ip_input.c revision 1.25
1/*	$NetBSD: ip_input.c,v 1.25 1995/11/21 01:07:34 cgd Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by the University of
18 *	California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
36 */
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/malloc.h>
41#include <sys/mbuf.h>
42#include <sys/domain.h>
43#include <sys/protosw.h>
44#include <sys/socket.h>
45#include <sys/errno.h>
46#include <sys/time.h>
47#include <sys/kernel.h>
48
49#include <net/if.h>
50#include <net/route.h>
51
52#include <netinet/in.h>
53#include <netinet/in_systm.h>
54#include <netinet/ip.h>
55#include <netinet/in_pcb.h>
56#include <netinet/in_var.h>
57#include <netinet/ip_var.h>
58#include <netinet/ip_icmp.h>
59
60#ifndef	IPFORWARDING
61#ifdef GATEWAY
62#define	IPFORWARDING	1	/* forward IP packets not for us */
63#else /* GATEWAY */
64#define	IPFORWARDING	0	/* don't forward IP packets not for us */
65#endif /* GATEWAY */
66#endif /* IPFORWARDING */
67#ifndef	IPSENDREDIRECTS
68#define	IPSENDREDIRECTS	1
69#endif
70int	ipforwarding = IPFORWARDING;
71int	ipsendredirects = IPSENDREDIRECTS;
72int	ip_defttl = IPDEFTTL;
73#ifdef DIAGNOSTIC
74int	ipprintfs = 0;
75#endif
76
77extern	struct domain inetdomain;
78extern	struct protosw inetsw[];
79u_char	ip_protox[IPPROTO_MAX];
80int	ipqmaxlen = IFQ_MAXLEN;
81struct	in_ifaddrhead in_ifaddr;
82struct	ifqueue ipintrq;
83
84/*
85 * We need to save the IP options in case a protocol wants to respond
86 * to an incoming packet over the same route if the packet got here
87 * using IP source routing.  This allows connection establishment and
88 * maintenance when the remote end is on a network that is not known
89 * to us.
90 */
91int	ip_nhops = 0;
92static	struct ip_srcrt {
93	struct	in_addr dst;			/* final destination */
94	char	nop;				/* one NOP to align */
95	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
96	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
97} ip_srcrt;
98
99static void save_rte __P((u_char *, struct in_addr));
100/*
101 * IP initialization: fill in IP protocol switch table.
102 * All protocols not implemented in kernel go to raw IP protocol handler.
103 */
104void
105ip_init()
106{
107	register struct protosw *pr;
108	register int i;
109
110	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
111	if (pr == 0)
112		panic("ip_init");
113	for (i = 0; i < IPPROTO_MAX; i++)
114		ip_protox[i] = pr - inetsw;
115	for (pr = inetdomain.dom_protosw;
116	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
117		if (pr->pr_domain->dom_family == PF_INET &&
118		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
119			ip_protox[pr->pr_protocol] = pr - inetsw;
120	LIST_INIT(&ipq);
121	ip_id = time.tv_sec & 0xffff;
122	ipintrq.ifq_maxlen = ipqmaxlen;
123	TAILQ_INIT(&in_ifaddr);
124}
125
126struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
127struct	route ipforward_rt;
128
129/*
130 * Ip input routine.  Checksum and byte swap header.  If fragmented
131 * try to reassemble.  Process options.  Pass to next level.
132 */
133void
134ipintr()
135{
136	register struct ip *ip;
137	register struct mbuf *m;
138	register struct ipq *fp;
139	register struct in_ifaddr *ia;
140	struct ipqent *ipqe;
141	int hlen, mff, s;
142
143next:
144	/*
145	 * Get next datagram off input queue and get IP header
146	 * in first mbuf.
147	 */
148	s = splimp();
149	IF_DEQUEUE(&ipintrq, m);
150	splx(s);
151	if (m == 0)
152		return;
153#ifdef	DIAGNOSTIC
154	if ((m->m_flags & M_PKTHDR) == 0)
155		panic("ipintr no HDR");
156#endif
157	/*
158	 * If no IP addresses have been set yet but the interfaces
159	 * are receiving, can't do anything with incoming packets yet.
