * concatenate fragments.
1217	 */
1218	q = TAILQ_FIRST(&fp->ipq_fragq);
1219	ip = q->ipqe_ip;
1220	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1221		IP_STATINC(IP_STAT_TOOLONG);
1222		ip_freef(fp);
1223		return (0);
1224	}
1225	m = q->ipqe_m;
1226	t = m->m_next;
1227	m->m_next = 0;
1228	m_cat(m, t);
1229	nq = TAILQ_NEXT(q, ipqe_q);
1230	s = splvm();
1231	pool_put(&ipqent_pool, q);
1232	splx(s);
1233	for (q = nq; q != NULL; q = nq) {
1234		t = q->ipqe_m;
1235		nq = TAILQ_NEXT(q, ipqe_q);
1236		s = splvm();
1237		pool_put(&ipqent_pool, q);
1238		splx(s);
1239		m_cat(m, t);
1240	}
1241	ip_nfrags -= fp->ipq_nfrags;
1242
1243	/*
1244	 * Create header for new ip packet by
1245	 * modifying header of first packet;
1246	 * dequeue and discard fragment reassembly header.
1247	 * Make header visible.
1248	 */
1249	ip->ip_len = htons(next);
1250	ip->ip_src = fp->ipq_src;
1251	ip->ip_dst = fp->ipq_dst;
1252	LIST_REMOVE(fp, ipq_q);
1253	FREE(fp, M_FTABLE);
1254	ip_nfragpackets--;
1255	m->m_len += (ip->ip_hl << 2);
1256	m->m_data -= (ip->ip_hl << 2);
1257	/* some debugging cruft by sklower, below, will go away soon */
1258	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1259		int plen = 0;
1260		for (t = m; t; t = t->m_next)
1261			plen += t->m_len;
1262		m->m_pkthdr.len = plen;
1263		m->m_pkthdr.csum_flags = 0;
1264	}
1265	return (m);
1266
1267dropfrag:
1268	if (fp != 0)
1269		fp->ipq_nfrags--;
1270	ip_nfrags--;
1271	IP_STATINC(IP_STAT_FRAGDROPPED);
1272	m_freem(m);
1273	s = splvm();
1274	pool_put(&ipqent_pool, ipqe);
1275	splx(s);
1276	return (0);
1277}
1278
1279/*
1280 * Free a fragment reassembly header and all
1281 * associated datagrams.
1282 */
1283void
1284ip_freef(struct ipq *fp)
1285{
1286	struct ipqent *q, *p;
1287	u_int nfrags = 0;
1288	int s;
1289
1290	IPQ_LOCK_CHECK();
1291
1292	for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1293		p = TAILQ_NEXT(q, ipqe_q);
1294		m_freem(q->ipqe_m);
1295		nfrags++;
1296		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1297		s = splvm();
1298		pool_put(&ipqent_pool, q);
1299		splx(s);
1300	}
1301
1302	if (nfrags != fp->ipq_nfrags)
1303	    printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1304	ip_nfrags -= nfrags;
1305	LIST_REMOVE(fp, ipq_q);
1306	FREE(fp, M_FTABLE);
1307	ip_nfragpackets--;
1308}
1309
1310/*
1311 * IP reassembly TTL machinery for  multiplicative drop.
1312 */
1313static u_int	fragttl_histo[(IPFRAGTTL+1)];
1314
1315
1316/*
1317 * Decrement TTL of all reasembly queue entries by `ticks'.
1318 * Count number of distinct fragments (as opposed to partial, fragmented
1319 * datagrams) in the reassembly queue.  While we  traverse the entire
1320 * reassembly queue, compute and return the median TTL over all fragments.
1321 */
1322static u_int
1323ip_reass_ttl_decr(u_int ticks)
1324{
1325	u_int nfrags, median, dropfraction, keepfraction;
1326	struct ipq *fp, *nfp;
1327	int i;
1328
1329	nfrags = 0;
1330	memset(fragttl_histo, 0, sizeof fragttl_histo);
1331
1332	for (i = 0; i < IPREASS_NHASH; i++) {
1333		for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1334			fp->ipq_ttl = ((fp->ipq_ttl  <= ticks) ?
1335				       0 : fp->ipq_ttl - ticks);
1336			nfp = LIST_NEXT(fp, ipq_q);
1337			if (fp->ipq_ttl == 0) {
1338				IP_STATINC(IP_STAT_FRAGTIMEOUT);
1339				ip_freef(fp);
1340			} else {
1341				nfrags += fp->ipq_nfrags;
1342				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1343			}
1344		}
1345	}
1346
1347	KASSERT(ip_nfrags == nfrags);
1348
1349	/* Find median (or other drop fraction) in histogram. */
1350	dropfraction = (ip_nfrags / 2);
1351	keepfraction = ip_nfrags - dropfraction;
1352	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1353		median +=  fragttl_histo[i];
1354		if (median >= keepfraction)
1355			break;
1356	}
1357
1358	/* Return TTL of median (or other fraction). */
1359	return (u_int)i;
1360}
1361
1362void
1363ip_reass_drophalf(void)
1364{
1365
1366	u_int median_ticks;
1367	/*
1368	 * Compute median TTL of all fragments, and count frags
1369	 * with that TTL or lower (roughly half of all fragments).
