ip_input.c revision 1.258
1/*	$NetBSD: ip_input.c,v 1.258 2007/12/21 18:58:55 matt Exp $	*/
2
3/*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32/*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix").  It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 *    notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 *    notice, this list of conditions and the following disclaimer in the
47 *    documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 *    must display the following acknowledgement:
50 *	This product includes software developed by the NetBSD
51 *	Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 *    contributors may be used to endorse or promote products derived
54 *    from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69/*
70 * Copyright (c) 1982, 1986, 1988, 1993
71 *	The Regents of the University of California.  All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 *    notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 *    notice, this list of conditions and the following disclaimer in the
80 *    documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 *    may be used to endorse or promote products derived from this software
83 *    without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
98 */
99
100#include <sys/cdefs.h>
101__KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.258 2007/12/21 18:58:55 matt Exp $");
102
103#include "opt_inet.h"
104#include "opt_gateway.h"
105#include "opt_pfil_hooks.h"
106#include "opt_ipsec.h"
107#include "opt_mrouting.h"
108#include "opt_mbuftrace.h"
109#include "opt_inet_csum.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/malloc.h>
114#include <sys/mbuf.h>
115#include <sys/domain.h>
116#include <sys/protosw.h>
117#include <sys/socket.h>
118#include <sys/socketvar.h>
119#include <sys/errno.h>
120#include <sys/time.h>
121#include <sys/kernel.h>
122#include <sys/pool.h>
123#include <sys/sysctl.h>
124#include <sys/kauth.h>
125
126#include <net/if.h>
127#include <net/if_dl.h>
128#include <net/route.h>
129#include <net/pfil.h>
130
131#include <netinet/in.h>
132#include <netinet/in_systm.h>
133#include <netinet/ip.h>
134#include <netinet/in_pcb.h>
135#include <netinet/in_proto.h>
136#include <netinet/in_var.h>
137#include <netinet/ip_var.h>
138#include <netinet/ip_icmp.h>
139/* just for gif_ttl */
140#include <netinet/in_gif.h>
141#include "gif.h"
142#include <net/if_gre.h>
143#include "gre.h"
144
145#ifdef MROUTING
146#include <netinet/ip_mroute.h>
147#endif
148
149#ifdef IPSEC
150#include <netinet6/ipsec.h>
151#include <netkey/key.h>
152#endif
153#ifdef FAST_IPSEC
154#include <netipsec/ipsec.h>
155#include <netipsec/key.h>
156#endif	/* FAST_IPSEC*/
157
158#ifndef	IPFORWARDING
159#ifdef GATEWAY
160#define	IPFORWARDING	1	/* forward IP packets not for us */
161#else /* GATEWAY */
162#define	IPFORWARDING	0	/* don't forward IP packets not for us */
163#endif /* GATEWAY */
164#endif /* IPFORWARDING */
165#ifndef	IPSENDREDIRECTS
166#define	IPSENDREDIRECTS	1
167#endif
168#ifndef IPFORWSRCRT
169#define	IPFORWSRCRT	1	/* forward source-routed packets */
170#endif
171#ifndef IPALLOWSRCRT
172#define	IPALLOWSRCRT	1	/* allow source-routed packets */
173#endif
174#ifndef IPMTUDISC
175#define IPMTUDISC	1
176#endif
177#ifndef IPMTUDISCTIMEOUT
178#define IPMTUDISCTIMEOUT (10 * 60)	/* as per RFC 1191 */
179#endif
180
181/*
182 * Note: DIRECTED_BROADCAST is handled this way so that previous
183 * configuration using this option will Just Work.
184 */
185#ifndef IPDIRECTEDBCAST
186#ifdef DIRECTED_BROADCAST
187#define IPDIRECTEDBCAST	1
188#else
189#define	IPDIRECTEDBCAST	0
190#endif /* DIRECTED_BROADCAST */
191#endif /* IPDIRECTEDBCAST */
192int	ipforwarding = IPFORWARDING;
193int	ipsendredirects = IPSENDREDIRECTS;
194int	ip_defttl = IPDEFTTL;
195int	ip_forwsrcrt = IPFORWSRCRT;
196int	ip_directedbcast = IPDIRECTEDBCAST;
197int	ip_allowsrcrt = IPALLOWSRCRT;
198int	ip_mtudisc = IPMTUDISC;
199int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
200#ifdef DIAGNOSTIC
201int	ipprintfs = 0;
202#endif
203
204int	ip_do_randomid = 0;
205
206/*
207 * XXX - Setting ip_checkinterface mostly implements the receive side of
208 * the Strong ES model described in RFC 1122, but since the routing table
209 * and transmit implementation do not implement the Strong ES model,
210 * setting this to 1 results in an odd hybrid.
211 *
212 * XXX - ip_checkinterface currently must be disabled if you use ipnat
213 * to translate the destination address to another local interface.
214 *
215 * XXX - ip_checkinterface must be disabled if you add IP aliases
216 * to the loopback interface instead of the interface where the
217 * packets for those addresses are received.
218 */
219int	ip_checkinterface = 0;
220
221
222struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
223
224int	ipqmaxlen = IFQ_MAXLEN;
225u_long	in_ifaddrhash;				/* size of hash table - 1 */
226int	in_ifaddrentries;			/* total number of addrs */
227struct in_ifaddrhead in_ifaddrhead;
228struct	in_ifaddrhashhead *in_ifaddrhashtbl;
229u_long	in_multihash;				/* size of hash table - 1 */
230int	in_multientries;			/* total number of addrs */
231struct	in_multihashhead *in_multihashtbl;
232struct	ifqueue ipintrq;
233struct	ipstat	ipstat;
234uint16_t ip_id;
235
236#ifdef PFIL_HOOKS
237struct pfil_head inet_pfil_hook;
238#endif
239
240/*
241 * Cached copy of nmbclusters. If nbclusters is different,
242 * recalculate IP parameters derived from nmbclusters.
243 */
244static int	ip_nmbclusters;			/* copy of nmbclusters */
245static void	ip_nmbclusters_changed(void);	/* recalc limits */
246
247#define CHECK_NMBCLUSTER_PARAMS()				\
248do {								\
249	if (__predict_false(ip_nmbclusters != nmbclusters))	\
250		ip_nmbclusters_changed();			\
251} while (/*CONSTCOND*/0)
252
253/* IP datagram reassembly queues (hashed) */
254#define IPREASS_NHASH_LOG2      6
255#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
256#define IPREASS_HMASK           (IPREASS_NHASH - 1)
257#define IPREASS_HASH(x,y) \
258	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
259struct ipqhead ipq[IPREASS_NHASH];
260int	ipq_locked;
261static int	ip_nfragpackets;	/* packets in reass queue */
262static int	ip_nfrags;		/* total fragments in reass queues */
263
264int	ip_maxfragpackets = 200;	/* limit on packets. XXX sysctl */
265int	ip_maxfrags;		        /* limit on fragments. XXX sysctl */
266
267
268/*
269 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
270 * IP reassembly queue buffer managment.
271 *
272 * We keep a count of total IP fragments (NB: not fragmented packets!)
273 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
274 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
275 * total fragments in  reassembly queues.This AIMD policy avoids
276 * repeatedly deleting single packets under heavy fragmentation load
277 * (e.g., from lossy NFS peers).
278 */
279static u_int	ip_reass_ttl_decr(u_int ticks);
280static void	ip_reass_drophalf(void);
281
282
283static inline int ipq_lock_try(void);
284static inline void ipq_unlock(void);
285
286static inline int
287ipq_lock_try(void)
288{
289	int s;
290
291	/*
292	 * Use splvm() -- we're blocking things that would cause
293	 * mbuf allocation.
294	 */
295	s = splvm();
296	if (ipq_locked) {
297		splx(s);
298		return (0);
299	}
300	ipq_locked = 1;
301	splx(s);
302	return (1);
303}
304
305static inline void
306ipq_unlock(void)
307{
308	int s;
309
310	s = splvm();
311	ipq_locked = 0;
312	splx(s);
313}
314
315#ifdef DIAGNOSTIC
316#define	IPQ_LOCK()							\
317do {									\
318	if (ipq_lock_try() == 0) {					\
319		printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
320		panic("ipq_lock");					\
321	}								\
322} while (/*CONSTCOND*/ 0)
323#define	IPQ_LOCK_CHECK()						\
324do {									\
325	if (ipq_locked == 0) {						\
326		printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
327		panic("ipq lock check");				\
328	}								\
329} while (/*CONSTCOND*/ 0)
330#else
331#define	IPQ_LOCK()		(void) ipq_lock_try()
332#define	IPQ_LOCK_CHECK()	/* nothing */
333#endif
334
335#define	IPQ_UNLOCK()		ipq_unlock()
336
337POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL,
338    IPL_SOFTNET);
339POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL,
340    IPL_VM);
341
342#ifdef INET_CSUM_COUNTERS
343#include <sys/device.h>
344
345struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346    NULL, "inet", "hwcsum bad");
347struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
348    NULL, "inet", "hwcsum ok");
349struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
350    NULL, "inet", "swcsum");
351
352#define	INET_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
353
354EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
355EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
356EVCNT_ATTACH_STATIC(ip_swcsum);
357
358#else
359
360#define	INET_CSUM_COUNTER_INCR(ev)	/* nothing */
361
362#endif /* INET_CSUM_COUNTERS */
363
364/*
365 * We need to save the IP options in case a protocol wants to respond
366 * to an incoming packet over the same route if the packet got here
367 * using IP source routing.  This allows connection establishment and
368 * maintenance when the remote end is on a network that is not known
369 * to us.