160	 */
161	if (in_ifaddr.tqh_first == 0)
162		goto bad;
163	ipstat.ips_total++;
164	if (m->m_len < sizeof (struct ip) &&
165	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
166		ipstat.ips_toosmall++;
167		goto next;
168	}
169	ip = mtod(m, struct ip *);
170	if (ip->ip_v != IPVERSION) {
171		ipstat.ips_badvers++;
172		goto bad;
173	}
174	hlen = ip->ip_hl << 2;
175	if (hlen < sizeof(struct ip)) {	/* minimum header length */
176		ipstat.ips_badhlen++;
177		goto bad;
178	}
179	if (hlen > m->m_len) {
180		if ((m = m_pullup(m, hlen)) == 0) {
181			ipstat.ips_badhlen++;
182			goto next;
183		}
184		ip = mtod(m, struct ip *);
185	}
186	if (ip->ip_sum = in_cksum(m, hlen)) {
187		ipstat.ips_badsum++;
188		goto bad;
189	}
190
191	/*
192	 * Convert fields to host representation.
193	 */
194	NTOHS(ip->ip_len);
195	if (ip->ip_len < hlen) {
196		ipstat.ips_badlen++;
197		goto bad;
198	}
199	NTOHS(ip->ip_id);
200	NTOHS(ip->ip_off);
201
202	/*
203	 * Check that the amount of data in the buffers
204	 * is as at least much as the IP header would have us expect.
205	 * Trim mbufs if longer than we expect.
206	 * Drop packet if shorter than we expect.
207	 */
208	if (m->m_pkthdr.len < ip->ip_len) {
209		ipstat.ips_tooshort++;
210		goto bad;
211	}
212	if (m->m_pkthdr.len > ip->ip_len) {
213		if (m->m_len == m->m_pkthdr.len) {
214			m->m_len = ip->ip_len;
215			m->m_pkthdr.len = ip->ip_len;
216		} else
217			m_adj(m, ip->ip_len - m->m_pkthdr.len);
218	}
219
220	/*
221	 * Process options and, if not destined for us,
222	 * ship it on.  ip_dooptions returns 1 when an
223	 * error was detected (causing an icmp message
224	 * to be sent and the original packet to be freed).
225	 */
226	ip_nhops = 0;		/* for source routed packets */
227	if (hlen > sizeof (struct ip) && ip_dooptions(m))
228		goto next;
229
230	/*
231	 * Check our list of addresses, to see if the packet is for us.
232	 */
233	for (ia = in_ifaddr.tqh_first; ia; ia = ia->ia_list.tqe_next) {
234		if (ip->ip_dst.s_addr == ia->ia_addr.sin_addr.s_addr)
235			goto ours;
236		if (
237#ifdef	DIRECTED_BROADCAST
238		    ia->ia_ifp == m->m_pkthdr.rcvif &&
239#endif
240		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
241			if (ip->ip_dst.s_addr == ia->ia_broadaddr.sin_addr.s_addr ||
242			    ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr ||
243			    /*
244			     * Look for all-0's host part (old broadcast addr),
245			     * either for subnet or net.
246			     */
247			    ip->ip_dst.s_addr == ia->ia_subnet ||
248			    ip->ip_dst.s_addr == ia->ia_net)
249				goto ours;
250		}
251	}
252	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
253		struct in_multi *inm;
254#ifdef MROUTING
255		extern struct socket *ip_mrouter;
256
257		if (m->m_flags & M_EXT) {
258			if ((m = m_pullup(m, hlen)) == 0) {
259				ipstat.ips_toosmall++;
260				goto next;
261			}
262			ip = mtod(m, struct ip *);
263		}
264
265		if (ip_mrouter) {
266			/*
267			 * If we are acting as a multicast router, all
268			 * incoming multicast packets are passed to the
269			 * kernel-level multicast forwarding function.
270			 * The packet is returned (relatively) intact; if
271			 * ip_mforward() returns a non-zero value, the packet
272			 * must be discarded, else it may be accepted below.
273			 *
274			 * (The IP ident field is put in the same byte order
275			 * as expected when ip_mforward() is called from
276			 * ip_output().)
277			 */
278			ip->ip_id = htons(ip->ip_id);
279			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
280				ipstat.ips_cantforward++;
281				m_freem(m);
282				goto next;
283			}
284			ip->ip_id = ntohs(ip->ip_id);
285
286			/*
287			 * The process-level routing demon needs to receive
288			 * all multicast IGMP packets, whether or not this
289			 * host belongs to their destination groups.
