ip_input.c revision 1.238
1/*	$NetBSD: ip_input.c,v 1.238 2006/12/06 00:39:56 dyoung Exp $	*/
2
3/*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32/*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix").  It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 *    notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 *    notice, this list of conditions and the following disclaimer in the
47 *    documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 *    must display the following acknowledgement:
50 *	This product includes software developed by the NetBSD
51 *	Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 *    contributors may be used to endorse or promote products derived
54 *    from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69/*
70 * Copyright (c) 1982, 1986, 1988, 1993
71 *	The Regents of the University of California.  All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 *    notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 *    notice, this list of conditions and the following disclaimer in the
80 *    documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 *    may be used to endorse or promote products derived from this software
83 *    without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
98 */
99
100#include <sys/cdefs.h>
101__KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.238 2006/12/06 00:39:56 dyoung Exp $");
102
103#include "opt_inet.h"
104#include "opt_gateway.h"
105#include "opt_pfil_hooks.h"
106#include "opt_ipsec.h"
107#include "opt_mrouting.h"
108#include "opt_mbuftrace.h"
109#include "opt_inet_csum.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/malloc.h>
114#include <sys/mbuf.h>
115#include <sys/domain.h>
116#include <sys/protosw.h>
117#include <sys/socket.h>
118#include <sys/socketvar.h>
119#include <sys/errno.h>
120#include <sys/time.h>
121#include <sys/kernel.h>
122#include <sys/pool.h>
123#include <sys/sysctl.h>
124#include <sys/kauth.h>
125
126#include <net/if.h>
127#include <net/if_dl.h>
128#include <net/route.h>
129#include <net/pfil.h>
130
131#include <netinet/in.h>
132#include <netinet/in_systm.h>
133#include <netinet/ip.h>
134#include <netinet/in_pcb.h>
135#include <netinet/in_proto.h>
136#include <netinet/in_var.h>
137#include <netinet/ip_var.h>
138#include <netinet/ip_icmp.h>
139/* just for gif_ttl */
140#include <netinet/in_gif.h>
141#include "gif.h"
142#include <net/if_gre.h>
143#include "gre.h"
144
145#ifdef MROUTING
146#include <netinet/ip_mroute.h>
147#endif
148
149#ifdef IPSEC
150#include <netinet6/ipsec.h>
151#include <netkey/key.h>
152#endif
153#ifdef FAST_IPSEC
154#include <netipsec/ipsec.h>
155#include <netipsec/key.h>
156#endif	/* FAST_IPSEC*/
157
158#ifndef	IPFORWARDING
159#ifdef GATEWAY
160#define	IPFORWARDING	1	/* forward IP packets not for us */
161#else /* GATEWAY */
162#define	IPFORWARDING	0	/* don't forward IP packets not for us */
163#endif /* GATEWAY */
164#endif /* IPFORWARDING */
165#ifndef	IPSENDREDIRECTS
166#define	IPSENDREDIRECTS	1
167#endif
168#ifndef IPFORWSRCRT
169#define	IPFORWSRCRT	1	/* forward source-routed packets */
170#endif
171#ifndef IPALLOWSRCRT
172#define	IPALLOWSRCRT	1	/* allow source-routed packets */
173#endif
174#ifndef IPMTUDISC
175#define IPMTUDISC	1
176#endif
177#ifndef IPMTUDISCTIMEOUT
178#define IPMTUDISCTIMEOUT (10 * 60)	/* as per RFC 1191 */
179#endif
180
181/*
182 * Note: DIRECTED_BROADCAST is handled this way so that previous
183 * configuration using this option will Just Work.
184 */
185#ifndef IPDIRECTEDBCAST
186#ifdef DIRECTED_BROADCAST
187#define IPDIRECTEDBCAST	1
188#else
189#define	IPDIRECTEDBCAST	0
190#endif /* DIRECTED_BROADCAST */
191#endif /* IPDIRECTEDBCAST */
192int	ipforwarding = IPFORWARDING;
193int	ipsendredirects = IPSENDREDIRECTS;
194int	ip_defttl = IPDEFTTL;
195int	ip_forwsrcrt = IPFORWSRCRT;
196int	ip_directedbcast = IPDIRECTEDBCAST;
197int	ip_allowsrcrt = IPALLOWSRCRT;
198int	ip_mtudisc = IPMTUDISC;
199int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
200#ifdef DIAGNOSTIC
201int	ipprintfs = 0;
202#endif
203
204int	ip_do_randomid = 0;
205
206/*
207 * XXX - Setting ip_checkinterface mostly implements the receive side of
208 * the Strong ES model described in RFC 1122, but since the routing table
209 * and transmit implementation do not implement the Strong ES model,
210 * setting this to 1 results in an odd hybrid.
211 *
212 * XXX - ip_checkinterface currently must be disabled if you use ipnat
213 * to translate the destination address to another local interface.
214 *
215 * XXX - ip_checkinterface must be disabled if you add IP aliases
216 * to the loopback interface instead of the interface where the
217 * packets for those addresses are received.
218 */
219int	ip_checkinterface = 0;
220
221
222struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
223
224int	ipqmaxlen = IFQ_MAXLEN;
225u_long	in_ifaddrhash;				/* size of hash table - 1 */
226int	in_ifaddrentries;			/* total number of addrs */
227struct in_ifaddrhead in_ifaddrhead;
228struct	in_ifaddrhashhead *in_ifaddrhashtbl;
229u_long	in_multihash;				/* size of hash table - 1 */
230int	in_multientries;			/* total number of addrs */
231struct	in_multihashhead *in_multihashtbl;
232struct	ifqueue ipintrq;
233struct	ipstat	ipstat;
234uint16_t ip_id;
235
236#ifdef PFIL_HOOKS
237struct pfil_head inet_pfil_hook;
238#endif
239
240/*
241 * Cached copy of nmbclusters. If nbclusters is different,
242 * recalculate IP parameters derived from nmbclusters.
243 */
244static int	ip_nmbclusters;			/* copy of nmbclusters */
245static void	ip_nmbclusters_changed(void);	/* recalc limits */
246
247#define CHECK_NMBCLUSTER_PARAMS()				\
248do {								\
249	if (__predict_false(ip_nmbclusters != nmbclusters))	\
250		ip_nmbclusters_changed();			\
251} while (/*CONSTCOND*/0)
252
253/* IP datagram reassembly queues (hashed) */
254#define IPREASS_NHASH_LOG2      6
255#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
256#define IPREASS_HMASK           (IPREASS_NHASH - 1)
257#define IPREASS_HASH(x,y) \
258	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
259struct ipqhead ipq[IPREASS_NHASH];
260int	ipq_locked;
261static int	ip_nfragpackets;	/* packets in reass queue */
262static int	ip_nfrags;		/* total fragments in reass queues */
263
264int	ip_maxfragpackets = 200;	/* limit on packets. XXX sysctl */
265int	ip_maxfrags;		        /* limit on fragments. XXX sysctl */
266
267
268/*
269 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
270 * IP reassembly queue buffer managment.
271 *
272 * We keep a count of total IP fragments (NB: not fragmented packets!)
273 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
274 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
275 * total fragments in  reassembly queues.This AIMD policy avoids
276 * repeatedly deleting single packets under heavy fragmentation load
277 * (e.g., from lossy NFS peers).
278 */
279static u_int	ip_reass_ttl_decr(u_int ticks);
280static void	ip_reass_drophalf(void);
281
282
283static inline int ipq_lock_try(void);
284static inline void ipq_unlock(void);
285
286static inline int
287ipq_lock_try(void)
288{
289	int s;
290
291	/*
292	 * Use splvm() -- we're blocking things that would cause
293	 * mbuf allocation.
294	 */
295	s = splvm();
296	if (ipq_locked) {
297		splx(s);
298		return (0);
299	}
300	ipq_locked = 1;
301	splx(s);
302	return (1);
303}
304
305static inline void
306ipq_unlock(void)
307{
308	int s;
309
310	s = splvm();
311	ipq_locked = 0;
312	splx(s);
313}
314
315#ifdef DIAGNOSTIC
316#define	IPQ_LOCK()							\
317do {									\
318	if (ipq_lock_try() == 0) {					\
319		printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
320		panic("ipq_lock");					\
321	}								\
322} while (/*CONSTCOND*/ 0)
323#define	IPQ_LOCK_CHECK()						\
324do {									\
325	if (ipq_locked == 0) {						\
326		printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
327		panic("ipq lock check");				\
328	}								\
329} while (/*CONSTCOND*/ 0)
330#else
331#define	IPQ_LOCK()		(void) ipq_lock_try()
332#define	IPQ_LOCK_CHECK()	/* nothing */
333#endif
334
335#define	IPQ_UNLOCK()		ipq_unlock()
336
337POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL);
338POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL);
339
340#ifdef INET_CSUM_COUNTERS
341#include <sys/device.h>
342
343struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
344    NULL, "inet", "hwcsum bad");
345struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346    NULL, "inet", "hwcsum ok");
347struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
348    NULL, "inet", "swcsum");
349
350#define	INET_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
351
352EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
353EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
354EVCNT_ATTACH_STATIC(ip_swcsum);
355
356#else
357
358#define	INET_CSUM_COUNTER_INCR(ev)	/* nothing */
359
360#endif /* INET_CSUM_COUNTERS */
361
362/*
363 * We need to save the IP options in case a protocol wants to respond
364 * to an incoming packet over the same route if the packet got here
365 * using IP source routing.  This allows connection establishment and
366 * maintenance when the remote end is on a network that is not known
367 * to us.