370 */
371int	ip_nhops = 0;
372static	struct ip_srcrt {
373	struct	in_addr dst;			/* final destination */
374	char	nop;				/* one NOP to align */
375	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
376	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
377} ip_srcrt;
378
379static void save_rte(u_char *, struct in_addr);
380
381#ifdef MBUFTRACE
382struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
383struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
384#endif
385
386/*
387 * Compute IP limits derived from the value of nmbclusters.
388 */
389static void
390ip_nmbclusters_changed(void)
391{
392	ip_maxfrags = nmbclusters / 4;
393	ip_nmbclusters =  nmbclusters;
394}
395
396/*
397 * IP initialization: fill in IP protocol switch table.
398 * All protocols not implemented in kernel go to raw IP protocol handler.
399 */
400void
401ip_init(void)
402{
403	const struct protosw *pr;
404	int i;
405
406	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
407	if (pr == 0)
408		panic("ip_init");
409	for (i = 0; i < IPPROTO_MAX; i++)
410		ip_protox[i] = pr - inetsw;
411	for (pr = inetdomain.dom_protosw;
412	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
413		if (pr->pr_domain->dom_family == PF_INET &&
414		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
415			ip_protox[pr->pr_protocol] = pr - inetsw;
416
417	for (i = 0; i < IPREASS_NHASH; i++)
418	    	LIST_INIT(&ipq[i]);
419
420	ip_id = time_second & 0xfffff;
421
422	ipintrq.ifq_maxlen = ipqmaxlen;
423	ip_nmbclusters_changed();
424
425	TAILQ_INIT(&in_ifaddrhead);
426	in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
427	    M_WAITOK, &in_ifaddrhash);
428	in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
429	    M_WAITOK, &in_multihash);
430	ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
431#ifdef GATEWAY
432	ipflow_init(ip_hashsize);
433#endif
434
435#ifdef PFIL_HOOKS
436	/* Register our Packet Filter hook. */
437	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
438	inet_pfil_hook.ph_af   = AF_INET;
439	i = pfil_head_register(&inet_pfil_hook);
440	if (i != 0)
441		printf("ip_init: WARNING: unable to register pfil hook, "
442		    "error %d\n", i);
443#endif /* PFIL_HOOKS */
444
445#ifdef MBUFTRACE
446	MOWNER_ATTACH(&ip_tx_mowner);
447	MOWNER_ATTACH(&ip_rx_mowner);
448#endif /* MBUFTRACE */
449}
450
451struct	sockaddr_in ipaddr = {
452	.sin_len = sizeof(ipaddr),
453	.sin_family = AF_INET,
454};
455struct	route ipforward_rt;
456
457/*
458 * IP software interrupt routine
459 */
460void
461ipintr(void)
462{
463	int s;
464	struct mbuf *m;
465
466	while (!IF_IS_EMPTY(&ipintrq)) {
467		s = splnet();
468		IF_DEQUEUE(&ipintrq, m);
469		splx(s);
470		if (m == 0)
471			return;
472		ip_input(m);
473	}
474}
475
476/*
477 * Ip input routine.  Checksum and byte swap header.  If fragmented
478 * try to reassemble.  Process options.  Pass to next level.
479 */
480void
481ip_input(struct mbuf *m)
482{
483	struct ip *ip = NULL;
484	struct ipq *fp;
485	struct in_ifaddr *ia;
486	struct ifaddr *ifa;
487	struct ipqent *ipqe;
488	int hlen = 0, mff, len;
489	int downmatch;
490	int checkif;
491	int srcrt = 0;
492	int s;
493	u_int hash;
494#ifdef FAST_IPSEC
495	struct m_tag *mtag;
496	struct tdb_ident *tdbi;
497	struct secpolicy *sp;
498	int error;
499#endif /* FAST_IPSEC */
500
501	MCLAIM(m, &ip_rx_mowner);
502#ifdef	DIAGNOSTIC
503	if ((m->m_flags & M_PKTHDR) == 0)
504		panic("ipintr no HDR");
505#endif
506
507	/*
508	 * If no IP addresses have been set yet but the interfaces
509	 * are receiving, can't do anything with incoming packets yet.
510	 */
511	if (TAILQ_FIRST(&in_ifaddrhead) == 0)
512		goto bad;
513	ipstat.ips_total++;
514	/*
515	 * If the IP header is not aligned, slurp it up into a new
516	 * mbuf with space for link headers, in the event we forward
517	 * it.  Otherwise, if it is aligned, make sure the entire
518	 * base IP header is in the first mbuf of the chain.
519	 */
520	if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
521		if ((m = m_copyup(m, sizeof(struct ip),
522				  (max_linkhdr + 3) & ~3)) == NULL) {
523			/* XXXJRT new stat, please */
524			ipstat.ips_toosmall++;
525			return;
526		}
527	} else if (__predict_false(m->m_len < sizeof (struct ip))) {
528		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
529			ipstat.ips_toosmall++;
530			return;
531		}
532	}
533	ip = mtod(m, struct ip *);
534	if (ip->ip_v != IPVERSION) {
535		ipstat.ips_badvers++;
536		goto bad;
537	}
538	hlen = ip->ip_hl << 2;
539	if (hlen < sizeof(struct ip)) {	/* minimum header length */
540		ipstat.ips_badhlen++;
541		goto bad;
542	}
543	if (hlen > m->m_len) {
544		if ((m = m_pullup(m, hlen)) == 0) {
545			ipstat.ips_badhlen++;
546			return;
547		}
548		ip = mtod(m, struct ip *);
549	}
550
551	/*
552	 * RFC1122: packets with a multicast source address are
553	 * not allowed.
554	 */
555	if (IN_MULTICAST(ip->ip_src.s_addr)) {
556		ipstat.ips_badaddr++;
557		goto bad;
558	}
559
560	/* 127/8 must not appear on wire - RFC1122 */
561	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
562	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
563		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
564			ipstat.ips_badaddr++;
565			goto bad;
566		}
567	}
568
569	switch (m->m_pkthdr.csum_flags &
570		((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
571		 M_CSUM_IPv4_BAD)) {
572	case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
573		INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
574		goto badcsum;
575
576	case M_CSUM_IPv4:
577		/* Checksum was okay. */
578		INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
579		break;
580
581	default:
582		/*
583		 * Must compute it ourselves.  Maybe skip checksum on
584		 * loopback interfaces.
585		 */
586		if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
587				     IFF_LOOPBACK) || ip_do_loopback_cksum)) {
588			INET_CSUM_COUNTER_INCR(&ip_swcsum);
589			if (in_cksum(m, hlen) != 0)
590				goto badcsum;
591		}
592		break;
593	}
594
595	/* Retrieve the packet length. */
596	len = ntohs(ip->ip_len);
597
598	/*
599	 * Check for additional length bogosity
600	 */
601	if (len < hlen) {
602	 	ipstat.ips_badlen++;
603		goto bad;
604	}
605
606	/*
607	 * Check that the amount of data in the buffers
608	 * is as at least much as the IP header would have us expect.
609	 * Trim mbufs if longer than we expect.
610	 * Drop packet if shorter than we expect.
611	 */
612	if (m->m_pkthdr.len < len) {
613		ipstat.ips_tooshort++;
614		goto bad;
615	}
616	if (m->m_pkthdr.len > len) {
617		if (m->m_len == m->m_pkthdr.len) {
618			m->m_len = len;
619			m->m_pkthdr.len = len;
620		} else
621			m_adj(m, len - m->m_pkthdr.len);
622	}
623
624#if defined(IPSEC)
625	/* ipflow (IP fast forwarding) is not compatible with IPsec. */
626	m->m_flags &= ~M_CANFASTFWD;
627#else
628	/*
629	 * Assume that we can create a fast-forward IP flow entry
630	 * based on this packet.
631	 */
632	m->m_flags |= M_CANFASTFWD;
633#endif
634
635#ifdef PFIL_HOOKS
636	/*
637	 * Run through list of hooks for input packets.  If there are any
638	 * filters which require that additional packets in the flow are
639	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
640	 * Note that filters must _never_ set this flag, as another filter
641	 * in the list may have previously cleared it.
642	 */
643	/*
644	 * let ipfilter look at packet on the wire,
645	 * not the decapsulated packet.
646	 */
647#ifdef IPSEC
648	if (!ipsec_getnhist(m))
649#elif defined(FAST_IPSEC)
650	if (!ipsec_indone(m))
651#else
652	if (1)
653#endif
654	{
655		struct in_addr odst;
656
657		odst = ip->ip_dst;
658		if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
659		    PFIL_IN) != 0)
660			return;
661		if (m == NULL)
662			return;
663		ip = mtod(m, struct ip *);
664		hlen = ip->ip_hl << 2;
665		/*
666		 * XXX The setting of "srcrt" here is to prevent ip_forward()
667		 * from generating ICMP redirects for packets that have
668		 * been redirected by a hook back out on to the same LAN that
669		 * they came from and is not an indication that the packet
670		 * is being inffluenced by source routing options.  This
671		 * allows things like
672		 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
673		 * where tlp0 is both on the 1.1.1.0/24 network and is the
674		 * default route for hosts on 1.1.1.0/24.  Of course this
675		 * also requires a "map tlp0 ..." to complete the story.