290			 */
291			if (ip->ip_p == IPPROTO_IGMP)
292				goto ours;
293			ipstat.ips_forward++;
294		}
295#endif
296		/*
297		 * See if we belong to the destination multicast group on the
298		 * arrival interface.
299		 */
300		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
301		if (inm == NULL) {
302			ipstat.ips_cantforward++;
303			m_freem(m);
304			goto next;
305		}
306		goto ours;
307	}
308	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
309	    ip->ip_dst.s_addr == INADDR_ANY)
310		goto ours;
311
312	/*
313	 * Not for us; forward if possible and desirable.
314	 */
315	if (ipforwarding == 0) {
316		ipstat.ips_cantforward++;
317		m_freem(m);
318	} else
319		ip_forward(m, 0);
320	goto next;
321
322ours:
323	/*
324	 * If offset or IP_MF are set, must reassemble.
325	 * Otherwise, nothing need be done.
326	 * (We could look in the reassembly queue to see
327	 * if the packet was previously fragmented,
328	 * but it's not worth the time; just let them time out.)
329	 */
330	if (ip->ip_off &~ IP_DF) {
331		if (m->m_flags & M_EXT) {		/* XXX */
332			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
333				ipstat.ips_toosmall++;
334				goto next;
335			}
336			ip = mtod(m, struct ip *);
337		}
338		/*
339		 * Look for queue of fragments
340		 * of this datagram.
341		 */
342		for (fp = ipq.lh_first; fp != NULL; fp = fp->ipq_q.le_next)
343			if (ip->ip_id == fp->ipq_id &&
344			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
345			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
346			    ip->ip_p == fp->ipq_p)
347				goto found;
348		fp = 0;
349found:
350
351		/*
352		 * Adjust ip_len to not reflect header,
353		 * set ipqe_mff if more fragments are expected,
354		 * convert offset of this to bytes.
355		 */
356		ip->ip_len -= hlen;
357		mff = (ip->ip_off & IP_MF) != 0;
358		if (mff) {
359		        /*
360		         * Make sure that fragments have a data length
361			 * that's a non-zero multiple of 8 bytes.
362		         */
363			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
364				ipstat.ips_badfrags++;
365				goto bad;
366			}
367		}
368		ip->ip_off <<= 3;
369
370		/*
371		 * If datagram marked as having more fragments
372		 * or if this is not the first fragment,
373		 * attempt reassembly; if it succeeds, proceed.
374		 */
375		if (mff || ip->ip_off) {
376			ipstat.ips_fragments++;
377			MALLOC(ipqe, struct ipqent *, sizeof (struct ipqent),
378			    M_IPQ, M_NOWAIT);
379			if (ipqe == NULL) {
380				ipstat.ips_rcvmemdrop++;
381				goto bad;
382			}
383			ipqe->ipqe_mff = mff;
384			ipqe->ipqe_ip = ip;
385			ip = ip_reass(ipqe, fp);
386			if (ip == 0)
387				goto next;
388			ipstat.ips_reassembled++;
389			m = dtom(ip);
390		} else
391			if (fp)
392				ip_freef(fp);
393	} else
394		ip->ip_len -= hlen;
395
396	/*
397	 * Switch out to protocol's input routine.
398	 */
399	ipstat.ips_delivered++;
400	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
401	goto next;
402bad:
403	m_freem(m);
404	goto next;
405}
406
407/*
408 * Take incoming datagram fragment and try to
409 * reassemble it into whole datagram.  If a chain for
410 * reassembly of this datagram already exists, then it
411 * is given as fp; otherwise have to make a chain.
412 */
413struct ip *
414ip_reass(ipqe, fp)
415	register struct ipqent *ipqe;
416	register struct ipq *fp;
417{
418	register struct mbuf *m = dtom(ipqe->ipqe_ip);
419	register struct ipqent *nq, *p, *q;
420	struct ip *ip;
421	struct mbuf *t;
422	int hlen = ipqe->ipqe_ip->ip_hl << 2;
423	int i, next;
424
425	/*
426	 * Presence of header sizes in mbufs
427	 * would confuse code below.
428	 */
429	m->m_data += hlen;
430	m->m_len -= hlen;
431
432	/*
433	 * If first fragment to arrive, create a reassembly queue.