368 */
369int	ip_nhops = 0;
370static	struct ip_srcrt {
371	struct	in_addr dst;			/* final destination */
372	char	nop;				/* one NOP to align */
373	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
374	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
375} ip_srcrt;
376
377static void save_rte(u_char *, struct in_addr);
378
379#ifdef MBUFTRACE
380struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
381struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
382#endif
383
384/*
385 * Compute IP limits derived from the value of nmbclusters.
386 */
387static void
388ip_nmbclusters_changed(void)
389{
390	ip_maxfrags = nmbclusters / 4;
391	ip_nmbclusters =  nmbclusters;
392}
393
394/*
395 * IP initialization: fill in IP protocol switch table.
396 * All protocols not implemented in kernel go to raw IP protocol handler.
397 */
398void
399ip_init(void)
400{
401	const struct protosw *pr;
402	int i;
403
404	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
405	if (pr == 0)
406		panic("ip_init");
407	for (i = 0; i < IPPROTO_MAX; i++)
408		ip_protox[i] = pr - inetsw;
409	for (pr = inetdomain.dom_protosw;
410	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
411		if (pr->pr_domain->dom_family == PF_INET &&
412		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
413			ip_protox[pr->pr_protocol] = pr - inetsw;
414
415	for (i = 0; i < IPREASS_NHASH; i++)
416	    	LIST_INIT(&ipq[i]);
417
418	ip_id = time_second & 0xfffff;
419
420	ipintrq.ifq_maxlen = ipqmaxlen;
421	ip_nmbclusters_changed();
422
423	TAILQ_INIT(&in_ifaddrhead);
424	in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
425	    M_WAITOK, &in_ifaddrhash);
426	in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
427	    M_WAITOK, &in_multihash);
428	ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
429#ifdef GATEWAY
430	ipflow_init();
431#endif
432
433#ifdef PFIL_HOOKS
434	/* Register our Packet Filter hook. */
435	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
436	inet_pfil_hook.ph_af   = AF_INET;
437	i = pfil_head_register(&inet_pfil_hook);
438	if (i != 0)
439		printf("ip_init: WARNING: unable to register pfil hook, "
440		    "error %d\n", i);
441#endif /* PFIL_HOOKS */
442
443#ifdef MBUFTRACE
444	MOWNER_ATTACH(&ip_tx_mowner);
445	MOWNER_ATTACH(&ip_rx_mowner);
446#endif /* MBUFTRACE */
447}
448
449struct	sockaddr_in ipaddr = {
450	.sin_len = sizeof(ipaddr),
451	.sin_family = AF_INET,
452};
453struct	route ipforward_rt;
454
455/*
456 * IP software interrupt routine
457 */
458void
459ipintr(void)
460{
461	int s;
462	struct mbuf *m;
463
464	while (1) {
465		s = splnet();
466		IF_DEQUEUE(&ipintrq, m);
467		splx(s);
468		if (m == 0)
469			return;
470		MCLAIM(m, &ip_rx_mowner);
471		ip_input(m);
472	}
473}
474
475/*
476 * Ip input routine.  Checksum and byte swap header.  If fragmented
477 * try to reassemble.  Process options.  Pass to next level.
478 */
479void
480ip_input(struct mbuf *m)
481{
482	struct ip *ip = NULL;
483	struct ipq *fp;
484	struct in_ifaddr *ia;
485	struct ifaddr *ifa;
486	struct ipqent *ipqe;
487	int hlen = 0, mff, len;
488	int downmatch;
489	int checkif;
490	int srcrt = 0;
491	int s;
492	u_int hash;
493#ifdef FAST_IPSEC
494	struct m_tag *mtag;
495	struct tdb_ident *tdbi;
496	struct secpolicy *sp;
497	int error;
498#endif /* FAST_IPSEC */
499
500	MCLAIM(m, &ip_rx_mowner);
501#ifdef	DIAGNOSTIC
502	if ((m->m_flags & M_PKTHDR) == 0)
503		panic("ipintr no HDR");
504#endif
505
506	/*
507	 * If no IP addresses have been set yet but the interfaces
508	 * are receiving, can't do anything with incoming packets yet.
509	 */
510	if (TAILQ_FIRST(&in_ifaddrhead) == 0)
511		goto bad;
512	ipstat.ips_total++;
513	/*
514	 * If the IP header is not aligned, slurp it up into a new
515	 * mbuf with space for link headers, in the event we forward
516	 * it.  Otherwise, if it is aligned, make sure the entire
517	 * base IP header is in the first mbuf of the chain.
518	 */
519	if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
520		if ((m = m_copyup(m, sizeof(struct ip),
521				  (max_linkhdr + 3) & ~3)) == NULL) {
522			/* XXXJRT new stat, please */
523			ipstat.ips_toosmall++;
524			return;
525		}
526	} else if (__predict_false(m->m_len < sizeof (struct ip))) {
527		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
528			ipstat.ips_toosmall++;
529			return;
530		}
531	}
532	ip = mtod(m, struct ip *);
533	if (ip->ip_v != IPVERSION) {
534		ipstat.ips_badvers++;
535		goto bad;
536	}
537	hlen = ip->ip_hl << 2;
538	if (hlen < sizeof(struct ip)) {	/* minimum header length */
539		ipstat.ips_badhlen++;
540		goto bad;
541	}
542	if (hlen > m->m_len) {
543		if ((m = m_pullup(m, hlen)) == 0) {
544			ipstat.ips_badhlen++;
545			return;
546		}
547		ip = mtod(m, struct ip *);
548	}
549
550	/*
551	 * RFC1122: packets with a multicast source address are
552	 * not allowed.
553	 */
554	if (IN_MULTICAST(ip->ip_src.s_addr)) {
555		ipstat.ips_badaddr++;
556		goto bad;
557	}
558
559	/* 127/8 must not appear on wire - RFC1122 */
560	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
561	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
562		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
563			ipstat.ips_badaddr++;
564			goto bad;
565		}
566	}
567
568	switch (m->m_pkthdr.csum_flags &
569		((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
570		 M_CSUM_IPv4_BAD)) {
571	case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
572		INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
573		goto badcsum;
574
575	case M_CSUM_IPv4:
576		/* Checksum was okay. */
577		INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
578		break;
579
580	default:
581		/*
582		 * Must compute it ourselves.  Maybe skip checksum on
583		 * loopback interfaces.
584		 */
585		if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
586				     IFF_LOOPBACK) || ip_do_loopback_cksum)) {
587			INET_CSUM_COUNTER_INCR(&ip_swcsum);
588			if (in_cksum(m, hlen) != 0)
589				goto badcsum;
590		}
591		break;
592	}
593
594	/* Retrieve the packet length. */
595	len = ntohs(ip->ip_len);
596
597	/*
598	 * Check for additional length bogosity
599	 */
600	if (len < hlen) {
601	 	ipstat.ips_badlen++;
602		goto bad;
603	}
604
605	/*
606	 * Check that the amount of data in the buffers
607	 * is as at least much as the IP header would have us expect.
608	 * Trim mbufs if longer than we expect.
609	 * Drop packet if shorter than we expect.
610	 */
611	if (m->m_pkthdr.len < len) {
612		ipstat.ips_tooshort++;
613		goto bad;
614	}
615	if (m->m_pkthdr.len > len) {
616		if (m->m_len == m->m_pkthdr.len) {
617			m->m_len = len;
618			m->m_pkthdr.len = len;
619		} else
620			m_adj(m, len - m->m_pkthdr.len);
621	}
622
623#if defined(IPSEC)
624	/* ipflow (IP fast forwarding) is not compatible with IPsec. */
625	m->m_flags &= ~M_CANFASTFWD;
626#else
627	/*
628	 * Assume that we can create a fast-forward IP flow entry
629	 * based on this packet.
630	 */
631	m->m_flags |= M_CANFASTFWD;
632#endif
633
634#ifdef PFIL_HOOKS
635	/*
636	 * Run through list of hooks for input packets.  If there are any
637	 * filters which require that additional packets in the flow are
638	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
639	 * Note that filters must _never_ set this flag, as another filter
640	 * in the list may have previously cleared it.
641	 */
642	/*
643	 * let ipfilter look at packet on the wire,
644	 * not the decapsulated packet.