676		 * One might argue whether or not this kind of network config.
677		 * should be supported in this manner...
678		 */
679		srcrt = (odst.s_addr != ip->ip_dst.s_addr);
680	}
681#endif /* PFIL_HOOKS */
682
683#ifdef ALTQ
684	/* XXX Temporary until ALTQ is changed to use a pfil hook */
685	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
686		/* packet dropped by traffic conditioner */
687		return;
688	}
689#endif
690
691	/*
692	 * Process options and, if not destined for us,
693	 * ship it on.  ip_dooptions returns 1 when an
694	 * error was detected (causing an icmp message
695	 * to be sent and the original packet to be freed).
696	 */
697	ip_nhops = 0;		/* for source routed packets */
698	if (hlen > sizeof (struct ip) && ip_dooptions(m))
699		return;
700
701	/*
702	 * Enable a consistency check between the destination address
703	 * and the arrival interface for a unicast packet (the RFC 1122
704	 * strong ES model) if IP forwarding is disabled and the packet
705	 * is not locally generated.
706	 *
707	 * XXX - Checking also should be disabled if the destination
708	 * address is ipnat'ed to a different interface.
709	 *
710	 * XXX - Checking is incompatible with IP aliases added
711	 * to the loopback interface instead of the interface where
712	 * the packets are received.
713	 *
714	 * XXX - We need to add a per ifaddr flag for this so that
715	 * we get finer grain control.
716	 */
717	checkif = ip_checkinterface && (ipforwarding == 0) &&
718	    (m->m_pkthdr.rcvif != NULL) &&
719	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
720
721	/*
722	 * Check our list of addresses, to see if the packet is for us.
723	 *
724	 * Traditional 4.4BSD did not consult IFF_UP at all.
725	 * The behavior here is to treat addresses on !IFF_UP interface
726	 * as not mine.
727	 */
728	downmatch = 0;
729	LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
730		if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
731			if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
732				continue;
733			if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
734				break;
735			else
736				downmatch++;
737		}
738	}
739	if (ia != NULL)
740		goto ours;
741	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
742		IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
743			if (ifa->ifa_addr->sa_family != AF_INET)
744				continue;
745			ia = ifatoia(ifa);
746			if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
747			    in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
748			    /*
749			     * Look for all-0's host part (old broadcast addr),
750			     * either for subnet or net.
751			     */
752			    ip->ip_dst.s_addr == ia->ia_subnet ||
753			    ip->ip_dst.s_addr == ia->ia_net)
754				goto ours;
755			/*
756			 * An interface with IP address zero accepts
757			 * all packets that arrive on that interface.
758			 */
759			if (in_nullhost(ia->ia_addr.sin_addr))
760				goto ours;
761		}
762	}
763	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
764		struct in_multi *inm;
765#ifdef MROUTING
766		extern struct socket *ip_mrouter;
767
768		if (ip_mrouter) {
769			/*
770			 * If we are acting as a multicast router, all
771			 * incoming multicast packets are passed to the
772			 * kernel-level multicast forwarding function.
773			 * The packet is returned (relatively) intact; if
774			 * ip_mforward() returns a non-zero value, the packet
775			 * must be discarded, else it may be accepted below.
776			 *
777			 * (The IP ident field is put in the same byte order
778			 * as expected when ip_mforward() is called from
779			 * ip_output().)
780			 */
781			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
782				ipstat.ips_cantforward++;
783				m_freem(m);
784				return;
785			}
786
787			/*
788			 * The process-level routing demon needs to receive
789			 * all multicast IGMP packets, whether or not this
790			 * host belongs to their destination groups.
791			 */
792			if (ip->ip_p == IPPROTO_IGMP)
793				goto ours;
794			ipstat.ips_forward++;
795		}
796#endif
797		/*
798		 * See if we belong to the destination multicast group on the
799		 * arrival interface.
800		 */
801		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
802		if (inm == NULL) {
803			ipstat.ips_cantforward++;
804			m_freem(m);
805			return;
806		}
807		goto ours;
808	}
809	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
810	    in_nullhost(ip->ip_dst))
811		goto ours;
812
813	/*
814	 * Not for us; forward if possible and desirable.
815	 */
816	if (ipforwarding == 0) {
817		ipstat.ips_cantforward++;
818		m_freem(m);
819	} else {
820		/*
821		 * If ip_dst matched any of my address on !IFF_UP interface,
822		 * and there's no IFF_UP interface that matches ip_dst,
823		 * send icmp unreach.  Forwarding it will result in in-kernel
824		 * forwarding loop till TTL goes to 0.
825		 */
826		if (downmatch) {
827			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
828			ipstat.ips_cantforward++;
829			return;
830		}
831#ifdef IPSEC
832		if (ipsec4_in_reject(m, NULL)) {
833			ipsecstat.in_polvio++;
834			goto bad;
835		}
836#endif
837#ifdef FAST_IPSEC
838		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
839		s = splsoftnet();
840		if (mtag != NULL) {
841			tdbi = (struct tdb_ident *)(mtag + 1);
842			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
843		} else {
844			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
845						   IP_FORWARDING, &error);
846		}
847		if (sp == NULL) {	/* NB: can happen if error */
848			splx(s);
849			/*XXX error stat???*/
850			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
851			goto bad;
852		}
853
854		/*
855		 * Check security policy against packet attributes.
856		 */
857		error = ipsec_in_reject(sp, m);
858		KEY_FREESP(&sp);
859		splx(s);
860		if (error) {
861			ipstat.ips_cantforward++;
862			goto bad;
863		}
864
865		/*
866		 * Peek at the outbound SP for this packet to determine if
867		 * it's a Fast Forward candidate.
868		 */
869		mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
870		if (mtag != NULL)
871			m->m_flags &= ~M_CANFASTFWD;
872		else {
873			s = splsoftnet();
874			sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
875			    (IP_FORWARDING |
876			     (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
877			    &error, NULL);
878			if (sp != NULL) {
879				m->m_flags &= ~M_CANFASTFWD;
880				KEY_FREESP(&sp);
881			}
882			splx(s);
883		}
884#endif	/* FAST_IPSEC */
885
886		ip_forward(m, srcrt);
887	}
888	return;
889
890ours:
891	/*
892	 * If offset or IP_MF are set, must reassemble.
893	 * Otherwise, nothing need be done.
894	 * (We could look in the reassembly queue to see
895	 * if the packet was previously fragmented,
896	 * but it's not worth the time; just let them time out.)
897	 */
898	if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
899		uint16_t off;
900		/*
901		 * Prevent TCP blind data attacks by not allowing non-initial
902		 * fragments to start at less than 68 bytes (minimal fragment
903		 * size).
904		 */
905		off = htons(ip->ip_off) & ~(IP_DF|IP_EF|IP_MF);
906		if (off > 0 && off + hlen < IP_MINFRAGSIZE - 1) {
907			ipstat.ips_badfrags++;
908			goto bad;
909		}
910		/*
911		 * Look for queue of fragments
912		 * of this datagram.
913		 */
914		IPQ_LOCK();
915		hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
916		LIST_FOREACH(fp, &ipq[hash], ipq_q) {
917			if (ip->ip_id == fp->ipq_id &&
918			    in_hosteq(ip->ip_src, fp->ipq_src) &&
919			    in_hosteq(ip->ip_dst, fp->ipq_dst) &&
920			    ip->ip_p == fp->ipq_p)
921				goto found;
922
923		}
924		fp = 0;
925found:
926
927		/*
928		 * Adjust ip_len to not reflect header,
929		 * set ipqe_mff if more fragments are expected,
930		 * convert offset of this to bytes.
931		 */
932		ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
933		mff = (ip->ip_off & htons(IP_MF)) != 0;
934		if (mff) {
935		        /*
936		         * Make sure that fragments have a data length
937			 * that's a non-zero multiple of 8 bytes.
938		         */
939			if (ntohs(ip->ip_len) == 0 ||
940			    (ntohs(ip->ip_len) & 0x7) != 0) {
941				ipstat.ips_badfrags++;
942				IPQ_UNLOCK();
943				goto bad;
944			}
945		}
946		ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
947
948		/*
949		 * If datagram marked as having more fragments
950		 * or if this is not the first fragment,
951		 * attempt reassembly; if it succeeds, proceed.
952		 */
953		if (mff || ip->ip_off != htons(0)) {
954			ipstat.ips_fragments++;
955			s = splvm();
956			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
957			splx(s);
958			if (ipqe == NULL) {
959				ipstat.ips_rcvmemdrop++;
960				IPQ_UNLOCK();
961				goto bad;
962			}
963			ipqe->ipqe_mff = mff;
964			ipqe->ipqe_m = m;
965			ipqe->ipqe_ip = ip;
966			m = ip_reass(ipqe, fp, &ipq[hash]);
967			if (m == 0) {
968				IPQ_UNLOCK();
969				return;
970			}
971			ipstat.ips_reassembled++;
972			ip = mtod(m, struct ip *);
973			hlen = ip->ip_hl << 2;
974			ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
975		} else
976			if (fp)
977				ip_freef(fp);
978		IPQ_UNLOCK();
979	}
980
981#if defined(IPSEC)
982	/*
983	 * enforce IPsec policy checking if we are seeing last header.
984	 * note that we do not visit this with protocols with pcb layer
985	 * code - like udp/tcp/raw ip.