434	 */
435	if (fp == 0) {
436		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
437			goto dropfrag;
438		fp = mtod(t, struct ipq *);
439		LIST_INSERT_HEAD(&ipq, fp, ipq_q);
440		fp->ipq_ttl = IPFRAGTTL;
441		fp->ipq_p = ipqe->ipqe_ip->ip_p;
442		fp->ipq_id = ipqe->ipqe_ip->ip_id;
443		LIST_INIT(&fp->ipq_fragq);
444		fp->ipq_src = ipqe->ipqe_ip->ip_src;
445		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
446		p = NULL;
447		goto insert;
448	}
449
450	/*
451	 * Find a segment which begins after this one does.
452	 */
453	for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
454	    p = q, q = q->ipqe_q.le_next)
455		if (q->ipqe_ip->ip_off > ipqe->ipqe_ip->ip_off)
456			break;
457
458	/*
459	 * If there is a preceding segment, it may provide some of
460	 * our data already.  If so, drop the data from the incoming
461	 * segment.  If it provides all of our data, drop us.
462	 */
463	if (p != NULL) {
464		i = p->ipqe_ip->ip_off + p->ipqe_ip->ip_len -
465		    ipqe->ipqe_ip->ip_off;
466		if (i > 0) {
467			if (i >= ipqe->ipqe_ip->ip_len)
468				goto dropfrag;
469			m_adj(dtom(ipqe->ipqe_ip), i);
470			ipqe->ipqe_ip->ip_off += i;
471			ipqe->ipqe_ip->ip_len -= i;
472		}
473	}
474
475	/*
476	 * While we overlap succeeding segments trim them or,
477	 * if they are completely covered, dequeue them.
478	 */
479	for (; q != NULL && ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len >
480	    q->ipqe_ip->ip_off; q = nq) {
481		i = (ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len) -
482		    q->ipqe_ip->ip_off;
483		if (i < q->ipqe_ip->ip_len) {
484			q->ipqe_ip->ip_len -= i;
485			q->ipqe_ip->ip_off += i;
486			m_adj(dtom(q->ipqe_ip), i);
487			break;
488		}
489		nq = q->ipqe_q.le_next;
490		m_freem(dtom(q->ipqe_ip));
491		LIST_REMOVE(q, ipqe_q);
492		FREE(q, M_IPQ);
493	}
494
495insert:
496	/*
497	 * Stick new segment in its place;
498	 * check for complete reassembly.
499	 */
500	if (p == NULL) {
501		LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
502	} else {
503		LIST_INSERT_AFTER(p, ipqe, ipqe_q);
504	}
505	next = 0;
506	for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
507	    p = q, q = q->ipqe_q.le_next) {
508		if (q->ipqe_ip->ip_off != next)
509			return (0);
510		next += q->ipqe_ip->ip_len;
511	}
512	if (p->ipqe_mff)
513		return (0);
514
515	/*
516	 * Reassembly is complete; concatenate fragments.
517	 */
518	q = fp->ipq_fragq.lh_first;
519	ip = q->ipqe_ip;
520	m = dtom(q->ipqe_ip);
521	t = m->m_next;
522	m->m_next = 0;
523	m_cat(m, t);
524	nq = q->ipqe_q.le_next;
525	FREE(q, M_IPQ);
526	for (q = nq; q != NULL; q = nq) {
527		t = dtom(q->ipqe_ip);
528		nq = q->ipqe_q.le_next;
529		FREE(q, M_IPQ);
530		m_cat(m, t);
531	}
532
533	/*
534	 * Create header for new ip packet by
535	 * modifying header of first packet;
536	 * dequeue and discard fragment reassembly header.
537	 * Make header visible.
538	 */
539	ip->ip_len = next;
540	ip->ip_src = fp->ipq_src;
541	ip->ip_dst = fp->ipq_dst;
542	LIST_REMOVE(fp, ipq_q);
543	(void) m_free(dtom(fp));
544	m->m_len += (ip->ip_hl << 2);
545	m->m_data -= (ip->ip_hl << 2);
546	/* some debugging cruft by sklower, below, will go away soon */
547	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
548		register int plen = 0;
549		for (t = m; m; m = m->m_next)
550			plen += m->m_len;
551		t->m_pkthdr.len = plen;
552	}
553	return (ip);
554
555dropfrag:
556	ipstat.ips_fragdropped++;
557	m_freem(m);
558	FREE(ipqe, M_IPQ);
559	return (0);
560}
561
562/*
563 * Free a fragment reassembly header and all
564 * associated datagrams.