645	 */
646#ifdef IPSEC
647	if (!ipsec_getnhist(m))
648#elif defined(FAST_IPSEC)
649	if (!ipsec_indone(m))
650#else
651	if (1)
652#endif
653	{
654		struct in_addr odst;
655
656		odst = ip->ip_dst;
657		if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
658		    PFIL_IN) != 0)
659			return;
660		if (m == NULL)
661			return;
662		ip = mtod(m, struct ip *);
663		hlen = ip->ip_hl << 2;
664		/*
665		 * XXX The setting of "srcrt" here is to prevent ip_forward()
666		 * from generating ICMP redirects for packets that have
667		 * been redirected by a hook back out on to the same LAN that
668		 * they came from and is not an indication that the packet
669		 * is being inffluenced by source routing options.  This
670		 * allows things like
671		 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
672		 * where tlp0 is both on the 1.1.1.0/24 network and is the
673		 * default route for hosts on 1.1.1.0/24.  Of course this
674		 * also requires a "map tlp0 ..." to complete the story.
675		 * One might argue whether or not this kind of network config.
676		 * should be supported in this manner...
677		 */
678		srcrt = (odst.s_addr != ip->ip_dst.s_addr);
679	}
680#endif /* PFIL_HOOKS */
681
682#ifdef ALTQ
683	/* XXX Temporary until ALTQ is changed to use a pfil hook */
684	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
685		/* packet dropped by traffic conditioner */
686		return;
687	}
688#endif
689
690	/*
691	 * Process options and, if not destined for us,
692	 * ship it on.  ip_dooptions returns 1 when an
693	 * error was detected (causing an icmp message
694	 * to be sent and the original packet to be freed).
695	 */
696	ip_nhops = 0;		/* for source routed packets */
697	if (hlen > sizeof (struct ip) && ip_dooptions(m))
698		return;
699
700	/*
701	 * Enable a consistency check between the destination address
702	 * and the arrival interface for a unicast packet (the RFC 1122
703	 * strong ES model) if IP forwarding is disabled and the packet
704	 * is not locally generated.
705	 *
706	 * XXX - Checking also should be disabled if the destination
707	 * address is ipnat'ed to a different interface.
708	 *
709	 * XXX - Checking is incompatible with IP aliases added
710	 * to the loopback interface instead of the interface where
711	 * the packets are received.
712	 *
713	 * XXX - We need to add a per ifaddr flag for this so that
714	 * we get finer grain control.
715	 */
716	checkif = ip_checkinterface && (ipforwarding == 0) &&
717	    (m->m_pkthdr.rcvif != NULL) &&
718	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
719
720	/*
721	 * Check our list of addresses, to see if the packet is for us.
722	 *
723	 * Traditional 4.4BSD did not consult IFF_UP at all.
724	 * The behavior here is to treat addresses on !IFF_UP interface
725	 * as not mine.
726	 */
727	downmatch = 0;
728	LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
729		if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
730			if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
731				continue;
732			if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
733				break;
734			else
735				downmatch++;
736		}
737	}
738	if (ia != NULL)
739		goto ours;
740	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
741		IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
742			if (ifa->ifa_addr->sa_family != AF_INET)
743				continue;
744			ia = ifatoia(ifa);
745			if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
746			    in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
747			    /*
748			     * Look for all-0's host part (old broadcast addr),
749			     * either for subnet or net.
750			     */
751			    ip->ip_dst.s_addr == ia->ia_subnet ||
752			    ip->ip_dst.s_addr == ia->ia_net)
753				goto ours;
754			/*
755			 * An interface with IP address zero accepts
756			 * all packets that arrive on that interface.
757			 */
758			if (in_nullhost(ia->ia_addr.sin_addr))
759				goto ours;
760		}
761	}
762	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
763		struct in_multi *inm;
764#ifdef MROUTING
765		extern struct socket *ip_mrouter;
766
767		if (ip_mrouter) {
768			/*
769			 * If we are acting as a multicast router, all
770			 * incoming multicast packets are passed to the
771			 * kernel-level multicast forwarding function.
772			 * The packet is returned (relatively) intact; if
773			 * ip_mforward() returns a non-zero value, the packet
774			 * must be discarded, else it may be accepted below.
775			 *
776			 * (The IP ident field is put in the same byte order
777			 * as expected when ip_mforward() is called from
778			 * ip_output().)
779			 */
780			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
781				ipstat.ips_cantforward++;
782				m_freem(m);
783				return;
784			}
785
786			/*
787			 * The process-level routing demon needs to receive
788			 * all multicast IGMP packets, whether or not this
789			 * host belongs to their destination groups.
790			 */
791			if (ip->ip_p == IPPROTO_IGMP)
792				goto ours;
793			ipstat.ips_forward++;
794		}
795#endif
796		/*
797		 * See if we belong to the destination multicast group on the
798		 * arrival interface.
799		 */
800		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
801		if (inm == NULL) {
802			ipstat.ips_cantforward++;
803			m_freem(m);
804			return;
805		}
806		goto ours;
807	}
808	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
809	    in_nullhost(ip->ip_dst))
810		goto ours;
811
812	/*
813	 * Not for us; forward if possible and desirable.
814	 */
815	if (ipforwarding == 0) {
816		ipstat.ips_cantforward++;
817		m_freem(m);
818	} else {
819		/*
820		 * If ip_dst matched any of my address on !IFF_UP interface,
821		 * and there's no IFF_UP interface that matches ip_dst,
822		 * send icmp unreach.  Forwarding it will result in in-kernel
823		 * forwarding loop till TTL goes to 0.
824		 */
825		if (downmatch) {
826			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
827			ipstat.ips_cantforward++;
828			return;
829		}
830#ifdef IPSEC
831		if (ipsec4_in_reject(m, NULL)) {
832			ipsecstat.in_polvio++;
833			goto bad;
834		}
835#endif
836#ifdef FAST_IPSEC
837		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
838		s = splsoftnet();
839		if (mtag != NULL) {
840			tdbi = (struct tdb_ident *)(mtag + 1);
841			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
842		} else {
843			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
844						   IP_FORWARDING, &error);
845		}
846		if (sp == NULL) {	/* NB: can happen if error */
847			splx(s);
848			/*XXX error stat???*/
849			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
850			goto bad;
851		}
852
853		/*
854		 * Check security policy against packet attributes.
855		 */
856		error = ipsec_in_reject(sp, m);
857		KEY_FREESP(&sp);
858		splx(s);
859		if (error) {
860			ipstat.ips_cantforward++;
861			goto bad;
862		}
863
864		/*
865		 * Peek at the outbound SP for this packet to determine if
866		 * it's a Fast Forward candidate.
867		 */
868		mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
869		if (mtag != NULL)
870			m->m_flags &= ~M_CANFASTFWD;
871		else {
872			s = splsoftnet();
873			sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
874			    (IP_FORWARDING |
875			     (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
876			    &error, NULL);
877			if (sp != NULL) {
878				m->m_flags &= ~M_CANFASTFWD;
879				KEY_FREESP(&sp);
880			}
881			splx(s);
882		}
883#endif	/* FAST_IPSEC */
884
885		ip_forward(m, srcrt);
886	}
887	return;
888
889ours:
890	/*
891	 * If offset or IP_MF are set, must reassemble.
892	 * Otherwise, nothing need be done.
893	 * (We could look in the reassembly queue to see
894	 * if the packet was previously fragmented,
895	 * but it's not worth the time; just let them time out.)
896	 */
897	if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
898
899		/*
900		 * Look for queue of fragments
901		 * of this datagram.
902		 */
903		IPQ_LOCK();
904		hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
905		/* XXX LIST_FOREACH(fp, &ipq[hash], ipq_q) */
906		for (fp = LIST_FIRST(&ipq[hash]); fp != NULL;
907		     fp = LIST_NEXT(fp, ipq_q)) {
908			if (ip->ip_id == fp->ipq_id &&
909			    in_hosteq(ip->ip_src, fp->ipq_src) &&
910			    in_hosteq(ip->ip_dst, fp->ipq_dst) &&
911			    ip->ip_p == fp->ipq_p)
912				goto found;
913
914		}
915		fp = 0;
916found:
917
918		/*
919		 * Adjust ip_len to not reflect header,
920		 * set ipqe_mff if more fragments are expected,
921		 * convert offset of this to bytes.
922		 */
923		ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
924		mff = (ip->ip_off & htons(IP_MF)) != 0;
925		if (mff) {
926		        /*
927		         * Make sure that fragments have a data length
928			 * that's a non-zero multiple of 8 bytes.
929		         */
930			if (ntohs(ip->ip_len) == 0 ||
931			    (ntohs(ip->ip_len) & 0x7) != 0) {
932				ipstat.ips_badfrags++;
933				IPQ_UNLOCK();
934				goto bad;
935			}
936		}
937		ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
938
939		/*
940		 * If datagram marked as having more fragments
941		 * or if this is not the first fragment,
942		 * attempt reassembly; if it succeeds, proceed.