986	 */
987	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
988	    ipsec4_in_reject(m, NULL)) {
989		ipsecstat.in_polvio++;
990		goto bad;
991	}
992#endif
993#ifdef FAST_IPSEC
994	/*
995	 * enforce IPsec policy checking if we are seeing last header.
996	 * note that we do not visit this with protocols with pcb layer
997	 * code - like udp/tcp/raw ip.
998	 */
999	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
1000		/*
1001		 * Check if the packet has already had IPsec processing
1002		 * done.  If so, then just pass it along.  This tag gets
1003		 * set during AH, ESP, etc. input handling, before the
1004		 * packet is returned to the ip input queue for delivery.
1005		 */
1006		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1007		s = splsoftnet();
1008		if (mtag != NULL) {
1009			tdbi = (struct tdb_ident *)(mtag + 1);
1010			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1011		} else {
1012			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1013						   IP_FORWARDING, &error);
1014		}
1015		if (sp != NULL) {
1016			/*
1017			 * Check security policy against packet attributes.
1018			 */
1019			error = ipsec_in_reject(sp, m);
1020			KEY_FREESP(&sp);
1021		} else {
1022			/* XXX error stat??? */
1023			error = EINVAL;
1024DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1025		}
1026		splx(s);
1027		if (error)
1028			goto bad;
1029	}
1030#endif /* FAST_IPSEC */
1031
1032	/*
1033	 * Switch out to protocol's input routine.
1034	 */
1035#if IFA_STATS
1036	if (ia && ip)
1037		ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1038#endif
1039	ipstat.ips_delivered++;
1040    {
1041	int off = hlen, nh = ip->ip_p;
1042
1043	(*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1044	return;
1045    }
1046bad:
1047	m_freem(m);
1048	return;
1049
1050badcsum:
1051	ipstat.ips_badsum++;
1052	m_freem(m);
1053}
1054
1055/*
1056 * Take incoming datagram fragment and try to
1057 * reassemble it into whole datagram.  If a chain for
1058 * reassembly of this datagram already exists, then it
1059 * is given as fp; otherwise have to make a chain.
1060 */
1061struct mbuf *
1062ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1063{
1064	struct mbuf *m = ipqe->ipqe_m;
1065	struct ipqent *nq, *p, *q;
1066	struct ip *ip;
1067	struct mbuf *t;
1068	int hlen = ipqe->ipqe_ip->ip_hl << 2;
1069	int i, next, s;
1070
1071	IPQ_LOCK_CHECK();
1072
1073	/*
1074	 * Presence of header sizes in mbufs
1075	 * would confuse code below.
1076	 */
1077	m->m_data += hlen;
1078	m->m_len -= hlen;
1079
1080#ifdef	notyet
1081	/* make sure fragment limit is up-to-date */
1082	CHECK_NMBCLUSTER_PARAMS();
1083
1084	/* If we have too many fragments, drop the older half. */
1085	if (ip_nfrags >= ip_maxfrags)
1086		ip_reass_drophalf(void);
1087#endif
1088
1089	/*
1090	 * We are about to add a fragment; increment frag count.
1091	 */
1092	ip_nfrags++;
1093
1094	/*
1095	 * If first fragment to arrive, create a reassembly queue.
1096	 */
1097	if (fp == 0) {
1098		/*
1099		 * Enforce upper bound on number of fragmented packets
1100		 * for which we attempt reassembly;
1101		 * If maxfrag is 0, never accept fragments.
1102		 * If maxfrag is -1, accept all fragments without limitation.
1103		 */
1104		if (ip_maxfragpackets < 0)
1105			;
1106		else if (ip_nfragpackets >= ip_maxfragpackets)
1107			goto dropfrag;
1108		ip_nfragpackets++;
1109		MALLOC(fp, struct ipq *, sizeof (struct ipq),
1110		    M_FTABLE, M_NOWAIT);
1111		if (fp == NULL)
1112			goto dropfrag;
1113		LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1114		fp->ipq_nfrags = 1;
1115		fp->ipq_ttl = IPFRAGTTL;
1116		fp->ipq_p = ipqe->ipqe_ip->ip_p;
1117		fp->ipq_id = ipqe->ipqe_ip->ip_id;
1118		TAILQ_INIT(&fp->ipq_fragq);
1119		fp->ipq_src = ipqe->ipqe_ip->ip_src;
1120		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1121		p = NULL;
1122		goto insert;
1123	} else {
1124		fp->ipq_nfrags++;
1125	}
1126
1127	/*
1128	 * Find a segment which begins after this one does.
1129	 */
1130	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1131	    p = q, q = TAILQ_NEXT(q, ipqe_q))
1132		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1133			break;
1134
1135	/*
1136	 * If there is a preceding segment, it may provide some of
1137	 * our data already.  If so, drop the data from the incoming
1138	 * segment.  If it provides all of our data, drop us.
1139	 */
1140	if (p != NULL) {
1141		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1142		    ntohs(ipqe->ipqe_ip->ip_off);
1143		if (i > 0) {
1144			if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1145				goto dropfrag;
1146			m_adj(ipqe->ipqe_m, i);
1147			ipqe->ipqe_ip->ip_off =
1148			    htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1149			ipqe->ipqe_ip->ip_len =
1150			    htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1151		}
1152	}
1153
1154	/*
1155	 * While we overlap succeeding segments trim them or,
1156	 * if they are completely covered, dequeue them.
1157	 */
1158	for (; q != NULL &&
1159	    ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1160	    ntohs(q->ipqe_ip->ip_off); q = nq) {
1161		i = (ntohs(ipqe->ipqe_ip->ip_off) +
1162		    ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1163		if (i < ntohs(q->ipqe_ip->ip_len)) {
1164			q->ipqe_ip->ip_len =
1165			    htons(ntohs(q->ipqe_ip->ip_len) - i);
1166			q->ipqe_ip->ip_off =
1167			    htons(ntohs(q->ipqe_ip->ip_off) + i);
1168			m_adj(q->ipqe_m, i);
1169			break;
1170		}
1171		nq = TAILQ_NEXT(q, ipqe_q);
1172		m_freem(q->ipqe_m);
1173		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1174		s = splvm();
1175		pool_put(&ipqent_pool, q);
1176		splx(s);
1177		fp->ipq_nfrags--;
1178		ip_nfrags--;
1179	}
1180
1181insert:
1182	/*
1183	 * Stick new segment in its place;
1184	 * check for complete reassembly.
1185	 */
1186	if (p == NULL) {
1187		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1188	} else {
1189		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1190	}
1191	next = 0;
1192	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1193	    p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1194		if (ntohs(q->ipqe_ip->ip_off) != next)
1195			return (0);
1196		next += ntohs(q->ipqe_ip->ip_len);
1197	}
1198	if (p->ipqe_mff)
1199		return (0);
1200
1201	/*
1202	 * Reassembly is complete.  Check for a bogus message size and
1203	 * concatenate fragments.
1204	 */
1205	q = TAILQ_FIRST(&fp->ipq_fragq);
1206	ip = q->ipqe_ip;
1207	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1208		ipstat.ips_toolong++;
1209		ip_freef(fp);
1210		return (0);
1211	}
1212	m = q->ipqe_m;
1213	t = m->m_next;
1214	m->m_next = 0;
1215	m_cat(m, t);
1216	nq = TAILQ_NEXT(q, ipqe_q);
1217	s = splvm();
1218	pool_put(&ipqent_pool, q);
1219	splx(s);
1220	for (q = nq; q != NULL; q = nq) {
1221		t = q->ipqe_m;
1222		nq = TAILQ_NEXT(q, ipqe_q);
1223		s = splvm();
1224		pool_put(&ipqent_pool, q);
1225		splx(s);
1226		m_cat(m, t);
1227	}
1228	ip_nfrags -= fp->ipq_nfrags;
1229
1230	/*
1231	 * Create header for new ip packet by
1232	 * modifying header of first packet;
1233	 * dequeue and discard fragment reassembly header.
1234	 * Make header visible.
1235	 */
1236	ip->ip_len = htons(next);
1237	ip->ip_src = fp->ipq_src;
1238	ip->ip_dst = fp->ipq_dst;
1239	LIST_REMOVE(fp, ipq_q);
1240	FREE(fp, M_FTABLE);
1241	ip_nfragpackets--;
1242	m->m_len += (ip->ip_hl << 2);
1243	m->m_data -= (ip->ip_hl << 2);
1244	/* some debugging cruft by sklower, below, will go away soon */
1245	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1246		int plen = 0;
1247		for (t = m; t; t = t->m_next)
1248			plen += t->m_len;
1249		m->m_pkthdr.len = plen;
1250		m->m_pkthdr.csum_flags = 0;
1251	}
1252	return (m);
1253
1254dropfrag:
1255	if (fp != 0)
1256		fp->ipq_nfrags--;
1257	ip_nfrags--;
1258	ipstat.ips_fragdropped++;
1259	m_freem(m);
1260	s = splvm();
1261	pool_put(&ipqent_pool, ipqe);
1262	splx(s);
1263	return (0);
1264}
1265
1266/*
1267 * Free a fragment reassembly header and all
1268 * associated datagrams.