1370	 */
1371	median_ticks = ip_reass_ttl_decr(0);
1372
1373	/* Drop half. */
1374	median_ticks = ip_reass_ttl_decr(median_ticks);
1375
1376}
1377
1378/*
1379 * IP timer processing;
1380 * if a timer expires on a reassembly
1381 * queue, discard it.
1382 */
1383void
1384ip_slowtimo(void)
1385{
1386	static u_int dropscanidx = 0;
1387	u_int i;
1388	u_int median_ttl;
1389
1390	mutex_enter(softnet_lock);
1391	KERNEL_LOCK(1, NULL);
1392
1393	IPQ_LOCK();
1394
1395	/* Age TTL of all fragments by 1 tick .*/
1396	median_ttl = ip_reass_ttl_decr(1);
1397
1398	/* make sure fragment limit is up-to-date */
1399	CHECK_NMBCLUSTER_PARAMS();
1400
1401	/* If we have too many fragments, drop the older half. */
1402	if (ip_nfrags > ip_maxfrags)
1403		ip_reass_ttl_decr(median_ttl);
1404
1405	/*
1406	 * If we are over the maximum number of fragmented packets
1407	 * (due to the limit being lowered), drain off
1408	 * enough to get down to the new limit. Start draining
1409	 * from the reassembly hashqueue most recently drained.
1410	 */
1411	if (ip_maxfragpackets < 0)
1412		;
1413	else {
1414		int wrapped = 0;
1415
1416		i = dropscanidx;
1417		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1418			while (LIST_FIRST(&ipq[i]) != NULL)
1419				ip_freef(LIST_FIRST(&ipq[i]));
1420			if (++i >= IPREASS_NHASH) {
1421				i = 0;
1422			}
1423			/*
1424			 * Dont scan forever even if fragment counters are
1425			 * wrong: stop after scanning entire reassembly queue.
1426			 */
1427			if (i == dropscanidx)
1428			    wrapped = 1;
1429		}
1430		dropscanidx = i;
1431	}
1432	IPQ_UNLOCK();
1433
1434	KERNEL_UNLOCK_ONE(NULL);
1435	mutex_exit(softnet_lock);
1436}
1437
1438/*
1439 * Drain off all datagram fragments.  Don't acquire softnet_lock as
1440 * can be called from hardware interrupt context.
1441 */
1442void
1443ip_drain(void)
1444{
1445
1446	KERNEL_LOCK(1, NULL);
1447
1448	/*
1449	 * We may be called from a device's interrupt context.  If
1450	 * the ipq is already busy, just bail out now.
1451	 */
1452	if (ipq_lock_try() != 0) {
1453		/*
1454		 * Drop half the total fragments now. If more mbufs are
1455		 * needed, we will be called again soon.
1456		 */
1457		ip_reass_drophalf();
1458		IPQ_UNLOCK();
1459	}
1460
1461	KERNEL_UNLOCK_ONE(NULL);
1462}
1463
1464/*
1465 * Do option processing on a datagram,
1466 * possibly discarding it if bad options are encountered,
1467 * or forwarding it if source-routed.
1468 * Returns 1 if packet has been forwarded/freed,
1469 * 0 if the packet should be processed further.
1470 */
1471int
1472ip_dooptions(struct mbuf *m)
1473{
1474	struct ip *ip = mtod(m, struct ip *);
1475	u_char *cp, *cp0;
1476	struct ip_timestamp *ipt;
1477	struct in_ifaddr *ia;
1478	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1479	struct in_addr dst;
1480	n_time ntime;
1481
1482	dst = ip->ip_dst;
1483	cp = (u_char *)(ip + 1);
1484	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1485	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1486		opt = cp[IPOPT_OPTVAL];
1487		if (opt == IPOPT_EOL)
1488			break;
1489		if (opt == IPOPT_NOP)
1490			optlen = 1;
1491		else {
1492			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1493				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1494				goto bad;
1495			}
1496			optlen = cp[IPOPT_OLEN];
1497			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1498				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1499				goto bad;
1500			}
1501		}
1502		switch (opt) {
1503
1504		default:
1505			break;
1506
1507		/*
1508		 * Source routing with record.
1509		 * Find interface with current destination address.
1510		 * If none on this machine then drop if strictly routed,
1511		 * or do nothing if loosely routed.
1512		 * Record interface address and bring up next address
1513		 * component.  If strictly routed make sure next
1514		 * address is on directly accessible net.
1515		 */
1516		case IPOPT_LSRR:
1517		case IPOPT_SSRR:
1518			if (ip_allowsrcrt == 0) {
1519				type = ICMP_UNREACH;
1520				code = ICMP_UNREACH_NET_PROHIB;
1521				goto bad;
1522			}
1523			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1524				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1525				goto bad;
1526			}
1527			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1528				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1529				goto bad;
1530			}
1531			ipaddr.sin_addr = ip->ip_dst;
1532			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1533			if (ia == 0) {
1534				if (opt == IPOPT_SSRR) {
1535					type = ICMP_UNREACH;
1536					code = ICMP_UNREACH_SRCFAIL;
1537					goto bad;
1538				}
1539				/*
1540				 * Loose routing, and not at next destination
1541				 * yet; nothing to do except forward.
1542				 */
1543				break;
1544			}
1545			off--;			/* 0 origin */
1546			if ((off + sizeof(struct in_addr)) > optlen) {
1547				/*
1548				 * End of source route.  Should be for us.