943		 */
944		if (mff || ip->ip_off != htons(0)) {
945			ipstat.ips_fragments++;
946			s = splvm();
947			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
948			splx(s);
949			if (ipqe == NULL) {
950				ipstat.ips_rcvmemdrop++;
951				IPQ_UNLOCK();
952				goto bad;
953			}
954			ipqe->ipqe_mff = mff;
955			ipqe->ipqe_m = m;
956			ipqe->ipqe_ip = ip;
957			m = ip_reass(ipqe, fp, &ipq[hash]);
958			if (m == 0) {
959				IPQ_UNLOCK();
960				return;
961			}
962			ipstat.ips_reassembled++;
963			ip = mtod(m, struct ip *);
964			hlen = ip->ip_hl << 2;
965			ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
966		} else
967			if (fp)
968				ip_freef(fp);
969		IPQ_UNLOCK();
970	}
971
972#if defined(IPSEC)
973	/*
974	 * enforce IPsec policy checking if we are seeing last header.
975	 * note that we do not visit this with protocols with pcb layer
976	 * code - like udp/tcp/raw ip.
977	 */
978	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
979	    ipsec4_in_reject(m, NULL)) {
980		ipsecstat.in_polvio++;
981		goto bad;
982	}
983#endif
984#ifdef FAST_IPSEC
985	/*
986	 * enforce IPsec policy checking if we are seeing last header.
987	 * note that we do not visit this with protocols with pcb layer
988	 * code - like udp/tcp/raw ip.
989	 */
990	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
991		/*
992		 * Check if the packet has already had IPsec processing
993		 * done.  If so, then just pass it along.  This tag gets
994		 * set during AH, ESP, etc. input handling, before the
995		 * packet is returned to the ip input queue for delivery.
996		 */
997		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
998		s = splsoftnet();
999		if (mtag != NULL) {
1000			tdbi = (struct tdb_ident *)(mtag + 1);
1001			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1002		} else {
1003			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1004						   IP_FORWARDING, &error);
1005		}
1006		if (sp != NULL) {
1007			/*
1008			 * Check security policy against packet attributes.
1009			 */
1010			error = ipsec_in_reject(sp, m);
1011			KEY_FREESP(&sp);
1012		} else {
1013			/* XXX error stat??? */
1014			error = EINVAL;
1015DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1016			goto bad;
1017		}
1018		splx(s);
1019		if (error)
1020			goto bad;
1021	}
1022#endif /* FAST_IPSEC */
1023
1024	/*
1025	 * Switch out to protocol's input routine.
1026	 */
1027#if IFA_STATS
1028	if (ia && ip)
1029		ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1030#endif
1031	ipstat.ips_delivered++;
1032    {
1033	int off = hlen, nh = ip->ip_p;
1034
1035	(*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1036	return;
1037    }
1038bad:
1039	m_freem(m);
1040	return;
1041
1042badcsum:
1043	ipstat.ips_badsum++;
1044	m_freem(m);
1045}
1046
1047/*
1048 * Take incoming datagram fragment and try to
1049 * reassemble it into whole datagram.  If a chain for
1050 * reassembly of this datagram already exists, then it
1051 * is given as fp; otherwise have to make a chain.
1052 */
1053struct mbuf *
1054ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1055{
1056	struct mbuf *m = ipqe->ipqe_m;
1057	struct ipqent *nq, *p, *q;
1058	struct ip *ip;
1059	struct mbuf *t;
1060	int hlen = ipqe->ipqe_ip->ip_hl << 2;
1061	int i, next, s;
1062
1063	IPQ_LOCK_CHECK();
1064
1065	/*
1066	 * Presence of header sizes in mbufs
1067	 * would confuse code below.
1068	 */
1069	m->m_data += hlen;
1070	m->m_len -= hlen;
1071
1072#ifdef	notyet
1073	/* make sure fragment limit is up-to-date */
1074	CHECK_NMBCLUSTER_PARAMS();
1075
1076	/* If we have too many fragments, drop the older half. */
1077	if (ip_nfrags >= ip_maxfrags)
1078		ip_reass_drophalf(void);
1079#endif
1080
1081	/*
1082	 * We are about to add a fragment; increment frag count.
1083	 */
1084	ip_nfrags++;
1085
1086	/*
1087	 * If first fragment to arrive, create a reassembly queue.
1088	 */
1089	if (fp == 0) {
1090		/*
1091		 * Enforce upper bound on number of fragmented packets
1092		 * for which we attempt reassembly;
1093		 * If maxfrag is 0, never accept fragments.
1094		 * If maxfrag is -1, accept all fragments without limitation.
1095		 */
1096		if (ip_maxfragpackets < 0)
1097			;
1098		else if (ip_nfragpackets >= ip_maxfragpackets)
1099			goto dropfrag;
1100		ip_nfragpackets++;
1101		MALLOC(fp, struct ipq *, sizeof (struct ipq),
1102		    M_FTABLE, M_NOWAIT);
1103		if (fp == NULL)
1104			goto dropfrag;
1105		LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1106		fp->ipq_nfrags = 1;
1107		fp->ipq_ttl = IPFRAGTTL;
1108		fp->ipq_p = ipqe->ipqe_ip->ip_p;
1109		fp->ipq_id = ipqe->ipqe_ip->ip_id;
1110		TAILQ_INIT(&fp->ipq_fragq);
1111		fp->ipq_src = ipqe->ipqe_ip->ip_src;
1112		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1113		p = NULL;
1114		goto insert;
1115	} else {
1116		fp->ipq_nfrags++;
1117	}
1118
1119	/*
1120	 * Find a segment which begins after this one does.
1121	 */
1122	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1123	    p = q, q = TAILQ_NEXT(q, ipqe_q))
1124		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1125			break;
1126
1127	/*
1128	 * If there is a preceding segment, it may provide some of
1129	 * our data already.  If so, drop the data from the incoming
1130	 * segment.  If it provides all of our data, drop us.
1131	 */
1132	if (p != NULL) {
1133		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1134		    ntohs(ipqe->ipqe_ip->ip_off);
1135		if (i > 0) {
1136			if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1137				goto dropfrag;
1138			m_adj(ipqe->ipqe_m, i);
1139			ipqe->ipqe_ip->ip_off =
1140			    htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1141			ipqe->ipqe_ip->ip_len =
1142			    htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1143		}
1144	}
1145
1146	/*
1147	 * While we overlap succeeding segments trim them or,
1148	 * if they are completely covered, dequeue them.
1149	 */
1150	for (; q != NULL &&
1151	    ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1152	    ntohs(q->ipqe_ip->ip_off); q = nq) {
1153		i = (ntohs(ipqe->ipqe_ip->ip_off) +
1154		    ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1155		if (i < ntohs(q->ipqe_ip->ip_len)) {
1156			q->ipqe_ip->ip_len =
1157			    htons(ntohs(q->ipqe_ip->ip_len) - i);
1158			q->ipqe_ip->ip_off =
1159			    htons(ntohs(q->ipqe_ip->ip_off) + i);
1160			m_adj(q->ipqe_m, i);
1161			break;
1162		}
1163		nq = TAILQ_NEXT(q, ipqe_q);
1164		m_freem(q->ipqe_m);
1165		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1166		s = splvm();
1167		pool_put(&ipqent_pool, q);
1168		splx(s);
1169		fp->ipq_nfrags--;
1170		ip_nfrags--;
1171	}
1172
1173insert:
1174	/*
1175	 * Stick new segment in its place;
1176	 * check for complete reassembly.
1177	 */
1178	if (p == NULL) {
1179		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1180	} else {
1181		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1182	}
1183	next = 0;
1184	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1185	    p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1186		if (ntohs(q->ipqe_ip->ip_off) != next)
1187			return (0);
1188		next += ntohs(q->ipqe_ip->ip_len);
1189	}
1190	if (p->ipqe_mff)
1191		return (0);
1192
1193	/*
1194	 * Reassembly is complete.  Check for a bogus message size and
1195	 * concatenate fragments.
1196	 */
1197	q = TAILQ_FIRST(&fp->ipq_fragq);
1198	ip = q->ipqe_ip;
1199	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1200		ipstat.ips_toolong++;
1201		ip_freef(fp);
1202		return (0);
1203	}
1204	m = q->ipqe_m;
1205	t = m->m_next;
1206	m->m_next = 0;
1207	m_cat(m, t);
1208	nq = TAILQ_NEXT(q, ipqe_q);
1209	s = splvm();
1210	pool_put(&ipqent_pool, q);
1211	splx(s);
1212	for (q = nq; q != NULL; q = nq) {
1213		t = q->ipqe_m;
1214		nq = TAILQ_NEXT(q, ipqe_q);
1215		s = splvm();
1216		pool_put(&ipqent_pool, q);
1217		splx(s);
1218		m_cat(m, t);
1219	}
1220	ip_nfrags -= fp->ipq_nfrags;
1221
1222	/*
1223	 * Create header for new ip packet by
1224	 * modifying header of first packet;
1225	 * dequeue and discard fragment reassembly header.
1226	 * Make header visible.