1269 */
1270void
1271ip_freef(struct ipq *fp)
1272{
1273	struct ipqent *q, *p;
1274	u_int nfrags = 0;
1275	int s;
1276
1277	IPQ_LOCK_CHECK();
1278
1279	for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1280		p = TAILQ_NEXT(q, ipqe_q);
1281		m_freem(q->ipqe_m);
1282		nfrags++;
1283		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1284		s = splvm();
1285		pool_put(&ipqent_pool, q);
1286		splx(s);
1287	}
1288
1289	if (nfrags != fp->ipq_nfrags)
1290	    printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1291	ip_nfrags -= nfrags;
1292	LIST_REMOVE(fp, ipq_q);
1293	FREE(fp, M_FTABLE);
1294	ip_nfragpackets--;
1295}
1296
1297/*
1298 * IP reassembly TTL machinery for  multiplicative drop.
1299 */
1300static u_int	fragttl_histo[(IPFRAGTTL+1)];
1301
1302
1303/*
1304 * Decrement TTL of all reasembly queue entries by `ticks'.
1305 * Count number of distinct fragments (as opposed to partial, fragmented
1306 * datagrams) in the reassembly queue.  While we  traverse the entire
1307 * reassembly queue, compute and return the median TTL over all fragments.
1308 */
1309static u_int
1310ip_reass_ttl_decr(u_int ticks)
1311{
1312	u_int nfrags, median, dropfraction, keepfraction;
1313	struct ipq *fp, *nfp;
1314	int i;
1315
1316	nfrags = 0;
1317	memset(fragttl_histo, 0, sizeof fragttl_histo);
1318
1319	for (i = 0; i < IPREASS_NHASH; i++) {
1320		for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1321			fp->ipq_ttl = ((fp->ipq_ttl  <= ticks) ?
1322				       0 : fp->ipq_ttl - ticks);
1323			nfp = LIST_NEXT(fp, ipq_q);
1324			if (fp->ipq_ttl == 0) {
1325				ipstat.ips_fragtimeout++;
1326				ip_freef(fp);
1327			} else {
1328				nfrags += fp->ipq_nfrags;
1329				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1330			}
1331		}
1332	}
1333
1334	KASSERT(ip_nfrags == nfrags);
1335
1336	/* Find median (or other drop fraction) in histogram. */
1337	dropfraction = (ip_nfrags / 2);
1338	keepfraction = ip_nfrags - dropfraction;
1339	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1340		median +=  fragttl_histo[i];
1341		if (median >= keepfraction)
1342			break;
1343	}
1344
1345	/* Return TTL of median (or other fraction). */
1346	return (u_int)i;
1347}
1348
1349void
1350ip_reass_drophalf(void)
1351{
1352
1353	u_int median_ticks;
1354	/*
1355	 * Compute median TTL of all fragments, and count frags
1356	 * with that TTL or lower (roughly half of all fragments).
1357	 */
1358	median_ticks = ip_reass_ttl_decr(0);
1359
1360	/* Drop half. */
1361	median_ticks = ip_reass_ttl_decr(median_ticks);
1362
1363}
1364
1365/*
1366 * IP timer processing;
1367 * if a timer expires on a reassembly
1368 * queue, discard it.
1369 */
1370void
1371ip_slowtimo(void)
1372{
1373	static u_int dropscanidx = 0;
1374	u_int i;
1375	u_int median_ttl;
1376	int s = splsoftnet();
1377
1378	IPQ_LOCK();
1379
1380	/* Age TTL of all fragments by 1 tick .*/
1381	median_ttl = ip_reass_ttl_decr(1);
1382
1383	/* make sure fragment limit is up-to-date */
1384	CHECK_NMBCLUSTER_PARAMS();
1385
1386	/* If we have too many fragments, drop the older half. */
1387	if (ip_nfrags > ip_maxfrags)
1388		ip_reass_ttl_decr(median_ttl);
1389
1390	/*
1391	 * If we are over the maximum number of fragmented packets
1392	 * (due to the limit being lowered), drain off
1393	 * enough to get down to the new limit. Start draining
1394	 * from the reassembly hashqueue most recently drained.
1395	 */
1396	if (ip_maxfragpackets < 0)
1397		;
1398	else {
1399		int wrapped = 0;
1400
1401		i = dropscanidx;
1402		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1403			while (LIST_FIRST(&ipq[i]) != NULL)
1404				ip_freef(LIST_FIRST(&ipq[i]));
1405			if (++i >= IPREASS_NHASH) {
1406				i = 0;
1407			}
1408			/*
1409			 * Dont scan forever even if fragment counters are
1410			 * wrong: stop after scanning entire reassembly queue.
1411			 */
1412			if (i == dropscanidx)
1413			    wrapped = 1;
1414		}
1415		dropscanidx = i;
1416	}
1417	IPQ_UNLOCK();
1418	splx(s);
1419}
1420
1421/*
1422 * Drain off all datagram fragments.
1423 */
1424void
1425ip_drain(void)
1426{
1427
1428	/*
1429	 * We may be called from a device's interrupt context.  If
1430	 * the ipq is already busy, just bail out now.
1431	 */
1432	if (ipq_lock_try() == 0)
1433		return;
1434
1435	/*
1436	 * Drop half the total fragments now. If more mbufs are needed,
1437	 *  we will be called again soon.
1438	 */
1439	ip_reass_drophalf();
1440
1441	IPQ_UNLOCK();
1442}
1443
1444/*
1445 * Do option processing on a datagram,
1446 * possibly discarding it if bad options are encountered,
1447 * or forwarding it if source-routed.
1448 * Returns 1 if packet has been forwarded/freed,
1449 * 0 if the packet should be processed further.
1450 */
1451int
1452ip_dooptions(struct mbuf *m)
1453{
1454	struct ip *ip = mtod(m, struct ip *);
1455	u_char *cp, *cp0;
1456	struct ip_timestamp *ipt;
1457	struct in_ifaddr *ia;
1458	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1459	struct in_addr dst;
1460	n_time ntime;
1461
1462	dst = ip->ip_dst;
1463	cp = (u_char *)(ip + 1);
1464	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1465	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1466		opt = cp[IPOPT_OPTVAL];
1467		if (opt == IPOPT_EOL)
1468			break;
1469		if (opt == IPOPT_NOP)
1470			optlen = 1;
1471		else {
1472			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1473				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1474				goto bad;
1475			}
1476			optlen = cp[IPOPT_OLEN];
1477			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1478				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1479				goto bad;
1480			}
1481		}
1482		switch (opt) {
1483
1484		default:
1485			break;
1486
1487		/*
1488		 * Source routing with record.
1489		 * Find interface with current destination address.
1490		 * If none on this machine then drop if strictly routed,
1491		 * or do nothing if loosely routed.
1492		 * Record interface address and bring up next address
1493		 * component.  If strictly routed make sure next
1494		 * address is on directly accessible net.
1495		 */
1496		case IPOPT_LSRR:
1497		case IPOPT_SSRR:
1498			if (ip_allowsrcrt == 0) {
1499				type = ICMP_UNREACH;
1500				code = ICMP_UNREACH_NET_PROHIB;
1501				goto bad;
1502			}
1503			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1504				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1505				goto bad;
1506			}
1507			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1508				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1509				goto bad;
1510			}
1511			ipaddr.sin_addr = ip->ip_dst;
1512			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1513			if (ia == 0) {
1514				if (opt == IPOPT_SSRR) {
1515					type = ICMP_UNREACH;
1516					code = ICMP_UNREACH_SRCFAIL;
1517					goto bad;
1518				}
1519				/*
1520				 * Loose routing, and not at next destination
1521				 * yet; nothing to do except forward.
1522				 */
1523				break;
1524			}
1525			off--;			/* 0 origin */
1526			if ((off + sizeof(struct in_addr)) > optlen) {
1527				/*
1528				 * End of source route.  Should be for us.
1529				 */
1530				save_rte(cp, ip->ip_src);
1531				break;
1532			}
1533			/*
1534			 * locate outgoing interface
1535			 */
1536			bcopy((void *)(cp + off), (void *)&ipaddr.sin_addr,
1537			    sizeof(ipaddr.sin_addr));
1538			if (opt == IPOPT_SSRR)
1539				ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1540			else
1541				ia = ip_rtaddr(ipaddr.sin_addr);
1542			if (ia == 0) {
1543				type = ICMP_UNREACH;
1544				code = ICMP_UNREACH_SRCFAIL;
1545				goto bad;
1546			}
1547			ip->ip_dst = ipaddr.sin_addr;
1548			bcopy((void *)&ia->ia_addr.sin_addr,
1549			    (void *)(cp + off), sizeof(struct in_addr));
1550			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1551			/*
1552			 * Let ip_intr's mcast routing check handle mcast pkts
1553			 */
1554			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1555			break;
1556
1557		case IPOPT_RR:
1558			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1559				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1560				goto bad;
1561			}
1562			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1563				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1564				goto bad;
1565			}
1566			/*
1567			 * If no space remains, ignore.
1568			 */
1569			off--;			/* 0 origin */
1570			if ((off + sizeof(struct in_addr)) > optlen)
1571				break;
1572			bcopy((void *)(&ip->ip_dst), (void *)&ipaddr.sin_addr,
1573			    sizeof(ipaddr.sin_addr));
1574			/*
1575			 * locate outgoing interface; if we're the destination,
1576			 * use the incoming interface (should be same).