1549				 */
1550				save_rte(cp, ip->ip_src);
1551				break;
1552			}
1553			/*
1554			 * locate outgoing interface
1555			 */
1556			bcopy((void *)(cp + off), (void *)&ipaddr.sin_addr,
1557			    sizeof(ipaddr.sin_addr));
1558			if (opt == IPOPT_SSRR)
1559				ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1560			else
1561				ia = ip_rtaddr(ipaddr.sin_addr);
1562			if (ia == 0) {
1563				type = ICMP_UNREACH;
1564				code = ICMP_UNREACH_SRCFAIL;
1565				goto bad;
1566			}
1567			ip->ip_dst = ipaddr.sin_addr;
1568			bcopy((void *)&ia->ia_addr.sin_addr,
1569			    (void *)(cp + off), sizeof(struct in_addr));
1570			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1571			/*
1572			 * Let ip_intr's mcast routing check handle mcast pkts
1573			 */
1574			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1575			break;
1576
1577		case IPOPT_RR:
1578			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1579				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1580				goto bad;
1581			}
1582			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1583				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1584				goto bad;
1585			}
1586			/*
1587			 * If no space remains, ignore.
1588			 */
1589			off--;			/* 0 origin */
1590			if ((off + sizeof(struct in_addr)) > optlen)
1591				break;
1592			bcopy((void *)(&ip->ip_dst), (void *)&ipaddr.sin_addr,
1593			    sizeof(ipaddr.sin_addr));
1594			/*
1595			 * locate outgoing interface; if we're the destination,
1596			 * use the incoming interface (should be same).
1597			 */
1598			if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1599			    == NULL &&
1600			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1601				type = ICMP_UNREACH;
1602				code = ICMP_UNREACH_HOST;
1603				goto bad;
1604			}
1605			bcopy((void *)&ia->ia_addr.sin_addr,
1606			    (void *)(cp + off), sizeof(struct in_addr));
1607			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1608			break;
1609
1610		case IPOPT_TS:
1611			code = cp - (u_char *)ip;
1612			ipt = (struct ip_timestamp *)cp;
1613			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1614				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1615				goto bad;
1616			}
1617			if (ipt->ipt_ptr < 5) {
1618				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1619				goto bad;
1620			}
1621			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1622				if (++ipt->ipt_oflw == 0) {
1623					code = (u_char *)&ipt->ipt_ptr -
1624					    (u_char *)ip;
1625					goto bad;
1626				}
1627				break;
1628			}
1629			cp0 = (cp + ipt->ipt_ptr - 1);
1630			switch (ipt->ipt_flg) {
1631
1632			case IPOPT_TS_TSONLY:
1633				break;
1634
1635			case IPOPT_TS_TSANDADDR:
1636				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1637				    sizeof(struct in_addr) > ipt->ipt_len) {
1638					code = (u_char *)&ipt->ipt_ptr -
1639					    (u_char *)ip;
1640					goto bad;
1641				}
1642				ipaddr.sin_addr = dst;
1643				ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1644				    m->m_pkthdr.rcvif));
1645				if (ia == 0)
1646					continue;
1647				bcopy(&ia->ia_addr.sin_addr,
1648				    cp0, sizeof(struct in_addr));
1649				ipt->ipt_ptr += sizeof(struct in_addr);
1650				break;
1651
1652			case IPOPT_TS_PRESPEC:
1653				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1654				    sizeof(struct in_addr) > ipt->ipt_len) {
1655					code = (u_char *)&ipt->ipt_ptr -
1656					    (u_char *)ip;
1657					goto bad;
1658				}
1659				bcopy(cp0, &ipaddr.sin_addr,
1660				    sizeof(struct in_addr));
1661				if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1662				    == NULL)
1663					continue;
1664				ipt->ipt_ptr += sizeof(struct in_addr);
1665				break;
1666
1667			default:
1668				/* XXX can't take &ipt->ipt_flg */
1669				code = (u_char *)&ipt->ipt_ptr -
1670				    (u_char *)ip + 1;
1671				goto bad;
1672			}
1673			ntime = iptime();
1674			cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1675			memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1676			    sizeof(n_time));
1677			ipt->ipt_ptr += sizeof(n_time);
1678		}
1679	}
1680	if (forward) {
1681		if (ip_forwsrcrt == 0) {
1682			type = ICMP_UNREACH;
1683			code = ICMP_UNREACH_SRCFAIL;
1684			goto bad;
1685		}
1686		ip_forward(m, 1);
1687		return (1);
1688	}
1689	return (0);
1690bad:
1691	icmp_error(m, type, code, 0, 0);
1692	IP_STATINC(IP_STAT_BADOPTIONS);
1693	return (1);
1694}
1695
1696/*
1697 * Given address of next destination (final or next hop),
1698 * return internet address info of interface to be used to get there.
1699 */
1700struct in_ifaddr *
1701ip_rtaddr(struct in_addr dst)
1702{
1703	struct rtentry *rt;
1704	union {
1705		struct sockaddr		dst;
1706		struct sockaddr_in	dst4;
1707	} u;
1708
1709	sockaddr_in_init(&u.dst4, &dst, 0);
1710
1711	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1712		return NULL;
1713
1714	return ifatoia(rt->rt_ifa);
1715}
1716
1717/*
1718 * Save incoming source route for use in replies,
1719 * to be picked up later by ip_srcroute if the receiver is interested.