1227	 */
1228	ip->ip_len = htons(next);
1229	ip->ip_src = fp->ipq_src;
1230	ip->ip_dst = fp->ipq_dst;
1231	LIST_REMOVE(fp, ipq_q);
1232	FREE(fp, M_FTABLE);
1233	ip_nfragpackets--;
1234	m->m_len += (ip->ip_hl << 2);
1235	m->m_data -= (ip->ip_hl << 2);
1236	/* some debugging cruft by sklower, below, will go away soon */
1237	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1238		int plen = 0;
1239		for (t = m; t; t = t->m_next)
1240			plen += t->m_len;
1241		m->m_pkthdr.len = plen;
1242		m->m_pkthdr.csum_flags = 0;
1243	}
1244	return (m);
1245
1246dropfrag:
1247	if (fp != 0)
1248		fp->ipq_nfrags--;
1249	ip_nfrags--;
1250	ipstat.ips_fragdropped++;
1251	m_freem(m);
1252	s = splvm();
1253	pool_put(&ipqent_pool, ipqe);
1254	splx(s);
1255	return (0);
1256}
1257
1258/*
1259 * Free a fragment reassembly header and all
1260 * associated datagrams.
1261 */
1262void
1263ip_freef(struct ipq *fp)
1264{
1265	struct ipqent *q, *p;
1266	u_int nfrags = 0;
1267	int s;
1268
1269	IPQ_LOCK_CHECK();
1270
1271	for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1272		p = TAILQ_NEXT(q, ipqe_q);
1273		m_freem(q->ipqe_m);
1274		nfrags++;
1275		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1276		s = splvm();
1277		pool_put(&ipqent_pool, q);
1278		splx(s);
1279	}
1280
1281	if (nfrags != fp->ipq_nfrags)
1282	    printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1283	ip_nfrags -= nfrags;
1284	LIST_REMOVE(fp, ipq_q);
1285	FREE(fp, M_FTABLE);
1286	ip_nfragpackets--;
1287}
1288
1289/*
1290 * IP reassembly TTL machinery for  multiplicative drop.
1291 */
1292static u_int	fragttl_histo[(IPFRAGTTL+1)];
1293
1294
1295/*
1296 * Decrement TTL of all reasembly queue entries by `ticks'.
1297 * Count number of distinct fragments (as opposed to partial, fragmented
1298 * datagrams) in the reassembly queue.  While we  traverse the entire
1299 * reassembly queue, compute and return the median TTL over all fragments.
1300 */
1301static u_int
1302ip_reass_ttl_decr(u_int ticks)
1303{
1304	u_int nfrags, median, dropfraction, keepfraction;
1305	struct ipq *fp, *nfp;
1306	int i;
1307
1308	nfrags = 0;
1309	memset(fragttl_histo, 0, sizeof fragttl_histo);
1310
1311	for (i = 0; i < IPREASS_NHASH; i++) {
1312		for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1313			fp->ipq_ttl = ((fp->ipq_ttl  <= ticks) ?
1314				       0 : fp->ipq_ttl - ticks);
1315			nfp = LIST_NEXT(fp, ipq_q);
1316			if (fp->ipq_ttl == 0) {
1317				ipstat.ips_fragtimeout++;
1318				ip_freef(fp);
1319			} else {
1320				nfrags += fp->ipq_nfrags;
1321				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1322			}
1323		}
1324	}
1325
1326	KASSERT(ip_nfrags == nfrags);
1327
1328	/* Find median (or other drop fraction) in histogram. */
1329	dropfraction = (ip_nfrags / 2);
1330	keepfraction = ip_nfrags - dropfraction;
1331	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1332		median +=  fragttl_histo[i];
1333		if (median >= keepfraction)
1334			break;
1335	}
1336
1337	/* Return TTL of median (or other fraction). */
1338	return (u_int)i;
1339}
1340
1341void
1342ip_reass_drophalf(void)
1343{
1344
1345	u_int median_ticks;
1346	/*
1347	 * Compute median TTL of all fragments, and count frags
1348	 * with that TTL or lower (roughly half of all fragments).
1349	 */
1350	median_ticks = ip_reass_ttl_decr(0);
1351
1352	/* Drop half. */
1353	median_ticks = ip_reass_ttl_decr(median_ticks);
1354
1355}
1356
1357/*
1358 * IP timer processing;
1359 * if a timer expires on a reassembly
1360 * queue, discard it.
1361 */
1362void
1363ip_slowtimo(void)
1364{
1365	static u_int dropscanidx = 0;
1366	u_int i;
1367	u_int median_ttl;
1368	int s = splsoftnet();
1369
1370	IPQ_LOCK();
1371
1372	/* Age TTL of all fragments by 1 tick .*/
1373	median_ttl = ip_reass_ttl_decr(1);
1374
1375	/* make sure fragment limit is up-to-date */
1376	CHECK_NMBCLUSTER_PARAMS();
1377
1378	/* If we have too many fragments, drop the older half. */
1379	if (ip_nfrags > ip_maxfrags)
1380		ip_reass_ttl_decr(median_ttl);
1381
1382	/*
1383	 * If we are over the maximum number of fragmented packets
1384	 * (due to the limit being lowered), drain off
1385	 * enough to get down to the new limit. Start draining
1386	 * from the reassembly hashqueue most recently drained.
1387	 */
1388	if (ip_maxfragpackets < 0)
1389		;
1390	else {
1391		int wrapped = 0;
1392
1393		i = dropscanidx;
1394		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1395			while (LIST_FIRST(&ipq[i]) != NULL)
1396				ip_freef(LIST_FIRST(&ipq[i]));
1397			if (++i >= IPREASS_NHASH) {
1398				i = 0;
1399			}
1400			/*
1401			 * Dont scan forever even if fragment counters are
1402			 * wrong: stop after scanning entire reassembly queue.
1403			 */
1404			if (i == dropscanidx)
1405			    wrapped = 1;
1406		}
1407		dropscanidx = i;
1408	}
1409	IPQ_UNLOCK();
1410#ifdef GATEWAY
1411	ipflow_slowtimo();
1412#endif
1413	splx(s);
1414}
1415
1416/*
1417 * Drain off all datagram fragments.
1418 */
1419void
1420ip_drain(void)
1421{
1422
1423	/*
1424	 * We may be called from a device's interrupt context.  If
1425	 * the ipq is already busy, just bail out now.
1426	 */
1427	if (ipq_lock_try() == 0)
1428		return;
1429
1430	/*
1431	 * Drop half the total fragments now. If more mbufs are needed,
1432	 *  we will be called again soon.
1433	 */
1434	ip_reass_drophalf();
1435
1436	IPQ_UNLOCK();
1437}
1438
1439/*
1440 * Do option processing on a datagram,
1441 * possibly discarding it if bad options are encountered,
1442 * or forwarding it if source-routed.
1443 * Returns 1 if packet has been forwarded/freed,
1444 * 0 if the packet should be processed further.
1445 */
1446int
1447ip_dooptions(struct mbuf *m)
1448{
1449	struct ip *ip = mtod(m, struct ip *);
1450	u_char *cp, *cp0;
1451	struct ip_timestamp *ipt;
1452	struct in_ifaddr *ia;
1453	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1454	struct in_addr dst;
1455	n_time ntime;
1456
1457	dst = ip->ip_dst;
1458	cp = (u_char *)(ip + 1);
1459	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1460	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1461		opt = cp[IPOPT_OPTVAL];
1462		if (opt == IPOPT_EOL)
1463			break;
1464		if (opt == IPOPT_NOP)
1465			optlen = 1;
1466		else {
1467			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1468				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1469				goto bad;
1470			}
1471			optlen = cp[IPOPT_OLEN];
1472			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1473				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1474				goto bad;
1475			}
1476		}
1477		switch (opt) {
1478
1479		default:
1480			break;
1481
1482		/*
1483		 * Source routing with record.
1484		 * Find interface with current destination address.
1485		 * If none on this machine then drop if strictly routed,
1486		 * or do nothing if loosely routed.
1487		 * Record interface address and bring up next address
1488		 * component.  If strictly routed make sure next
1489		 * address is on directly accessible net.
1490		 */
1491		case IPOPT_LSRR:
1492		case IPOPT_SSRR:
1493			if (ip_allowsrcrt == 0) {
1494				type = ICMP_UNREACH;
1495				code = ICMP_UNREACH_NET_PROHIB;
1496				goto bad;
1497			}
1498			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1499				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1500				goto bad;
1501			}
1502			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1503				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1504				goto bad;
1505			}
1506			ipaddr.sin_addr = ip->ip_dst;
1507			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1508			if (ia == 0) {
1509				if (opt == IPOPT_SSRR) {
1510					type = ICMP_UNREACH;
1511					code = ICMP_UNREACH_SRCFAIL;
1512					goto bad;
1513				}
1514				/*
1515				 * Loose routing, and not at next destination
1516				 * yet; nothing to do except forward.
1517				 */
1518				break;
1519			}
1520			off--;			/* 0 origin */
1521			if ((off + sizeof(struct in_addr)) > optlen) {
1522				/*
1523				 * End of source route.  Should be for us.