1577			 */
1578			if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1579			    == NULL &&
1580			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1581				type = ICMP_UNREACH;
1582				code = ICMP_UNREACH_HOST;
1583				goto bad;
1584			}
1585			bcopy((void *)&ia->ia_addr.sin_addr,
1586			    (void *)(cp + off), sizeof(struct in_addr));
1587			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1588			break;
1589
1590		case IPOPT_TS:
1591			code = cp - (u_char *)ip;
1592			ipt = (struct ip_timestamp *)cp;
1593			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1594				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1595				goto bad;
1596			}
1597			if (ipt->ipt_ptr < 5) {
1598				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1599				goto bad;
1600			}
1601			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1602				if (++ipt->ipt_oflw == 0) {
1603					code = (u_char *)&ipt->ipt_ptr -
1604					    (u_char *)ip;
1605					goto bad;
1606				}
1607				break;
1608			}
1609			cp0 = (cp + ipt->ipt_ptr - 1);
1610			switch (ipt->ipt_flg) {
1611
1612			case IPOPT_TS_TSONLY:
1613				break;
1614
1615			case IPOPT_TS_TSANDADDR:
1616				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1617				    sizeof(struct in_addr) > ipt->ipt_len) {
1618					code = (u_char *)&ipt->ipt_ptr -
1619					    (u_char *)ip;
1620					goto bad;
1621				}
1622				ipaddr.sin_addr = dst;
1623				ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1624				    m->m_pkthdr.rcvif));
1625				if (ia == 0)
1626					continue;
1627				bcopy(&ia->ia_addr.sin_addr,
1628				    cp0, sizeof(struct in_addr));
1629				ipt->ipt_ptr += sizeof(struct in_addr);
1630				break;
1631
1632			case IPOPT_TS_PRESPEC:
1633				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1634				    sizeof(struct in_addr) > ipt->ipt_len) {
1635					code = (u_char *)&ipt->ipt_ptr -
1636					    (u_char *)ip;
1637					goto bad;
1638				}
1639				bcopy(cp0, &ipaddr.sin_addr,
1640				    sizeof(struct in_addr));
1641				if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1642				    == NULL)
1643					continue;
1644				ipt->ipt_ptr += sizeof(struct in_addr);
1645				break;
1646
1647			default:
1648				/* XXX can't take &ipt->ipt_flg */
1649				code = (u_char *)&ipt->ipt_ptr -
1650				    (u_char *)ip + 1;
1651				goto bad;
1652			}
1653			ntime = iptime();
1654			cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1655			memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1656			    sizeof(n_time));
1657			ipt->ipt_ptr += sizeof(n_time);
1658		}
1659	}
1660	if (forward) {
1661		if (ip_forwsrcrt == 0) {
1662			type = ICMP_UNREACH;
1663			code = ICMP_UNREACH_SRCFAIL;
1664			goto bad;
1665		}
1666		ip_forward(m, 1);
1667		return (1);
1668	}
1669	return (0);
1670bad:
1671	icmp_error(m, type, code, 0, 0);
1672	ipstat.ips_badoptions++;
1673	return (1);
1674}
1675
1676/*
1677 * Given address of next destination (final or next hop),
1678 * return internet address info of interface to be used to get there.
1679 */
1680struct in_ifaddr *
1681ip_rtaddr(struct in_addr dst)
1682{
1683	struct rtentry *rt;
1684	union {
1685		struct sockaddr		dst;
1686		struct sockaddr_in	dst4;
1687	} u;
1688
1689	sockaddr_in_init(&u.dst4, &dst, 0);
1690
1691	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1692		return NULL;
1693
1694	return ifatoia(rt->rt_ifa);
1695}
1696
1697/*
1698 * Save incoming source route for use in replies,
1699 * to be picked up later by ip_srcroute if the receiver is interested.
1700 */
1701void
1702save_rte(u_char *option, struct in_addr dst)
1703{
1704	unsigned olen;
1705
1706	olen = option[IPOPT_OLEN];
1707#ifdef DIAGNOSTIC
1708	if (ipprintfs)
1709		printf("save_rte: olen %d\n", olen);
1710#endif /* 0 */
1711	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1712		return;
1713	bcopy((void *)option, (void *)ip_srcrt.srcopt, olen);
1714	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1715	ip_srcrt.dst = dst;
1716}
1717
1718/*
1719 * Retrieve incoming source route for use in replies,
1720 * in the same form used by setsockopt.
1721 * The first hop is placed before the options, will be removed later.
1722 */
1723struct mbuf *
1724ip_srcroute(void)
1725{
1726	struct in_addr *p, *q;
1727	struct mbuf *m;
1728
1729	if (ip_nhops == 0)
1730		return NULL;
1731	m = m_get(M_DONTWAIT, MT_SOOPTS);
1732	if (m == 0)
1733		return NULL;
1734
1735	MCLAIM(m, &inetdomain.dom_mowner);
1736#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1737
1738	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1739	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1740	    OPTSIZ;
1741#ifdef DIAGNOSTIC
1742	if (ipprintfs)
1743		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1744#endif
1745
1746	/*
1747	 * First save first hop for return route
1748	 */
1749	p = &ip_srcrt.route[ip_nhops - 1];
1750	*(mtod(m, struct in_addr *)) = *p--;
1751#ifdef DIAGNOSTIC
1752	if (ipprintfs)
1753		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1754#endif
1755
1756	/*
1757	 * Copy option fields and padding (nop) to mbuf.
1758	 */
1759	ip_srcrt.nop = IPOPT_NOP;
1760	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1761	memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1762	    OPTSIZ);
1763	q = (struct in_addr *)(mtod(m, char *) +
1764	    sizeof(struct in_addr) + OPTSIZ);
1765#undef OPTSIZ
1766	/*
1767	 * Record return path as an IP source route,
1768	 * reversing the path (pointers are now aligned).
1769	 */
1770	while (p >= ip_srcrt.route) {
1771#ifdef DIAGNOSTIC
1772		if (ipprintfs)
1773			printf(" %x", ntohl(q->s_addr));
1774#endif
1775		*q++ = *p--;
1776	}
1777	/*
1778	 * Last hop goes to final destination.
1779	 */
1780	*q = ip_srcrt.dst;
1781#ifdef DIAGNOSTIC
1782	if (ipprintfs)
1783		printf(" %x\n", ntohl(q->s_addr));
1784#endif
1785	return (m);
1786}
1787
1788const int inetctlerrmap[PRC_NCMDS] = {
1789	[PRC_MSGSIZE] = EMSGSIZE,
1790	[PRC_HOSTDEAD] = EHOSTDOWN,
1791	[PRC_HOSTUNREACH] = EHOSTUNREACH,
1792	[PRC_UNREACH_NET] = EHOSTUNREACH,
1793	[PRC_UNREACH_HOST] = EHOSTUNREACH,
1794	[PRC_UNREACH_PROTOCOL] = ECONNREFUSED,
1795	[PRC_UNREACH_PORT] = ECONNREFUSED,
1796	[PRC_UNREACH_SRCFAIL] = EHOSTUNREACH,
1797	[PRC_PARAMPROB] = ENOPROTOOPT,
1798};
1799
1800/*
1801 * Forward a packet.  If some error occurs return the sender
1802 * an icmp packet.  Note we can't always generate a meaningful
1803 * icmp message because icmp doesn't have a large enough repertoire
1804 * of codes and types.
1805 *
1806 * If not forwarding, just drop the packet.  This could be confusing
1807 * if ipforwarding was zero but some routing protocol was advancing
1808 * us as a gateway to somewhere.  However, we must let the routing
1809 * protocol deal with that.
1810 *
1811 * The srcrt parameter indicates whether the packet is being forwarded
1812 * via a source route.
1813 */
1814void
1815ip_forward(struct mbuf *m, int srcrt)
1816{
1817	struct ip *ip = mtod(m, struct ip *);
1818	struct rtentry *rt;
1819	int error, type = 0, code = 0, destmtu = 0;
1820	struct mbuf *mcopy;
1821	n_long dest;
1822	union {
1823		struct sockaddr		dst;
1824		struct sockaddr_in	dst4;
1825	} u;
1826
1827	/*
1828	 * We are now in the output path.
1829	 */
1830	MCLAIM(m, &ip_tx_mowner);
1831
1832	/*
1833	 * Clear any in-bound checksum flags for this packet.
1834	 */
1835	m->m_pkthdr.csum_flags = 0;
1836
1837	dest = 0;
1838#ifdef DIAGNOSTIC
1839	if (ipprintfs) {
1840		printf("forward: src %s ", inet_ntoa(ip->ip_src));
1841		printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1842	}
1843#endif
1844	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1845		ipstat.ips_cantforward++;
1846		m_freem(m);
1847		return;
1848	}
1849	if (ip->ip_ttl <= IPTTLDEC) {
1850		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1851		return;
1852	}
1853
1854	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1855	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1856		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1857		return;
1858	}
1859
1860	/*
1861	 * Save at most 68 bytes of the packet in case
1862	 * we need to generate an ICMP message to the src.
1863	 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1864	 */
1865	mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1866	if (mcopy)
1867		mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1868
1869	ip->ip_ttl -= IPTTLDEC;
1870
1871	/*
1872	 * If forwarding packet using same interface that it came in on,
1873	 * perhaps should send a redirect to sender to shortcut a hop.
1874	 * Only send redirect if source is sending directly to us,
1875	 * and if packet was not source routed (or has any options).
1876	 * Also, don't send redirect if forwarding using a default route
1877	 * or a route modified by a redirect.
1878	 */
1879	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1880	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1881	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
1882	    ipsendredirects && !srcrt) {
1883		if (rt->rt_ifa &&
1884		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1885		    ifatoia(rt->rt_ifa)->ia_subnet) {
1886			if (rt->rt_flags & RTF_GATEWAY)
1887				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1888			else
1889				dest = ip->ip_dst.s_addr;
1890			/*
1891			 * Router requirements says to only send host
1892			 * redirects.