1720 */
1721void
1722save_rte(u_char *option, struct in_addr dst)
1723{
1724	unsigned olen;
1725
1726	olen = option[IPOPT_OLEN];
1727#ifdef DIAGNOSTIC
1728	if (ipprintfs)
1729		printf("save_rte: olen %d\n", olen);
1730#endif /* 0 */
1731	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1732		return;
1733	bcopy((void *)option, (void *)ip_srcrt.srcopt, olen);
1734	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1735	ip_srcrt.dst = dst;
1736}
1737
1738/*
1739 * Retrieve incoming source route for use in replies,
1740 * in the same form used by setsockopt.
1741 * The first hop is placed before the options, will be removed later.
1742 */
1743struct mbuf *
1744ip_srcroute(void)
1745{
1746	struct in_addr *p, *q;
1747	struct mbuf *m;
1748
1749	if (ip_nhops == 0)
1750		return NULL;
1751	m = m_get(M_DONTWAIT, MT_SOOPTS);
1752	if (m == 0)
1753		return NULL;
1754
1755	MCLAIM(m, &inetdomain.dom_mowner);
1756#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1757
1758	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1759	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1760	    OPTSIZ;
1761#ifdef DIAGNOSTIC
1762	if (ipprintfs)
1763		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1764#endif
1765
1766	/*
1767	 * First save first hop for return route
1768	 */
1769	p = &ip_srcrt.route[ip_nhops - 1];
1770	*(mtod(m, struct in_addr *)) = *p--;
1771#ifdef DIAGNOSTIC
1772	if (ipprintfs)
1773		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1774#endif
1775
1776	/*
1777	 * Copy option fields and padding (nop) to mbuf.
1778	 */
1779	ip_srcrt.nop = IPOPT_NOP;
1780	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1781	memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1782	    OPTSIZ);
1783	q = (struct in_addr *)(mtod(m, char *) +
1784	    sizeof(struct in_addr) + OPTSIZ);
1785#undef OPTSIZ
1786	/*
1787	 * Record return path as an IP source route,
1788	 * reversing the path (pointers are now aligned).
1789	 */
1790	while (p >= ip_srcrt.route) {
1791#ifdef DIAGNOSTIC
1792		if (ipprintfs)
1793			printf(" %x", ntohl(q->s_addr));
1794#endif
1795		*q++ = *p--;
1796	}
1797	/*
1798	 * Last hop goes to final destination.
1799	 */
1800	*q = ip_srcrt.dst;
1801#ifdef DIAGNOSTIC
1802	if (ipprintfs)
1803		printf(" %x\n", ntohl(q->s_addr));
1804#endif
1805	return (m);
1806}
1807
1808const int inetctlerrmap[PRC_NCMDS] = {
1809	[PRC_MSGSIZE] = EMSGSIZE,
1810	[PRC_HOSTDEAD] = EHOSTDOWN,
1811	[PRC_HOSTUNREACH] = EHOSTUNREACH,
1812	[PRC_UNREACH_NET] = EHOSTUNREACH,
1813	[PRC_UNREACH_HOST] = EHOSTUNREACH,
1814	[PRC_UNREACH_PROTOCOL] = ECONNREFUSED,
1815	[PRC_UNREACH_PORT] = ECONNREFUSED,
1816	[PRC_UNREACH_SRCFAIL] = EHOSTUNREACH,
1817	[PRC_PARAMPROB] = ENOPROTOOPT,
1818};
1819
1820/*
1821 * Forward a packet.  If some error occurs return the sender
1822 * an icmp packet.  Note we can't always generate a meaningful
1823 * icmp message because icmp doesn't have a large enough repertoire
1824 * of codes and types.
1825 *
1826 * If not forwarding, just drop the packet.  This could be confusing
1827 * if ipforwarding was zero but some routing protocol was advancing
1828 * us as a gateway to somewhere.  However, we must let the routing
1829 * protocol deal with that.
1830 *
1831 * The srcrt parameter indicates whether the packet is being forwarded
1832 * via a source route.
1833 */
1834void
1835ip_forward(struct mbuf *m, int srcrt)
1836{
1837	struct ip *ip = mtod(m, struct ip *);
1838	struct rtentry *rt;
1839	int error, type = 0, code = 0, destmtu = 0;
1840	struct mbuf *mcopy;
1841	n_long dest;
1842	union {
1843		struct sockaddr		dst;
1844		struct sockaddr_in	dst4;
1845	} u;
1846
1847	/*
1848	 * We are now in the output path.
1849	 */
1850	MCLAIM(m, &ip_tx_mowner);
1851
1852	/*
1853	 * Clear any in-bound checksum flags for this packet.
1854	 */
1855	m->m_pkthdr.csum_flags = 0;
1856
1857	dest = 0;
1858#ifdef DIAGNOSTIC
1859	if (ipprintfs) {
1860		printf("forward: src %s ", inet_ntoa(ip->ip_src));
1861		printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1862	}
1863#endif
1864	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1865		IP_STATINC(IP_STAT_CANTFORWARD);
1866		m_freem(m);
1867		return;
1868	}
1869	if (ip->ip_ttl <= IPTTLDEC) {
1870		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1871		return;
1872	}
1873
1874	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1875	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1876		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1877		return;
1878	}
1879
1880	/*
1881	 * Save at most 68 bytes of the packet in case
1882	 * we need to generate an ICMP message to the src.