565 */
566void
567ip_freef(fp)
568	struct ipq *fp;
569{
570	register struct ipqent *q, *p;
571
572	for (q = fp->ipq_fragq.lh_first; q != NULL; q = p) {
573		p = q->ipqe_q.le_next;
574		m_freem(dtom(q->ipqe_ip));
575		LIST_REMOVE(q, ipqe_q);
576		FREE(q, M_IPQ);
577	}
578	LIST_REMOVE(fp, ipq_q);
579	(void) m_free(dtom(fp));
580}
581
582/*
583 * IP timer processing;
584 * if a timer expires on a reassembly
585 * queue, discard it.
586 */
587void
588ip_slowtimo()
589{
590	register struct ipq *fp, *nfp;
591	int s = splsoftnet();
592
593	for (fp = ipq.lh_first; fp != NULL; fp = nfp) {
594		nfp = fp->ipq_q.le_next;
595		if (--fp->ipq_ttl == 0) {
596			ipstat.ips_fragtimeout++;
597			ip_freef(fp);
598		}
599	}
600	splx(s);
601}
602
603/*
604 * Drain off all datagram fragments.
605 */
606void
607ip_drain()
608{
609
610	while (ipq.lh_first != NULL) {
611		ipstat.ips_fragdropped++;
612		ip_freef(ipq.lh_first);
613	}
614}
615
616/*
617 * Do option processing on a datagram,
618 * possibly discarding it if bad options are encountered,
619 * or forwarding it if source-routed.
620 * Returns 1 if packet has been forwarded/freed,
621 * 0 if the packet should be processed further.
622 */
623int
624ip_dooptions(m)
625	struct mbuf *m;
626{
627	register struct ip *ip = mtod(m, struct ip *);
628	register u_char *cp;
629	register struct ip_timestamp *ipt;
630	register struct in_ifaddr *ia;
631	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
632	struct in_addr *sin, dst;
633	n_time ntime;
634
635	dst = ip->ip_dst;
636	cp = (u_char *)(ip + 1);
637	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
638	for (; cnt > 0; cnt -= optlen, cp += optlen) {
639		opt = cp[IPOPT_OPTVAL];
640		if (opt == IPOPT_EOL)
641			break;
642		if (opt == IPOPT_NOP)
643			optlen = 1;
644		else {
645			optlen = cp[IPOPT_OLEN];
646			if (optlen <= 0 || optlen > cnt) {
647				code = &cp[IPOPT_OLEN] - (u_char *)ip;
648				goto bad;
649			}
650		}
651		switch (opt) {
652
653		default:
654			break;
655
656		/*
657		 * Source routing with record.
658		 * Find interface with current destination address.
659		 * If none on this machine then drop if strictly routed,
660		 * or do nothing if loosely routed.
661		 * Record interface address and bring up next address
662		 * component.  If strictly routed make sure next
663		 * address is on directly accessible net.
664		 */
665		case IPOPT_LSRR:
666		case IPOPT_SSRR:
667			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
668				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
669				goto bad;
670			}
671			ipaddr.sin_addr = ip->ip_dst;
672			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
673			if (ia == 0) {
674				if (opt == IPOPT_SSRR) {
675					type = ICMP_UNREACH;
676					code = ICMP_UNREACH_SRCFAIL;
677					goto bad;
678				}
679				/*
680				 * Loose routing, and not at next destination
681				 * yet; nothing to do except forward.
682				 */
683				break;
684			}
685			off--;			/* 0 origin */
686			if (off > optlen - sizeof(struct in_addr)) {
687				/*
688				 * End of source route.  Should be for us.
689				 */
690				save_rte(cp, ip->ip_src);
691				break;
692			}
693			/*
694			 * locate outgoing interface
695			 */
696			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
697			    sizeof(ipaddr.sin_addr));
698			if (opt == IPOPT_SSRR) {
699#define	INA	struct in_ifaddr *
700#define	SA	struct sockaddr *
701			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
702				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
703			} else
704				ia = ip_rtaddr(ipaddr.sin_addr);
705			if (ia == 0) {
706				type = ICMP_UNREACH;
707				code = ICMP_UNREACH_SRCFAIL;
708				goto bad;
709			}
710			ip->ip_dst = ipaddr.sin_addr;
711			bcopy((caddr_t)&ia->ia_addr.sin_addr,
712			    (caddr_t)(cp + off), sizeof(struct in_addr));
713			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
714			/*
715			 * Let ip_intr's mcast routing check handle mcast pkts
716			 */
717			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
718			break;
719
720		case IPOPT_RR:
721			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
722				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
723				goto bad;
724			}
725			/*
726			 * If no space remains, ignore.