1893			 */
1894			type = ICMP_REDIRECT;
1895			code = ICMP_REDIRECT_HOST;
1896#ifdef DIAGNOSTIC
1897			if (ipprintfs)
1898				printf("redirect (%d) to %x\n", code,
1899				    (u_int32_t)dest);
1900#endif
1901		}
1902	}
1903
1904	error = ip_output(m, NULL, &ipforward_rt,
1905	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1906	    (struct ip_moptions *)NULL, (struct socket *)NULL);
1907
1908	if (error)
1909		ipstat.ips_cantforward++;
1910	else {
1911		ipstat.ips_forward++;
1912		if (type)
1913			ipstat.ips_redirectsent++;
1914		else {
1915			if (mcopy) {
1916#ifdef GATEWAY
1917				if (mcopy->m_flags & M_CANFASTFWD)
1918					ipflow_create(&ipforward_rt, mcopy);
1919#endif
1920				m_freem(mcopy);
1921			}
1922			return;
1923		}
1924	}
1925	if (mcopy == NULL)
1926		return;
1927
1928	switch (error) {
1929
1930	case 0:				/* forwarded, but need redirect */
1931		/* type, code set above */
1932		break;
1933
1934	case ENETUNREACH:		/* shouldn't happen, checked above */
1935	case EHOSTUNREACH:
1936	case ENETDOWN:
1937	case EHOSTDOWN:
1938	default:
1939		type = ICMP_UNREACH;
1940		code = ICMP_UNREACH_HOST;
1941		break;
1942
1943	case EMSGSIZE:
1944		type = ICMP_UNREACH;
1945		code = ICMP_UNREACH_NEEDFRAG;
1946#if !defined(IPSEC) && !defined(FAST_IPSEC)
1947		if ((rt = rtcache_getrt(&ipforward_rt)) != NULL)
1948			destmtu = rt->rt_ifp->if_mtu;
1949#else
1950		/*
1951		 * If the packet is routed over IPsec tunnel, tell the
1952		 * originator the tunnel MTU.
1953		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1954		 * XXX quickhack!!!
1955		 */
1956		if ((rt = rtcache_getrt(&ipforward_rt)) != NULL) {
1957			struct secpolicy *sp;
1958			int ipsecerror;
1959			size_t ipsechdr;
1960			struct route *ro;
1961
1962			sp = ipsec4_getpolicybyaddr(mcopy,
1963			    IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1964			    &ipsecerror);
1965
1966			if (sp == NULL)
1967				destmtu = rt->rt_ifp->if_mtu;
1968			else {
1969				/* count IPsec header size */
1970				ipsechdr = ipsec4_hdrsiz(mcopy,
1971				    IPSEC_DIR_OUTBOUND, NULL);
1972
1973				/*
1974				 * find the correct route for outer IPv4
1975				 * header, compute tunnel MTU.
1976				 */
1977
1978				if (sp->req != NULL
1979				 && sp->req->sav != NULL
1980				 && sp->req->sav->sah != NULL) {
1981					ro = &sp->req->sav->sah->sa_route;
1982					if (rt && rt->rt_ifp) {
1983						destmtu =
1984						    rt->rt_rmx.rmx_mtu ?
1985						    rt->rt_rmx.rmx_mtu :
1986						    rt->rt_ifp->if_mtu;
1987						destmtu -= ipsechdr;
1988					}
1989				}
1990
1991#ifdef	IPSEC
1992				key_freesp(sp);
1993#else
1994				KEY_FREESP(&sp);
1995#endif
1996			}
1997		}
1998#endif /*IPSEC*/
1999		ipstat.ips_cantfrag++;
2000		break;
2001
2002	case ENOBUFS:
2003#if 1
2004		/*
2005		 * a router should not generate ICMP_SOURCEQUENCH as
2006		 * required in RFC1812 Requirements for IP Version 4 Routers.
2007		 * source quench could be a big problem under DoS attacks,
2008		 * or if the underlying interface is rate-limited.
2009		 */
2010		if (mcopy)
2011			m_freem(mcopy);
2012		return;
2013#else
2014		type = ICMP_SOURCEQUENCH;
2015		code = 0;
2016		break;
2017#endif
2018	}
2019	icmp_error(mcopy, type, code, dest, destmtu);
2020}
2021
2022void
2023ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2024    struct mbuf *m)
2025{
2026
2027	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2028		struct timeval tv;
2029
2030		microtime(&tv);
2031		*mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2032		    SCM_TIMESTAMP, SOL_SOCKET);
2033		if (*mp)
2034			mp = &(*mp)->m_next;
2035	}
2036	if (inp->inp_flags & INP_RECVDSTADDR) {
2037		*mp = sbcreatecontrol((void *) &ip->ip_dst,
2038		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2039		if (*mp)
2040			mp = &(*mp)->m_next;
2041	}
2042#ifdef notyet
2043	/*
2044	 * XXX
2045	 * Moving these out of udp_input() made them even more broken
2046	 * than they already were.
2047	 *	- fenner@parc.xerox.com
2048	 */
2049	/* options were tossed already */
2050	if (inp->inp_flags & INP_RECVOPTS) {
2051		*mp = sbcreatecontrol((void *) opts_deleted_above,
2052		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2053		if (*mp)
2054			mp = &(*mp)->m_next;
2055	}
2056	/* ip_srcroute doesn't do what we want here, need to fix */
2057	if (inp->inp_flags & INP_RECVRETOPTS) {
2058		*mp = sbcreatecontrol((void *) ip_srcroute(),
2059		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2060		if (*mp)
2061			mp = &(*mp)->m_next;
2062	}
2063#endif
2064	if (inp->inp_flags & INP_RECVIF) {
2065		struct sockaddr_dl sdl;
2066
2067		sockaddr_dl_init(&sdl, sizeof(sdl),
2068		    (m->m_pkthdr.rcvif != NULL)
2069		        ?  m->m_pkthdr.rcvif->if_index
2070			: 0,
2071			0, NULL, 0, NULL, 0);
2072		*mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
2073		if (*mp)
2074			mp = &(*mp)->m_next;
2075	}
2076}
2077
2078/*
2079 * sysctl helper routine for net.inet.ip.forwsrcrt.
2080 */
2081static int
2082sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2083{
2084	int error, tmp;
2085	struct sysctlnode node;
2086
2087	node = *rnode;
2088	tmp = ip_forwsrcrt;
2089	node.sysctl_data = &tmp;
2090	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2091	if (error || newp == NULL)
2092		return (error);
2093
2094	if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2095	    0, NULL, NULL, NULL))
2096		return (EPERM);
2097
2098	ip_forwsrcrt = tmp;
2099
2100	return (0);
2101}
2102
2103/*
2104 * sysctl helper routine for net.inet.ip.mtudisctimeout.  checks the
2105 * range of the new value and tweaks timers if it changes.
2106 */
2107static int
2108sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2109{
2110	int error, tmp;
2111	struct sysctlnode node;
2112
2113	node = *rnode;
2114	tmp = ip_mtudisc_timeout;
2115	node.sysctl_data = &tmp;
2116	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2117	if (error || newp == NULL)
2118		return (error);
2119	if (tmp < 0)
2120		return (EINVAL);
2121
2122	ip_mtudisc_timeout = tmp;
2123	rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2124
2125	return (0);
2126}
2127
2128#ifdef GATEWAY
2129/*
2130 * sysctl helper routine for net.inet.ip.maxflows.