1883	 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1884	 */
1885	mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1886	if (mcopy)
1887		mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1888
1889	ip->ip_ttl -= IPTTLDEC;
1890
1891	/*
1892	 * If forwarding packet using same interface that it came in on,
1893	 * perhaps should send a redirect to sender to shortcut a hop.
1894	 * Only send redirect if source is sending directly to us,
1895	 * and if packet was not source routed (or has any options).
1896	 * Also, don't send redirect if forwarding using a default route
1897	 * or a route modified by a redirect.
1898	 */
1899	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1900	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1901	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
1902	    ipsendredirects && !srcrt) {
1903		if (rt->rt_ifa &&
1904		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1905		    ifatoia(rt->rt_ifa)->ia_subnet) {
1906			if (rt->rt_flags & RTF_GATEWAY)
1907				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1908			else
1909				dest = ip->ip_dst.s_addr;
1910			/*
1911			 * Router requirements says to only send host
1912			 * redirects.
1913			 */
1914			type = ICMP_REDIRECT;
1915			code = ICMP_REDIRECT_HOST;
1916#ifdef DIAGNOSTIC
1917			if (ipprintfs)
1918				printf("redirect (%d) to %x\n", code,
1919				    (u_int32_t)dest);
1920#endif
1921		}
1922	}
1923
1924	error = ip_output(m, NULL, &ipforward_rt,
1925	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1926	    (struct ip_moptions *)NULL, (struct socket *)NULL);
1927
1928	if (error)
1929		IP_STATINC(IP_STAT_CANTFORWARD);
1930	else {
1931		uint64_t *ips = IP_STAT_GETREF();
1932		ips[IP_STAT_FORWARD]++;
1933		if (type) {
1934			ips[IP_STAT_REDIRECTSENT]++;
1935			IP_STAT_PUTREF();
1936		} else {
1937			IP_STAT_PUTREF();
1938			if (mcopy) {
1939#ifdef GATEWAY
1940				if (mcopy->m_flags & M_CANFASTFWD)
1941					ipflow_create(&ipforward_rt, mcopy);
1942#endif
1943				m_freem(mcopy);
1944			}
1945			return;
1946		}
1947	}
1948	if (mcopy == NULL)
1949		return;
1950
1951	switch (error) {
1952
1953	case 0:				/* forwarded, but need redirect */
1954		/* type, code set above */
1955		break;
1956
1957	case ENETUNREACH:		/* shouldn't happen, checked above */
1958	case EHOSTUNREACH:
1959	case ENETDOWN:
1960	case EHOSTDOWN:
1961	default:
1962		type = ICMP_UNREACH;
1963		code = ICMP_UNREACH_HOST;
1964		break;
1965
1966	case EMSGSIZE:
1967		type = ICMP_UNREACH;
1968		code = ICMP_UNREACH_NEEDFRAG;
1969
1970		if ((rt = rtcache_validate(&ipforward_rt)) != NULL)
1971			destmtu = rt->rt_ifp->if_mtu;
1972
1973#if defined(IPSEC) || defined(FAST_IPSEC)
1974		{
1975			/*
1976			 * If the packet is routed over IPsec tunnel, tell the
1977			 * originator the tunnel MTU.
1978			 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1979			 * XXX quickhack!!!
1980			 */
1981
1982			struct secpolicy *sp;
1983			int ipsecerror;
1984			size_t ipsechdr;
1985			struct route *ro;
1986
1987			sp = ipsec4_getpolicybyaddr(mcopy,
1988			    IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1989			    &ipsecerror);
1990
1991			if (sp != NULL) {
1992				/* count IPsec header size */
1993				ipsechdr = ipsec4_hdrsiz(mcopy,
1994				    IPSEC_DIR_OUTBOUND, NULL);
1995
1996				/*
1997				 * find the correct route for outer IPv4
1998				 * header, compute tunnel MTU.
1999				 */
2000
2001				if (sp->req != NULL
2002				 && sp->req->sav != NULL
2003				 && sp->req->sav->sah != NULL) {
2004					ro = &sp->req->sav->sah->sa_route;
2005					rt = rtcache_validate(ro);
2006					if (rt && rt->rt_ifp) {
2007						destmtu =
2008						    rt->rt_rmx.rmx_mtu ?
2009						    rt->rt_rmx.rmx_mtu :
2010						    rt->rt_ifp->if_mtu;
2011						destmtu -= ipsechdr;
2012					}
2013				}
2014
2015#ifdef	IPSEC
2016				key_freesp(sp);
2017#else
2018				KEY_FREESP(&sp);
2019#endif
2020			}
2021		}
2022#endif /*defined(IPSEC) || defined(FAST_IPSEC)*/
2023		IP_STATINC(IP_STAT_CANTFRAG);
2024		break;
2025
2026	case ENOBUFS:
2027#if 1
2028		/*
2029		 * a router should not generate ICMP_SOURCEQUENCH as
2030		 * required in RFC1812 Requirements for IP Version 4 Routers.
2031		 * source quench could be a big problem under DoS attacks,
2032		 * or if the underlying interface is rate-limited.