727			 */
728			off--;			/* 0 origin */
729			if (off > optlen - sizeof(struct in_addr))
730				break;
731			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
732			    sizeof(ipaddr.sin_addr));
733			/*
734			 * locate outgoing interface; if we're the destination,
735			 * use the incoming interface (should be same).
736			 */
737			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
738			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
739				type = ICMP_UNREACH;
740				code = ICMP_UNREACH_HOST;
741				goto bad;
742			}
743			bcopy((caddr_t)&ia->ia_addr.sin_addr,
744			    (caddr_t)(cp + off), sizeof(struct in_addr));
745			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
746			break;
747
748		case IPOPT_TS:
749			code = cp - (u_char *)ip;
750			ipt = (struct ip_timestamp *)cp;
751			if (ipt->ipt_len < 5)
752				goto bad;
753			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
754				if (++ipt->ipt_oflw == 0)
755					goto bad;
756				break;
757			}
758			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
759			switch (ipt->ipt_flg) {
760
761			case IPOPT_TS_TSONLY:
762				break;
763
764			case IPOPT_TS_TSANDADDR:
765				if (ipt->ipt_ptr + sizeof(n_time) +
766				    sizeof(struct in_addr) > ipt->ipt_len)
767					goto bad;
768				ipaddr.sin_addr = dst;
769				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
770							    m->m_pkthdr.rcvif);
771				if (ia == 0)
772					continue;
773				bcopy((caddr_t)&ia->ia_addr.sin_addr,
774				    (caddr_t)sin, sizeof(struct in_addr));
775				ipt->ipt_ptr += sizeof(struct in_addr);
776				break;
777
778			case IPOPT_TS_PRESPEC:
779				if (ipt->ipt_ptr + sizeof(n_time) +
780				    sizeof(struct in_addr) > ipt->ipt_len)
781					goto bad;
782				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
783				    sizeof(struct in_addr));
784				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
785					continue;
786				ipt->ipt_ptr += sizeof(struct in_addr);
787				break;
788
789			default:
790				goto bad;
791			}
792			ntime = iptime();
793			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
794			    sizeof(n_time));
795			ipt->ipt_ptr += sizeof(n_time);
796		}
797	}
798	if (forward) {
799		ip_forward(m, 1);
800		return (1);
801	}
802	return (0);
803bad:
804	ip->ip_len -= ip->ip_hl << 2;   /* XXX icmp_error adds in hdr length */
805	icmp_error(m, type, code, 0, 0);
806	ipstat.ips_badoptions++;
807	return (1);
808}
809
810/*
811 * Given address of next destination (final or next hop),
812 * return internet address info of interface to be used to get there.
813 */
814struct in_ifaddr *
815ip_rtaddr(dst)
816	 struct in_addr dst;
817{
818	register struct sockaddr_in *sin;
819
820	sin = satosin(&ipforward_rt.ro_dst);
821
822	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
823		if (ipforward_rt.ro_rt) {
824			RTFREE(ipforward_rt.ro_rt);
825			ipforward_rt.ro_rt = 0;
826		}
827		sin->sin_family = AF_INET;
828		sin->sin_len = sizeof(*sin);
829		sin->sin_addr = dst;
830
831		rtalloc(&ipforward_rt);
832	}
833	if (ipforward_rt.ro_rt == 0)
834		return ((struct in_ifaddr *)0);
835	return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
836}
837
838/*
839 * Save incoming source route for use in replies,
840 * to be picked up later by ip_srcroute if the receiver is interested.
841 */
842void
843save_rte(option, dst)
844	u_char *option;
845	struct in_addr dst;
846{
847	unsigned olen;
848
849	olen = option[IPOPT_OLEN];
850#ifdef DIAGNOSTIC
851	if (ipprintfs)
852		printf("save_rte: olen %d\n", olen);
853#endif
854	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
855		return;
856	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
857	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
858	ip_srcrt.dst = dst;
859}
860
861/*
862 * Retrieve incoming source route for use in replies,
863 * in the same form used by setsockopt.
864 * The first hop is placed before the options, will be removed later.