1524				 */
1525				save_rte(cp, ip->ip_src);
1526				break;
1527			}
1528			/*
1529			 * locate outgoing interface
1530			 */
1531			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
1532			    sizeof(ipaddr.sin_addr));
1533			if (opt == IPOPT_SSRR)
1534				ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1535			else
1536				ia = ip_rtaddr(ipaddr.sin_addr);
1537			if (ia == 0) {
1538				type = ICMP_UNREACH;
1539				code = ICMP_UNREACH_SRCFAIL;
1540				goto bad;
1541			}
1542			ip->ip_dst = ipaddr.sin_addr;
1543			bcopy((caddr_t)&ia->ia_addr.sin_addr,
1544			    (caddr_t)(cp + off), sizeof(struct in_addr));
1545			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1546			/*
1547			 * Let ip_intr's mcast routing check handle mcast pkts
1548			 */
1549			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1550			break;
1551
1552		case IPOPT_RR:
1553			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1554				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1555				goto bad;
1556			}
1557			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1558				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1559				goto bad;
1560			}
1561			/*
1562			 * If no space remains, ignore.
1563			 */
1564			off--;			/* 0 origin */
1565			if ((off + sizeof(struct in_addr)) > optlen)
1566				break;
1567			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
1568			    sizeof(ipaddr.sin_addr));
1569			/*
1570			 * locate outgoing interface; if we're the destination,
1571			 * use the incoming interface (should be same).
1572			 */
1573			if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1574			    == NULL &&
1575			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1576				type = ICMP_UNREACH;
1577				code = ICMP_UNREACH_HOST;
1578				goto bad;
1579			}
1580			bcopy((caddr_t)&ia->ia_addr.sin_addr,
1581			    (caddr_t)(cp + off), sizeof(struct in_addr));
1582			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1583			break;
1584
1585		case IPOPT_TS:
1586			code = cp - (u_char *)ip;
1587			ipt = (struct ip_timestamp *)cp;
1588			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1589				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1590				goto bad;
1591			}
1592			if (ipt->ipt_ptr < 5) {
1593				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1594				goto bad;
1595			}
1596			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1597				if (++ipt->ipt_oflw == 0) {
1598					code = (u_char *)&ipt->ipt_ptr -
1599					    (u_char *)ip;
1600					goto bad;
1601				}
1602				break;
1603			}
1604			cp0 = (cp + ipt->ipt_ptr - 1);
1605			switch (ipt->ipt_flg) {
1606
1607			case IPOPT_TS_TSONLY:
1608				break;
1609
1610			case IPOPT_TS_TSANDADDR:
1611				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1612				    sizeof(struct in_addr) > ipt->ipt_len) {
1613					code = (u_char *)&ipt->ipt_ptr -
1614					    (u_char *)ip;
1615					goto bad;
1616				}
1617				ipaddr.sin_addr = dst;
1618				ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1619				    m->m_pkthdr.rcvif));
1620				if (ia == 0)
1621					continue;
1622				bcopy(&ia->ia_addr.sin_addr,
1623				    cp0, sizeof(struct in_addr));
1624				ipt->ipt_ptr += sizeof(struct in_addr);
1625				break;
1626
1627			case IPOPT_TS_PRESPEC:
1628				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1629				    sizeof(struct in_addr) > ipt->ipt_len) {
1630					code = (u_char *)&ipt->ipt_ptr -
1631					    (u_char *)ip;
1632					goto bad;
1633				}
1634				bcopy(cp0, &ipaddr.sin_addr,
1635				    sizeof(struct in_addr));
1636				if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1637				    == NULL)
1638					continue;
1639				ipt->ipt_ptr += sizeof(struct in_addr);
1640				break;
1641
1642			default:
1643				/* XXX can't take &ipt->ipt_flg */
1644				code = (u_char *)&ipt->ipt_ptr -
1645				    (u_char *)ip + 1;
1646				goto bad;
1647			}
1648			ntime = iptime();
1649			cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1650			bcopy(cp0, (caddr_t)cp + ipt->ipt_ptr - 1,
1651			    sizeof(n_time));
1652			ipt->ipt_ptr += sizeof(n_time);
1653		}
1654	}
1655	if (forward) {
1656		if (ip_forwsrcrt == 0) {
1657			type = ICMP_UNREACH;
1658			code = ICMP_UNREACH_SRCFAIL;
1659			goto bad;
1660		}
1661		ip_forward(m, 1);
1662		return (1);
1663	}
1664	return (0);
1665bad:
1666	icmp_error(m, type, code, 0, 0);
1667	ipstat.ips_badoptions++;
1668	return (1);
1669}
1670
1671/*
1672 * Given address of next destination (final or next hop),
1673 * return internet address info of interface to be used to get there.
1674 */
1675struct in_ifaddr *
1676ip_rtaddr(struct in_addr dst)
1677{
1678	struct sockaddr_in *sin;
1679
1680	sin = satosin(&ipforward_rt.ro_dst);
1681
1682	if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
1683		if (ipforward_rt.ro_rt) {
1684			RTFREE(ipforward_rt.ro_rt);
1685			ipforward_rt.ro_rt = 0;
1686		}
1687		sin->sin_family = AF_INET;
1688		sin->sin_len = sizeof(*sin);
1689		sin->sin_addr = dst;
1690
1691		rtalloc(&ipforward_rt);
1692	}
1693	if (ipforward_rt.ro_rt == 0)
1694		return ((struct in_ifaddr *)0);
1695	return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
1696}
1697
1698/*
1699 * Save incoming source route for use in replies,
1700 * to be picked up later by ip_srcroute if the receiver is interested.
1701 */
1702void
1703save_rte(u_char *option, struct in_addr dst)
1704{
1705	unsigned olen;
1706
1707	olen = option[IPOPT_OLEN];
1708#ifdef DIAGNOSTIC
1709	if (ipprintfs)
1710		printf("save_rte: olen %d\n", olen);
1711#endif /* 0 */
1712	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1713		return;
1714	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
1715	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1716	ip_srcrt.dst = dst;
1717}
1718
1719/*
1720 * Retrieve incoming source route for use in replies,
1721 * in the same form used by setsockopt.
1722 * The first hop is placed before the options, will be removed later.
1723 */
1724struct mbuf *
1725ip_srcroute(void)
1726{
1727	struct in_addr *p, *q;
1728	struct mbuf *m;
1729
1730	if (ip_nhops == 0)
1731		return NULL;
1732	m = m_get(M_DONTWAIT, MT_SOOPTS);
1733	if (m == 0)
1734		return NULL;
1735
1736	MCLAIM(m, &inetdomain.dom_mowner);
1737#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1738
1739	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1740	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1741	    OPTSIZ;
1742#ifdef DIAGNOSTIC
1743	if (ipprintfs)
1744		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1745#endif
1746
1747	/*
1748	 * First save first hop for return route
1749	 */
1750	p = &ip_srcrt.route[ip_nhops - 1];
1751	*(mtod(m, struct in_addr *)) = *p--;
1752#ifdef DIAGNOSTIC
1753	if (ipprintfs)
1754		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1755#endif
1756
1757	/*
1758	 * Copy option fields and padding (nop) to mbuf.
1759	 */
1760	ip_srcrt.nop = IPOPT_NOP;
1761	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1762	bcopy((caddr_t)&ip_srcrt.nop,
1763	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
1764	q = (struct in_addr *)(mtod(m, caddr_t) +
1765	    sizeof(struct in_addr) + OPTSIZ);
1766#undef OPTSIZ
1767	/*
1768	 * Record return path as an IP source route,
1769	 * reversing the path (pointers are now aligned).
1770	 */
1771	while (p >= ip_srcrt.route) {
1772#ifdef DIAGNOSTIC
1773		if (ipprintfs)
1774			printf(" %x", ntohl(q->s_addr));
1775#endif
1776		*q++ = *p--;
1777	}
1778	/*
1779	 * Last hop goes to final destination.
1780	 */
1781	*q = ip_srcrt.dst;
1782#ifdef DIAGNOSTIC
1783	if (ipprintfs)
1784		printf(" %x\n", ntohl(q->s_addr));
1785#endif
1786	return (m);
1787}
1788
1789/*
1790 * Strip out IP options, at higher
1791 * level protocol in the kernel.
1792 * Second argument is buffer to which options
1793 * will be moved, and return value is their length.
1794 * XXX should be deleted; last arg currently ignored.
1795 */
1796void
1797ip_stripoptions(struct mbuf *m, struct mbuf *mopt)
1798{
1799	int i;
1800	struct ip *ip = mtod(m, struct ip *);
1801	caddr_t opts;
1802	int olen;
1803
1804	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1805	opts = (caddr_t)(ip + 1);
1806	i = m->m_len - (sizeof (struct ip) + olen);
1807	bcopy(opts  + olen, opts, (unsigned)i);
1808	m->m_len -= olen;
1809	if (m->m_flags & M_PKTHDR)
1810		m->m_pkthdr.len -= olen;
1811	ip->ip_len = htons(ntohs(ip->ip_len) - olen);
1812	ip->ip_hl = sizeof (struct ip) >> 2;
1813}
1814
1815const int inetctlerrmap[PRC_NCMDS] = {
1816	0,		0,		0,		0,
1817	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1818	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1819	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1820	0,		0,		0,		0,
1821	ENOPROTOOPT
1822};
1823
1824/*
1825 * Forward a packet.  If some error occurs return the sender
1826 * an icmp packet.  Note we can't always generate a meaningful
1827 * icmp message because icmp doesn't have a large enough repertoire
1828 * of codes and types.