2033		 */
2034		if (mcopy)
2035			m_freem(mcopy);
2036		return;
2037#else
2038		type = ICMP_SOURCEQUENCH;
2039		code = 0;
2040		break;
2041#endif
2042	}
2043	icmp_error(mcopy, type, code, dest, destmtu);
2044}
2045
2046void
2047ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2048    struct mbuf *m)
2049{
2050
2051	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2052		struct timeval tv;
2053
2054		microtime(&tv);
2055		*mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2056		    SCM_TIMESTAMP, SOL_SOCKET);
2057		if (*mp)
2058			mp = &(*mp)->m_next;
2059	}
2060	if (inp->inp_flags & INP_RECVDSTADDR) {
2061		*mp = sbcreatecontrol((void *) &ip->ip_dst,
2062		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2063		if (*mp)
2064			mp = &(*mp)->m_next;
2065	}
2066#ifdef notyet
2067	/*
2068	 * XXX
2069	 * Moving these out of udp_input() made them even more broken
2070	 * than they already were.
2071	 *	- fenner@parc.xerox.com
2072	 */
2073	/* options were tossed already */
2074	if (inp->inp_flags & INP_RECVOPTS) {
2075		*mp = sbcreatecontrol((void *) opts_deleted_above,
2076		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2077		if (*mp)
2078			mp = &(*mp)->m_next;
2079	}
2080	/* ip_srcroute doesn't do what we want here, need to fix */
2081	if (inp->inp_flags & INP_RECVRETOPTS) {
2082		*mp = sbcreatecontrol((void *) ip_srcroute(),
2083		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2084		if (*mp)
2085			mp = &(*mp)->m_next;
2086	}
2087#endif
2088	if (inp->inp_flags & INP_RECVIF) {
2089		struct sockaddr_dl sdl;
2090
2091		sockaddr_dl_init(&sdl, sizeof(sdl),
2092		    (m->m_pkthdr.rcvif != NULL)
2093		        ?  m->m_pkthdr.rcvif->if_index
2094			: 0,
2095			0, NULL, 0, NULL, 0);
2096		*mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
2097		if (*mp)
2098			mp = &(*mp)->m_next;
2099	}
2100}
2101
2102/*
2103 * sysctl helper routine for net.inet.ip.forwsrcrt.
2104 */
2105static int
2106sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2107{
2108	int error, tmp;
2109	struct sysctlnode node;
2110
2111	node = *rnode;
2112	tmp = ip_forwsrcrt;
2113	node.sysctl_data = &tmp;
2114	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2115	if (error || newp == NULL)
2116		return (error);
2117
2118	if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2119	    0, NULL, NULL, NULL))
2120		return (EPERM);
2121
2122	ip_forwsrcrt = tmp;
2123
2124	return (0);
2125}
2126
2127/*
2128 * sysctl helper routine for net.inet.ip.mtudisctimeout.  checks the
2129 * range of the new value and tweaks timers if it changes.
2130 */
2131static int
2132sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2133{
2134	int error, tmp;
2135	struct sysctlnode node;
2136
2137	node = *rnode;
2138	tmp = ip_mtudisc_timeout;
2139	node.sysctl_data = &tmp;
2140	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2141	if (error || newp == NULL)
2142		return (error);
2143	if (tmp < 0)
2144		return (EINVAL);
2145
2146	mutex_enter(softnet_lock);
2147
2148	ip_mtudisc_timeout = tmp;
2149	rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2150
2151	mutex_exit(softnet_lock);
2152
2153	return (0);
2154}
2155
2156#ifdef GATEWAY
2157/*
2158 * sysctl helper routine for net.inet.ip.maxflows.
2159 */
2160static int
2161sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2162{
2163	int error;
2164
2165	error = sysctl_lookup(SYSCTLFN_CALL(rnode));
2166	if (error || newp == NULL)
2167		return (error);
2168
2169	mutex_enter(softnet_lock);
2170	KERNEL_LOCK(1, NULL);
2171
2172	ipflow_prune();
2173
2174	KERNEL_UNLOCK_ONE(NULL);
2175	mutex_exit(softnet_lock);
2176
2177	return (0);
2178}
2179
2180static int
2181sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2182{
2183	int error, tmp;
2184	struct sysctlnode node;
2185
2186	node = *rnode;
2187	tmp = ip_hashsize;
2188	node.sysctl_data = &tmp;
2189	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2190	if (error || newp == NULL)
2191		return (error);
2192
2193	if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2194		/*
2195		 * Can only fail due to malloc()
2196		 */
2197		mutex_enter(softnet_lock);
2198		KERNEL_LOCK(1, NULL);
2199
2200		error = ipflow_invalidate_all(tmp);
2201
2202		KERNEL_UNLOCK_ONE(NULL);
2203		mutex_exit(softnet_lock);
2204
2205	} else {
2206		/*
2207		 * EINVAL if not a power of 2
2208	         */
2209		error = EINVAL;
2210	}
2211
2212	return error;
2213}
2214#endif /* GATEWAY */
2215
2216static int
2217sysctl_net_inet_ip_stats(SYSCTLFN_ARGS)
2218{
2219
2220	return (NETSTAT_SYSCTL(ipstat_percpu, IP_NSTATS));
2221}
2222
2223SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2224{
2225	extern int subnetsarelocal, hostzeroisbroadcast;
2226