865 */
866struct mbuf *
867ip_srcroute()
868{
869	register struct in_addr *p, *q;
870	register struct mbuf *m;
871
872	if (ip_nhops == 0)
873		return ((struct mbuf *)0);
874	m = m_get(M_DONTWAIT, MT_SOOPTS);
875	if (m == 0)
876		return ((struct mbuf *)0);
877
878#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
879
880	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
881	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
882	    OPTSIZ;
883#ifdef DIAGNOSTIC
884	if (ipprintfs)
885		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
886#endif
887
888	/*
889	 * First save first hop for return route
890	 */
891	p = &ip_srcrt.route[ip_nhops - 1];
892	*(mtod(m, struct in_addr *)) = *p--;
893#ifdef DIAGNOSTIC
894	if (ipprintfs)
895		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
896#endif
897
898	/*
899	 * Copy option fields and padding (nop) to mbuf.
900	 */
901	ip_srcrt.nop = IPOPT_NOP;
902	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
903	bcopy((caddr_t)&ip_srcrt.nop,
904	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
905	q = (struct in_addr *)(mtod(m, caddr_t) +
906	    sizeof(struct in_addr) + OPTSIZ);
907#undef OPTSIZ
908	/*
909	 * Record return path as an IP source route,
910	 * reversing the path (pointers are now aligned).
911	 */
912	while (p >= ip_srcrt.route) {
913#ifdef DIAGNOSTIC
914		if (ipprintfs)
915			printf(" %lx", ntohl(q->s_addr));
916#endif
917		*q++ = *p--;
918	}
919	/*
920	 * Last hop goes to final destination.
921	 */
922	*q = ip_srcrt.dst;
923#ifdef DIAGNOSTIC
924	if (ipprintfs)
925		printf(" %lx\n", ntohl(q->s_addr));
926#endif
927	return (m);
928}
929
930/*
931 * Strip out IP options, at higher
932 * level protocol in the kernel.
933 * Second argument is buffer to which options
934 * will be moved, and return value is their length.
935 * XXX should be deleted; last arg currently ignored.
936 */
937void
938ip_stripoptions(m, mopt)
939	register struct mbuf *m;
940	struct mbuf *mopt;
941{
942	register int i;
943	struct ip *ip = mtod(m, struct ip *);
944	register caddr_t opts;
945	int olen;
946
947	olen = (ip->ip_hl<<2) - sizeof (struct ip);
948	opts = (caddr_t)(ip + 1);
949	i = m->m_len - (sizeof (struct ip) + olen);
950	bcopy(opts  + olen, opts, (unsigned)i);
951	m->m_len -= olen;
952	if (m->m_flags & M_PKTHDR)
953		m->m_pkthdr.len -= olen;
954	ip->ip_hl = sizeof(struct ip) >> 2;
955}
956
957int inetctlerrmap[PRC_NCMDS] = {
958	0,		0,		0,		0,
959	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
960	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
961	EMSGSIZE,	EHOSTUNREACH,	0,		0,
962	0,		0,		0,		0,
963	ENOPROTOOPT
964};
965
966/*
967 * Forward a packet.  If some error occurs return the sender
968 * an icmp packet.  Note we can't always generate a meaningful
969 * icmp message because icmp doesn't have a large enough repertoire
970 * of codes and types.
971 *
972 * If not forwarding, just drop the packet.  This could be confusing
973 * if ipforwarding was zero but some routing protocol was advancing
974 * us as a gateway to somewhere.  However, we must let the routing
975 * protocol deal with that.
976 *
977 * The srcrt parameter indicates whether the packet is being forwarded
978 * via a source route.
979 */
980void
981ip_forward(m, srcrt)
982	struct mbuf *m;
983	int srcrt;
984{
985	register struct ip *ip = mtod(m, struct ip *);
986	register struct sockaddr_in *sin;
987	register struct rtentry *rt;
988	int error, type = 0, code;
989	struct mbuf *mcopy;
990	n_long dest;
991	struct ifnet *destifp;
992
993	dest = 0;
994#ifdef DIAGNOSTIC
995	if (ipprintfs)
996		printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
997			ip->ip_dst, ip->ip_ttl);
998#endif
999	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1000		ipstat.ips_cantforward++;
1001		m_freem(m);
1002		return;
1003	}
1004	HTONS(ip->ip_id);
1005	if (ip->ip_ttl <= IPTTLDEC) {
1006		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1007		return;
1008	}
1009	ip->ip_ttl -= IPTTLDEC;
1010
1011	sin = satosin(&ipforward_rt.ro_dst);
1012	if ((rt = ipforward_rt.ro_rt) == 0 ||
1013	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1014		if (ipforward_rt.ro_rt) {
1015			RTFREE(ipforward_rt.ro_rt);
1016			ipforward_rt.ro_rt = 0;
1017		}
1018		sin->sin_family = AF_INET;
1019		sin->sin_len = sizeof(*sin);
1020		sin->sin_addr = ip->ip_dst;
1021
1022		rtalloc(&ipforward_rt);
1023		if (ipforward_rt.ro_rt == 0) {
1024			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1025			return;
1026		}
1027		rt = ipforward_rt.ro_rt;
1028	}
1029
1030	/*
1031	 * Save at most 64 bytes of the packet in case
1032	 * we need to generate an ICMP message to the src.