2131 */
2132static int
2133sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2134{
2135	int s;
2136
2137	s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2138	if (s || newp == NULL)
2139		return (s);
2140
2141	s = splsoftnet();
2142	ipflow_reap(0);
2143	splx(s);
2144
2145	return (0);
2146}
2147
2148static int
2149sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2150{
2151	int error, tmp;
2152	struct sysctlnode node;
2153
2154	node = *rnode;
2155	tmp = ip_hashsize;
2156	node.sysctl_data = &tmp;
2157	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2158	if (error || newp == NULL)
2159		return (error);
2160
2161	if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2162		/*
2163		 * Can only fail due to malloc()
2164		 */
2165		if (ipflow_invalidate_all(tmp))
2166			return ENOMEM;
2167	} else {
2168		/*
2169		 * EINVAL if not a power of 2
2170	         */
2171		return EINVAL;
2172	}
2173
2174	return (0);
2175}
2176#endif /* GATEWAY */
2177
2178
2179SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2180{
2181	extern int subnetsarelocal, hostzeroisbroadcast;
2182
2183	sysctl_createv(clog, 0, NULL, NULL,
2184		       CTLFLAG_PERMANENT,
2185		       CTLTYPE_NODE, "net", NULL,
2186		       NULL, 0, NULL, 0,
2187		       CTL_NET, CTL_EOL);
2188	sysctl_createv(clog, 0, NULL, NULL,
2189		       CTLFLAG_PERMANENT,
2190		       CTLTYPE_NODE, "inet",
2191		       SYSCTL_DESCR("PF_INET related settings"),
2192		       NULL, 0, NULL, 0,
2193		       CTL_NET, PF_INET, CTL_EOL);
2194	sysctl_createv(clog, 0, NULL, NULL,
2195		       CTLFLAG_PERMANENT,
2196		       CTLTYPE_NODE, "ip",
2197		       SYSCTL_DESCR("IPv4 related settings"),
2198		       NULL, 0, NULL, 0,
2199		       CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2200
2201	sysctl_createv(clog, 0, NULL, NULL,
2202		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2203		       CTLTYPE_INT, "forwarding",
2204		       SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2205		       NULL, 0, &ipforwarding, 0,
2206		       CTL_NET, PF_INET, IPPROTO_IP,
2207		       IPCTL_FORWARDING, CTL_EOL);
2208	sysctl_createv(clog, 0, NULL, NULL,
2209		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2210		       CTLTYPE_INT, "redirect",
2211		       SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2212		       NULL, 0, &ipsendredirects, 0,
2213		       CTL_NET, PF_INET, IPPROTO_IP,
2214		       IPCTL_SENDREDIRECTS, CTL_EOL);
2215	sysctl_createv(clog, 0, NULL, NULL,
2216		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2217		       CTLTYPE_INT, "ttl",
2218		       SYSCTL_DESCR("Default TTL for an INET datagram"),
2219		       NULL, 0, &ip_defttl, 0,
2220		       CTL_NET, PF_INET, IPPROTO_IP,
2221		       IPCTL_DEFTTL, CTL_EOL);
2222#ifdef IPCTL_DEFMTU
2223	sysctl_createv(clog, 0, NULL, NULL,
2224		       CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2225		       CTLTYPE_INT, "mtu",
2226		       SYSCTL_DESCR("Default MTA for an INET route"),
2227		       NULL, 0, &ip_mtu, 0,
2228		       CTL_NET, PF_INET, IPPROTO_IP,
2229		       IPCTL_DEFMTU, CTL_EOL);
2230#endif /* IPCTL_DEFMTU */
2231	sysctl_createv(clog, 0, NULL, NULL,
2232		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2233		       CTLTYPE_INT, "forwsrcrt",
2234		       SYSCTL_DESCR("Enable forwarding of source-routed "
2235				    "datagrams"),
2236		       sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2237		       CTL_NET, PF_INET, IPPROTO_IP,
2238		       IPCTL_FORWSRCRT, CTL_EOL);
2239	sysctl_createv(clog, 0, NULL, NULL,
2240		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2241		       CTLTYPE_INT, "directed-broadcast",
2242		       SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2243		       NULL, 0, &ip_directedbcast, 0,
2244		       CTL_NET, PF_INET, IPPROTO_IP,
2245		       IPCTL_DIRECTEDBCAST, CTL_EOL);
2246	sysctl_createv(clog, 0, NULL, NULL,
2247		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2248		       CTLTYPE_INT, "allowsrcrt",
2249		       SYSCTL_DESCR("Accept source-routed datagrams"),
2250		       NULL, 0, &ip_allowsrcrt, 0,
2251		       CTL_NET, PF_INET, IPPROTO_IP,
2252		       IPCTL_ALLOWSRCRT, CTL_EOL);
2253	sysctl_createv(clog, 0, NULL, NULL,
2254		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2255		       CTLTYPE_INT, "subnetsarelocal",
2256		       SYSCTL_DESCR("Whether logical subnets are considered "
2257				    "local"),
2258		       NULL, 0, &subnetsarelocal, 0,
2259		       CTL_NET, PF_INET, IPPROTO_IP,
2260		       IPCTL_SUBNETSARELOCAL, CTL_EOL);
2261	sysctl_createv(clog, 0, NULL, NULL,
2262		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2263		       CTLTYPE_INT, "mtudisc",
2264		       SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2265		       NULL, 0, &ip_mtudisc, 0,
2266		       CTL_NET, PF_INET, IPPROTO_IP,
2267		       IPCTL_MTUDISC, CTL_EOL);
2268	sysctl_createv(clog, 0, NULL, NULL,
2269		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2270		       CTLTYPE_INT, "anonportmin",
2271		       SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2272		       sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2273		       CTL_NET, PF_INET, IPPROTO_IP,
2274		       IPCTL_ANONPORTMIN, CTL_EOL);
2275	sysctl_createv(clog, 0, NULL, NULL,
2276		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2277		       CTLTYPE_INT, "anonportmax",
2278		       SYSCTL_DESCR("Highest ephemeral port number to assign"),
2279		       sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2280		       CTL_NET, PF_INET, IPPROTO_IP,
2281		       IPCTL_ANONPORTMAX, CTL_EOL);
2282	sysctl_createv(clog, 0, NULL, NULL,
2283		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2284		       CTLTYPE_INT, "mtudisctimeout",
2285		       SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2286		       sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2287		       CTL_NET, PF_INET, IPPROTO_IP,
2288		       IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2289#ifdef GATEWAY
2290	sysctl_createv(clog, 0, NULL, NULL,
2291		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2292		       CTLTYPE_INT, "maxflows",
2293		       SYSCTL_DESCR("Number of flows for fast forwarding"),
2294		       sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2295		       CTL_NET, PF_INET, IPPROTO_IP,
2296		       IPCTL_MAXFLOWS, CTL_EOL);
2297	sysctl_createv(clog, 0, NULL, NULL,
2298			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2299			CTLTYPE_INT, "hashsize",
2300			SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2301			sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2302			CTL_NET, PF_INET, IPPROTO_IP,
2303			CTL_CREATE, CTL_EOL);
2304#endif /* GATEWAY */
2305	sysctl_createv(clog, 0, NULL, NULL,
2306		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2307		       CTLTYPE_INT, "hostzerobroadcast",
2308		       SYSCTL_DESCR("All zeroes address is broadcast address"),
2309		       NULL, 0, &hostzeroisbroadcast, 0,
2310		       CTL_NET, PF_INET, IPPROTO_IP,
2311		       IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2312#if NGIF > 0
2313	sysctl_createv(clog, 0, NULL, NULL,
2314		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2315		       CTLTYPE_INT, "gifttl",
2316		       SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2317		       NULL, 0, &ip_gif_ttl, 0,
2318		       CTL_NET, PF_INET, IPPROTO_IP,
2319		       IPCTL_GIF_TTL, CTL_EOL);
2320#endif /* NGIF */
2321#ifndef IPNOPRIVPORTS
2322	sysctl_createv(clog, 0, NULL, NULL,
2323		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2324		       CTLTYPE_INT, "lowportmin",
2325		       SYSCTL_DESCR("Lowest privileged ephemeral port number "
2326				    "to assign"),
2327		       sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2328		       CTL_NET, PF_INET, IPPROTO_IP,
2329		       IPCTL_LOWPORTMIN, CTL_EOL);
2330	sysctl_createv(clog, 0, NULL, NULL,
2331		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2332		       CTLTYPE_INT, "lowportmax",
2333		       SYSCTL_DESCR("Highest privileged ephemeral port number "
2334				    "to assign"),
2335		       sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2336		       CTL_NET, PF_INET, IPPROTO_IP,
2337		       IPCTL_LOWPORTMAX, CTL_EOL);
2338#endif /* IPNOPRIVPORTS */
2339	sysctl_createv(clog, 0, NULL, NULL,
2340		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2341		       CTLTYPE_INT, "maxfragpackets",
2342		       SYSCTL_DESCR("Maximum number of fragments to retain for "
2343				    "possible reassembly"),
2344		       NULL, 0, &ip_maxfragpackets, 0,
2345		       CTL_NET, PF_INET, IPPROTO_IP,
2346		       IPCTL_MAXFRAGPACKETS, CTL_EOL);
2347#if NGRE > 0
2348	sysctl_createv(clog, 0, NULL, NULL,
2349		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2350		       CTLTYPE_INT, "grettl",
2351		       SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2352		       NULL, 0, &ip_gre_ttl, 0,
2353		       CTL_NET, PF_INET, IPPROTO_IP,
2354		       IPCTL_GRE_TTL, CTL_EOL);
2355#endif /* NGRE */
2356	sysctl_createv(clog, 0, NULL, NULL,
2357		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2358		       CTLTYPE_INT, "checkinterface",
2359		       SYSCTL_DESCR("Enable receive side of Strong ES model "
2360				    "from RFC1122"),
2361		       NULL, 0, &ip_checkinterface, 0,
2362		       CTL_NET, PF_INET, IPPROTO_IP,
2363		       IPCTL_CHECKINTERFACE, CTL_EOL);
2364	sysctl_createv(clog, 0, NULL, NULL,
2365		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2366		       CTLTYPE_INT, "random_id",
2367		       SYSCTL_DESCR("Assign random ip_id values"),
2368		       NULL, 0, &ip_do_randomid, 0,
2369		       CTL_NET, PF_INET, IPPROTO_IP,
2370		       IPCTL_RANDOMID, CTL_EOL);
2371	sysctl_createv(clog, 0, NULL, NULL,
2372		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2373		       CTLTYPE_INT, "do_loopback_cksum",
2374		       SYSCTL_DESCR("Perform IP checksum on loopback"),
2375		       NULL, 0, &ip_do_loopback_cksum, 0,
2376		       CTL_NET, PF_INET, IPPROTO_IP,
2377		       IPCTL_LOOPBACKCKSUM, CTL_EOL);
2378	sysctl_createv(clog, 0, NULL, NULL,
2379		       CTLFLAG_PERMANENT,
2380		       CTLTYPE_STRUCT, "stats",
2381		       SYSCTL_DESCR("IP statistics"),
2382		       NULL, 0, &ipstat, sizeof(ipstat),
2383		       CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2384		       CTL_EOL);
2385}
2386