2227	sysctl_createv(clog, 0, NULL, NULL,
2228		       CTLFLAG_PERMANENT,
2229		       CTLTYPE_NODE, "net", NULL,
2230		       NULL, 0, NULL, 0,
2231		       CTL_NET, CTL_EOL);
2232	sysctl_createv(clog, 0, NULL, NULL,
2233		       CTLFLAG_PERMANENT,
2234		       CTLTYPE_NODE, "inet",
2235		       SYSCTL_DESCR("PF_INET related settings"),
2236		       NULL, 0, NULL, 0,
2237		       CTL_NET, PF_INET, CTL_EOL);
2238	sysctl_createv(clog, 0, NULL, NULL,
2239		       CTLFLAG_PERMANENT,
2240		       CTLTYPE_NODE, "ip",
2241		       SYSCTL_DESCR("IPv4 related settings"),
2242		       NULL, 0, NULL, 0,
2243		       CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2244
2245	sysctl_createv(clog, 0, NULL, NULL,
2246		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2247		       CTLTYPE_INT, "forwarding",
2248		       SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2249		       NULL, 0, &ipforwarding, 0,
2250		       CTL_NET, PF_INET, IPPROTO_IP,
2251		       IPCTL_FORWARDING, CTL_EOL);
2252	sysctl_createv(clog, 0, NULL, NULL,
2253		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2254		       CTLTYPE_INT, "redirect",
2255		       SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2256		       NULL, 0, &ipsendredirects, 0,
2257		       CTL_NET, PF_INET, IPPROTO_IP,
2258		       IPCTL_SENDREDIRECTS, CTL_EOL);
2259	sysctl_createv(clog, 0, NULL, NULL,
2260		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2261		       CTLTYPE_INT, "ttl",
2262		       SYSCTL_DESCR("Default TTL for an INET datagram"),
2263		       NULL, 0, &ip_defttl, 0,
2264		       CTL_NET, PF_INET, IPPROTO_IP,
2265		       IPCTL_DEFTTL, CTL_EOL);
2266#ifdef IPCTL_DEFMTU
2267	sysctl_createv(clog, 0, NULL, NULL,
2268		       CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2269		       CTLTYPE_INT, "mtu",
2270		       SYSCTL_DESCR("Default MTA for an INET route"),
2271		       NULL, 0, &ip_mtu, 0,
2272		       CTL_NET, PF_INET, IPPROTO_IP,
2273		       IPCTL_DEFMTU, CTL_EOL);
2274#endif /* IPCTL_DEFMTU */
2275	sysctl_createv(clog, 0, NULL, NULL,
2276		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2277		       CTLTYPE_INT, "forwsrcrt",
2278		       SYSCTL_DESCR("Enable forwarding of source-routed "
2279				    "datagrams"),
2280		       sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2281		       CTL_NET, PF_INET, IPPROTO_IP,
2282		       IPCTL_FORWSRCRT, CTL_EOL);
2283	sysctl_createv(clog, 0, NULL, NULL,
2284		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2285		       CTLTYPE_INT, "directed-broadcast",
2286		       SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2287		       NULL, 0, &ip_directedbcast, 0,
2288		       CTL_NET, PF_INET, IPPROTO_IP,
2289		       IPCTL_DIRECTEDBCAST, CTL_EOL);
2290	sysctl_createv(clog, 0, NULL, NULL,
2291		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2292		       CTLTYPE_INT, "allowsrcrt",
2293		       SYSCTL_DESCR("Accept source-routed datagrams"),
2294		       NULL, 0, &ip_allowsrcrt, 0,
2295		       CTL_NET, PF_INET, IPPROTO_IP,
2296		       IPCTL_ALLOWSRCRT, CTL_EOL);
2297	sysctl_createv(clog, 0, NULL, NULL,
2298		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2299		       CTLTYPE_INT, "subnetsarelocal",
2300		       SYSCTL_DESCR("Whether logical subnets are considered "
2301				    "local"),
2302		       NULL, 0, &subnetsarelocal, 0,
2303		       CTL_NET, PF_INET, IPPROTO_IP,
2304		       IPCTL_SUBNETSARELOCAL, CTL_EOL);
2305	sysctl_createv(clog, 0, NULL, NULL,
2306		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2307		       CTLTYPE_INT, "mtudisc",
2308		       SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2309		       NULL, 0, &ip_mtudisc, 0,
2310		       CTL_NET, PF_INET, IPPROTO_IP,
2311		       IPCTL_MTUDISC, CTL_EOL);
2312	sysctl_createv(clog, 0, NULL, NULL,
2313		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2314		       CTLTYPE_INT, "anonportmin",
2315		       SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2316		       sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2317		       CTL_NET, PF_INET, IPPROTO_IP,
2318		       IPCTL_ANONPORTMIN, CTL_EOL);
2319	sysctl_createv(clog, 0, NULL, NULL,
2320		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2321		       CTLTYPE_INT, "anonportmax",
2322		       SYSCTL_DESCR("Highest ephemeral port number to assign"),
2323		       sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2324		       CTL_NET, PF_INET, IPPROTO_IP,
2325		       IPCTL_ANONPORTMAX, CTL_EOL);
2326	sysctl_createv(clog, 0, NULL, NULL,
2327		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2328		       CTLTYPE_INT, "mtudisctimeout",