1829 *
1830 * If not forwarding, just drop the packet.  This could be confusing
1831 * if ipforwarding was zero but some routing protocol was advancing
1832 * us as a gateway to somewhere.  However, we must let the routing
1833 * protocol deal with that.
1834 *
1835 * The srcrt parameter indicates whether the packet is being forwarded
1836 * via a source route.
1837 */
1838void
1839ip_forward(struct mbuf *m, int srcrt)
1840{
1841	struct ip *ip = mtod(m, struct ip *);
1842	struct sockaddr_in *sin;
1843	struct rtentry *rt;
1844	int error, type = 0, code = 0, destmtu = 0;
1845	struct mbuf *mcopy;
1846	n_long dest;
1847
1848	/*
1849	 * We are now in the output path.
1850	 */
1851	MCLAIM(m, &ip_tx_mowner);
1852
1853	/*
1854	 * Clear any in-bound checksum flags for this packet.
1855	 */
1856	m->m_pkthdr.csum_flags = 0;
1857
1858	dest = 0;
1859#ifdef DIAGNOSTIC
1860	if (ipprintfs) {
1861		printf("forward: src %s ", inet_ntoa(ip->ip_src));
1862		printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1863	}
1864#endif
1865	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1866		ipstat.ips_cantforward++;
1867		m_freem(m);
1868		return;
1869	}
1870	if (ip->ip_ttl <= IPTTLDEC) {
1871		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1872		return;
1873	}
1874
1875	sin = satosin(&ipforward_rt.ro_dst);
1876	if ((rt = ipforward_rt.ro_rt) == 0 ||
1877	    !in_hosteq(ip->ip_dst, sin->sin_addr)) {
1878		if (ipforward_rt.ro_rt) {
1879			RTFREE(ipforward_rt.ro_rt);
1880			ipforward_rt.ro_rt = 0;
1881		}
1882		sin->sin_family = AF_INET;
1883		sin->sin_len = sizeof(struct sockaddr_in);
1884		sin->sin_addr = ip->ip_dst;
1885
1886		rtalloc(&ipforward_rt);
1887		if (ipforward_rt.ro_rt == 0) {
1888			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1889			return;
1890		}
1891		rt = ipforward_rt.ro_rt;
1892	}
1893
1894	/*
1895	 * Save at most 68 bytes of the packet in case
1896	 * we need to generate an ICMP message to the src.
1897	 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1898	 */
1899	mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1900	if (mcopy)
1901		mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1902
1903	ip->ip_ttl -= IPTTLDEC;
1904
1905	/*
1906	 * If forwarding packet using same interface that it came in on,
1907	 * perhaps should send a redirect to sender to shortcut a hop.
1908	 * Only send redirect if source is sending directly to us,
1909	 * and if packet was not source routed (or has any options).
1910	 * Also, don't send redirect if forwarding using a default route
1911	 * or a route modified by a redirect.
1912	 */
1913	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1914	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1915	    !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
1916	    ipsendredirects && !srcrt) {
1917		if (rt->rt_ifa &&
1918		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1919		    ifatoia(rt->rt_ifa)->ia_subnet) {
1920			if (rt->rt_flags & RTF_GATEWAY)
1921				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1922			else
1923				dest = ip->ip_dst.s_addr;
1924			/*
1925			 * Router requirements says to only send host
1926			 * redirects.
1927			 */
1928			type = ICMP_REDIRECT;
1929			code = ICMP_REDIRECT_HOST;
1930#ifdef DIAGNOSTIC
1931			if (ipprintfs)
1932				printf("redirect (%d) to %x\n", code,
1933				    (u_int32_t)dest);
1934#endif
1935		}
1936	}
1937
1938	error = ip_output(m, NULL, &ipforward_rt,
1939	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1940	    (struct ip_moptions *)NULL, (struct socket *)NULL);
1941
1942	if (error)
1943		ipstat.ips_cantforward++;
1944	else {
1945		ipstat.ips_forward++;
1946		if (type)
1947			ipstat.ips_redirectsent++;
1948		else {
1949			if (mcopy) {
1950#ifdef GATEWAY
1951				if (mcopy->m_flags & M_CANFASTFWD)
1952					ipflow_create(&ipforward_rt, mcopy);
1953#endif
1954				m_freem(mcopy);
1955			}
1956			return;
1957		}
1958	}
1959	if (mcopy == NULL)
1960		return;
1961
1962	switch (error) {
1963
1964	case 0:				/* forwarded, but need redirect */
1965		/* type, code set above */
1966		break;
1967
1968	case ENETUNREACH:		/* shouldn't happen, checked above */
1969	case EHOSTUNREACH:
1970	case ENETDOWN:
1971	case EHOSTDOWN:
1972	default:
1973		type = ICMP_UNREACH;
1974		code = ICMP_UNREACH_HOST;
1975		break;
1976
1977	case EMSGSIZE:
1978		type = ICMP_UNREACH;
1979		code = ICMP_UNREACH_NEEDFRAG;
1980#if !defined(IPSEC) && !defined(FAST_IPSEC)
1981		if (ipforward_rt.ro_rt != NULL)
1982			destmtu = ipforward_rt.ro_rt->rt_ifp->if_mtu;
1983#else
1984		/*
1985		 * If the packet is routed over IPsec tunnel, tell the
1986		 * originator the tunnel MTU.
1987		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1988		 * XXX quickhack!!!
1989		 */
1990		if (ipforward_rt.ro_rt != NULL) {
1991			struct secpolicy *sp;
1992			int ipsecerror;
1993			size_t ipsechdr;
1994			struct route *ro;
1995
1996			sp = ipsec4_getpolicybyaddr(mcopy,
1997			    IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1998			    &ipsecerror);
1999
2000			if (sp == NULL)
2001				destmtu = ipforward_rt.ro_rt->rt_ifp->if_mtu;
2002			else {
2003				/* count IPsec header size */
2004				ipsechdr = ipsec4_hdrsiz(mcopy,
2005				    IPSEC_DIR_OUTBOUND, NULL);
2006
2007				/*
2008				 * find the correct route for outer IPv4
2009				 * header, compute tunnel MTU.
2010				 */
2011
2012				if (sp->req != NULL
2013				 && sp->req->sav != NULL
2014				 && sp->req->sav->sah != NULL) {
2015					ro = &sp->req->sav->sah->sa_route;
2016					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
2017						destmtu =
2018						    ro->ro_rt->rt_rmx.rmx_mtu ?
2019						    ro->ro_rt->rt_rmx.rmx_mtu :
2020						    ro->ro_rt->rt_ifp->if_mtu;
2021						destmtu -= ipsechdr;
2022					}
2023				}
2024
2025#ifdef	IPSEC
2026				key_freesp(sp);
2027#else
2028				KEY_FREESP(&sp);
2029#endif
2030			}
2031		}
2032#endif /*IPSEC*/
2033		ipstat.ips_cantfrag++;
2034		break;
2035
2036	case ENOBUFS:
2037#if 1
2038		/*
2039		 * a router should not generate ICMP_SOURCEQUENCH as
2040		 * required in RFC1812 Requirements for IP Version 4 Routers.
2041		 * source quench could be a big problem under DoS attacks,
2042		 * or if the underlying interface is rate-limited.
2043		 */
2044		if (mcopy)
2045			m_freem(mcopy);
2046		return;
2047#else
2048		type = ICMP_SOURCEQUENCH;
2049		code = 0;
2050		break;
2051#endif
2052	}
2053	icmp_error(mcopy, type, code, dest, destmtu);
2054}
2055
2056void
2057ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2058    struct mbuf *m)
2059{
2060
2061	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2062		struct timeval tv;
2063
2064		microtime(&tv);
2065		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2066		    SCM_TIMESTAMP, SOL_SOCKET);
2067		if (*mp)
2068			mp = &(*mp)->m_next;
2069	}
2070	if (inp->inp_flags & INP_RECVDSTADDR) {
2071		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2072		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2073		if (*mp)
2074			mp = &(*mp)->m_next;
2075	}
2076#ifdef notyet
2077	/*
2078	 * XXX
2079	 * Moving these out of udp_input() made them even more broken
2080	 * than they already were.
2081	 *	- fenner@parc.xerox.com
2082	 */
2083	/* options were tossed already */
2084	if (inp->inp_flags & INP_RECVOPTS) {
2085		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2086		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2087		if (*mp)
2088			mp = &(*mp)->m_next;
2089	}
2090	/* ip_srcroute doesn't do what we want here, need to fix */
2091	if (inp->inp_flags & INP_RECVRETOPTS) {
2092		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2093		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2094		if (*mp)
2095			mp = &(*mp)->m_next;
2096	}
2097#endif
2098	if (inp->inp_flags & INP_RECVIF) {
2099		struct sockaddr_dl sdl;
2100
2101		sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
2102		sdl.sdl_family = AF_LINK;
2103		sdl.sdl_index = m->m_pkthdr.rcvif ?