1033	 */
1034	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1035
1036	/*
1037	 * If forwarding packet using same interface that it came in on,
1038	 * perhaps should send a redirect to sender to shortcut a hop.
1039	 * Only send redirect if source is sending directly to us,
1040	 * and if packet was not source routed (or has any options).
1041	 * Also, don't send redirect if forwarding using a default route
1042	 * or a route modified by a redirect.
1043	 */
1044	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1045	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1046	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1047	    ipsendredirects && !srcrt) {
1048		if (rt->rt_ifa &&
1049		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1050		    ifatoia(rt->rt_ifa)->ia_subnet) {
1051		    if (rt->rt_flags & RTF_GATEWAY)
1052			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1053		    else
1054			dest = ip->ip_dst.s_addr;
1055		    /* Router requirements says to only send host redirects */
1056		    type = ICMP_REDIRECT;
1057		    code = ICMP_REDIRECT_HOST;
1058#ifdef DIAGNOSTIC
1059		    if (ipprintfs)
1060		        printf("redirect (%d) to %lx\n", code, (u_int32_t)dest);
1061#endif
1062		}
1063	}
1064
1065	error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING
1066#ifdef DIRECTED_BROADCAST
1067			    | IP_ALLOWBROADCAST
1068#endif
1069						, 0);
1070	if (error)
1071		ipstat.ips_cantforward++;
1072	else {
1073		ipstat.ips_forward++;
1074		if (type)
1075			ipstat.ips_redirectsent++;
1076		else {
1077			if (mcopy)
1078				m_freem(mcopy);
1079			return;
1080		}
1081	}
1082	if (mcopy == NULL)
1083		return;
1084	destifp = NULL;
1085
1086	switch (error) {
1087
1088	case 0:				/* forwarded, but need redirect */
1089		/* type, code set above */
1090		break;
1091
1092	case ENETUNREACH:		/* shouldn't happen, checked above */
1093	case EHOSTUNREACH:
1094	case ENETDOWN:
1095	case EHOSTDOWN:
1096	default:
1097		type = ICMP_UNREACH;
1098		code = ICMP_UNREACH_HOST;
1099		break;
1100
1101	case EMSGSIZE:
1102		type = ICMP_UNREACH;
1103		code = ICMP_UNREACH_NEEDFRAG;
1104		if (ipforward_rt.ro_rt)
1105			destifp = ipforward_rt.ro_rt->rt_ifp;
1106		ipstat.ips_cantfrag++;
1107		break;
1108
1109	case ENOBUFS:
1110		type = ICMP_SOURCEQUENCH;
1111		code = 0;
1112		break;
1113	}
1114	icmp_error(mcopy, type, code, dest, destifp);
1115}
1116
1117int
1118ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1119	int *name;
1120	u_int namelen;
1121	void *oldp;
1122	size_t *oldlenp;
1123	void *newp;
1124	size_t newlen;
1125{
1126	/* All sysctl names at this level are terminal. */
1127	if (namelen != 1)
1128		return (ENOTDIR);
1129
1130	switch (name[0]) {
1131	case IPCTL_FORWARDING:
1132		return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1133	case IPCTL_SENDREDIRECTS:
1134		return (sysctl_int(oldp, oldlenp, newp, newlen,
1135			&ipsendredirects));
1136	case IPCTL_DEFTTL:
1137		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1138#ifdef notyet
1139	case IPCTL_DEFMTU:
1140		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1141#endif
1142	default:
1143		return (EOPNOTSUPP);
1144	}
1145	/* NOTREACHED */
1146}
1147