2329		       SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2330		       sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2331		       CTL_NET, PF_INET, IPPROTO_IP,
2332		       IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2333#ifdef GATEWAY
2334	sysctl_createv(clog, 0, NULL, NULL,
2335		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2336		       CTLTYPE_INT, "maxflows",
2337		       SYSCTL_DESCR("Number of flows for fast forwarding"),
2338		       sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2339		       CTL_NET, PF_INET, IPPROTO_IP,
2340		       IPCTL_MAXFLOWS, CTL_EOL);
2341	sysctl_createv(clog, 0, NULL, NULL,
2342			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2343			CTLTYPE_INT, "hashsize",
2344			SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2345			sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2346			CTL_NET, PF_INET, IPPROTO_IP,
2347			CTL_CREATE, CTL_EOL);
2348#endif /* GATEWAY */
2349	sysctl_createv(clog, 0, NULL, NULL,
2350		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2351		       CTLTYPE_INT, "hostzerobroadcast",
2352		       SYSCTL_DESCR("All zeroes address is broadcast address"),
2353		       NULL, 0, &hostzeroisbroadcast, 0,
2354		       CTL_NET, PF_INET, IPPROTO_IP,
2355		       IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2356#if NGIF > 0
2357	sysctl_createv(clog, 0, NULL, NULL,
2358		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2359		       CTLTYPE_INT, "gifttl",
2360		       SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2361		       NULL, 0, &ip_gif_ttl, 0,
2362		       CTL_NET, PF_INET, IPPROTO_IP,
2363		       IPCTL_GIF_TTL, CTL_EOL);
2364#endif /* NGIF */
2365#ifndef IPNOPRIVPORTS
2366	sysctl_createv(clog, 0, NULL, NULL,
2367		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2368		       CTLTYPE_INT, "lowportmin",
2369		       SYSCTL_DESCR("Lowest privileged ephemeral port number "
2370				    "to assign"),
2371		       sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2372		       CTL_NET, PF_INET, IPPROTO_IP,
2373		       IPCTL_LOWPORTMIN, CTL_EOL);
2374	sysctl_createv(clog, 0, NULL, NULL,
2375		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2376		       CTLTYPE_INT, "lowportmax",
2377		       SYSCTL_DESCR("Highest privileged ephemeral port number "
2378				    "to assign"),
2379		       sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2380		       CTL_NET, PF_INET, IPPROTO_IP,
2381		       IPCTL_LOWPORTMAX, CTL_EOL);
2382#endif /* IPNOPRIVPORTS */
2383	sysctl_createv(clog, 0, NULL, NULL,
2384		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2385		       CTLTYPE_INT, "maxfragpackets",
2386		       SYSCTL_DESCR("Maximum number of fragments to retain for "
2387				    "possible reassembly"),
2388		       NULL, 0, &ip_maxfragpackets, 0,
2389		       CTL_NET, PF_INET, IPPROTO_IP,
2390		       IPCTL_MAXFRAGPACKETS, CTL_EOL);
2391#if NGRE > 0
2392	sysctl_createv(clog, 0, NULL, NULL,
2393		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2394		       CTLTYPE_INT, "grettl",
2395		       SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2396		       NULL, 0, &ip_gre_ttl, 0,
2397		       CTL_NET, PF_INET, IPPROTO_IP,
2398		       IPCTL_GRE_TTL, CTL_EOL);
2399#endif /* NGRE */
2400	sysctl_createv(clog, 0, NULL, NULL,
2401		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2402		       CTLTYPE_INT, "checkinterface",
2403		       SYSCTL_DESCR("Enable receive side of Strong ES model "
2404				    "from RFC1122"),
2405		       NULL, 0, &ip_checkinterface, 0,
2406		       CTL_NET, PF_INET, IPPROTO_IP,
2407		       IPCTL_CHECKINTERFACE, CTL_EOL);
2408	sysctl_createv(clog, 0, NULL, NULL,
2409		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2410		       CTLTYPE_INT, "random_id",
2411		       SYSCTL_DESCR("Assign random ip_id values"),
2412		       NULL, 0, &ip_do_randomid, 0,
2413		       CTL_NET, PF_INET, IPPROTO_IP,
2414		       IPCTL_RANDOMID, CTL_EOL);
2415	sysctl_createv(clog, 0, NULL, NULL,
2416		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2417		       CTLTYPE_INT, "do_loopback_cksum",
2418		       SYSCTL_DESCR("Perform IP checksum on loopback"),
2419		       NULL, 0, &ip_do_loopback_cksum, 0,
2420		       CTL_NET, PF_INET, IPPROTO_IP,
2421		       IPCTL_LOOPBACKCKSUM, CTL_EOL);
2422	sysctl_createv(clog, 0, NULL, NULL,
2423		       CTLFLAG_PERMANENT,
2424		       CTLTYPE_STRUCT, "stats",
2425		       SYSCTL_DESCR("IP statistics"),
2426		       sysctl_net_inet_ip_stats, 0, NULL, 0,
2427		       CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2428		       CTL_EOL);
2429}
2430
2431void
2432ip_statinc(u_int stat)
2433{
2434
2435	KASSERT(stat < IP_NSTATS);
2436	IP_STATINC(stat);
2437}
2438