2104		    m->m_pkthdr.rcvif->if_index : 0;
2105		sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
2106		*mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
2107		    IP_RECVIF, IPPROTO_IP);
2108		if (*mp)
2109			mp = &(*mp)->m_next;
2110	}
2111}
2112
2113/*
2114 * sysctl helper routine for net.inet.ip.forwsrcrt.
2115 */
2116static int
2117sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2118{
2119	int error, tmp;
2120	struct sysctlnode node;
2121
2122	node = *rnode;
2123	tmp = ip_forwsrcrt;
2124	node.sysctl_data = &tmp;
2125	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2126	if (error || newp == NULL)
2127		return (error);
2128
2129	if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2130	    0, NULL, NULL, NULL))
2131		return (EPERM);
2132
2133	ip_forwsrcrt = tmp;
2134
2135	return (0);
2136}
2137
2138/*
2139 * sysctl helper routine for net.inet.ip.mtudisctimeout.  checks the
2140 * range of the new value and tweaks timers if it changes.
2141 */
2142static int
2143sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2144{
2145	int error, tmp;
2146	struct sysctlnode node;
2147
2148	node = *rnode;
2149	tmp = ip_mtudisc_timeout;
2150	node.sysctl_data = &tmp;
2151	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2152	if (error || newp == NULL)
2153		return (error);
2154	if (tmp < 0)
2155		return (EINVAL);
2156
2157	ip_mtudisc_timeout = tmp;
2158	rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2159
2160	return (0);
2161}
2162
2163#ifdef GATEWAY
2164/*
2165 * sysctl helper routine for net.inet.ip.maxflows.  apparently if
2166 * maxflows is even looked up, we "reap flows".
2167 */
2168static int
2169sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2170{
2171	int s;
2172
2173	s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2174	if (s)
2175		return (s);
2176
2177	s = splsoftnet();
2178	ipflow_reap(0);
2179	splx(s);
2180
2181	return (0);
2182}
2183#endif /* GATEWAY */
2184
2185
2186SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2187{
2188	extern int subnetsarelocal, hostzeroisbroadcast;
2189
2190	sysctl_createv(clog, 0, NULL, NULL,
2191		       CTLFLAG_PERMANENT,
2192		       CTLTYPE_NODE, "net", NULL,
2193		       NULL, 0, NULL, 0,
2194		       CTL_NET, CTL_EOL);
2195	sysctl_createv(clog, 0, NULL, NULL,
2196		       CTLFLAG_PERMANENT,
2197		       CTLTYPE_NODE, "inet",
2198		       SYSCTL_DESCR("PF_INET related settings"),
2199		       NULL, 0, NULL, 0,
2200		       CTL_NET, PF_INET, CTL_EOL);
2201	sysctl_createv(clog, 0, NULL, NULL,
2202		       CTLFLAG_PERMANENT,
2203		       CTLTYPE_NODE, "ip",
2204		       SYSCTL_DESCR("IPv4 related settings"),
2205		       NULL, 0, NULL, 0,
2206		       CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2207
2208	sysctl_createv(clog, 0, NULL, NULL,
2209		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2210		       CTLTYPE_INT, "forwarding",
2211		       SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2212		       NULL, 0, &ipforwarding, 0,
2213		       CTL_NET, PF_INET, IPPROTO_IP,
2214		       IPCTL_FORWARDING, CTL_EOL);
2215	sysctl_createv(clog, 0, NULL, NULL,
2216		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2217		       CTLTYPE_INT, "redirect",
2218		       SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2219		       NULL, 0, &ipsendredirects, 0,
2220		       CTL_NET, PF_INET, IPPROTO_IP,
2221		       IPCTL_SENDREDIRECTS, CTL_EOL);
2222	sysctl_createv(clog, 0, NULL, NULL,
2223		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2224		       CTLTYPE_INT, "ttl",
2225		       SYSCTL_DESCR("Default TTL for an INET datagram"),
2226		       NULL, 0, &ip_defttl, 0,
2227		       CTL_NET, PF_INET, IPPROTO_IP,
2228		       IPCTL_DEFTTL, CTL_EOL);
2229#ifdef IPCTL_DEFMTU
2230	sysctl_createv(clog, 0, NULL, NULL,
2231		       CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2232		       CTLTYPE_INT, "mtu",
2233		       SYSCTL_DESCR("Default MTA for an INET route"),
2234		       NULL, 0, &ip_mtu, 0,
2235		       CTL_NET, PF_INET, IPPROTO_IP,
2236		       IPCTL_DEFMTU, CTL_EOL);
2237#endif /* IPCTL_DEFMTU */
2238	sysctl_createv(clog, 0, NULL, NULL,
2239		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2240		       CTLTYPE_INT, "forwsrcrt",
2241		       SYSCTL_DESCR("Enable forwarding of source-routed "
2242				    "datagrams"),
2243		       sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2244		       CTL_NET, PF_INET, IPPROTO_IP,
2245		       IPCTL_FORWSRCRT, CTL_EOL);
2246	sysctl_createv(clog, 0, NULL, NULL,
2247		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2248		       CTLTYPE_INT, "directed-broadcast",
2249		       SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2250		       NULL, 0, &ip_directedbcast, 0,
2251		       CTL_NET, PF_INET, IPPROTO_IP,
2252		       IPCTL_DIRECTEDBCAST, CTL_EOL);
2253	sysctl_createv(clog, 0, NULL, NULL,
2254		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2255		       CTLTYPE_INT, "allowsrcrt",
2256		       SYSCTL_DESCR("Accept source-routed datagrams"),
2257		       NULL, 0, &ip_allowsrcrt, 0,
2258		       CTL_NET, PF_INET, IPPROTO_IP,
2259		       IPCTL_ALLOWSRCRT, CTL_EOL);
2260	sysctl_createv(clog, 0, NULL, NULL,
2261		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2262		       CTLTYPE_INT, "subnetsarelocal",
2263		       SYSCTL_DESCR("Whether logical subnets are considered "
2264				    "local"),
2265		       NULL, 0, &subnetsarelocal, 0,
2266		       CTL_NET, PF_INET, IPPROTO_IP,
2267		       IPCTL_SUBNETSARELOCAL, CTL_EOL);
2268	sysctl_createv(clog, 0, NULL, NULL,
2269		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2270		       CTLTYPE_INT, "mtudisc",
2271		       SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2272		       NULL, 0, &ip_mtudisc, 0,
2273		       CTL_NET, PF_INET, IPPROTO_IP,
2274		       IPCTL_MTUDISC, CTL_EOL);
2275	sysctl_createv(clog, 0, NULL, NULL,
2276		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2277		       CTLTYPE_INT, "anonportmin",
2278		       SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2279		       sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2280		       CTL_NET, PF_INET, IPPROTO_IP,
2281		       IPCTL_ANONPORTMIN, CTL_EOL);
2282	sysctl_createv(clog, 0, NULL, NULL,
2283		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2284		       CTLTYPE_INT, "anonportmax",
2285		       SYSCTL_DESCR("Highest ephemeral port number to assign"),
2286		       sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2287		       CTL_NET, PF_INET, IPPROTO_IP,
2288		       IPCTL_ANONPORTMAX, CTL_EOL);
2289	sysctl_createv(clog, 0, NULL, NULL,
2290		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2291		       CTLTYPE_INT, "mtudisctimeout",
2292		       SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2293		       sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2294		       CTL_NET, PF_INET, IPPROTO_IP,
2295		       IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2296#ifdef GATEWAY
2297	sysctl_createv(clog, 0, NULL, NULL,
2298		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2299		       CTLTYPE_INT, "maxflows",
2300		       SYSCTL_DESCR("Number of flows for fast forwarding"),
2301		       sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2302		       CTL_NET, PF_INET, IPPROTO_IP,
2303		       IPCTL_MAXFLOWS, CTL_EOL);
2304#endif /* GATEWAY */
2305	sysctl_createv(clog, 0, NULL, NULL,
2306		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2307		       CTLTYPE_INT, "hostzerobroadcast",
2308		       SYSCTL_DESCR("All zeroes address is broadcast address"),
2309		       NULL, 0, &hostzeroisbroadcast, 0,
2310		       CTL_NET, PF_INET, IPPROTO_IP,
2311		       IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2312#if NGIF > 0
2313	sysctl_createv(clog, 0, NULL, NULL,
2314		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2315		       CTLTYPE_INT, "gifttl",
2316		       SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2317		       NULL, 0, &ip_gif_ttl, 0,
2318		       CTL_NET, PF_INET, IPPROTO_IP,
2319		       IPCTL_GIF_TTL, CTL_EOL);
2320#endif /* NGIF */
2321#ifndef IPNOPRIVPORTS
2322	sysctl_createv(clog, 0, NULL, NULL,
2323		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2324		       CTLTYPE_INT, "lowportmin",
2325		       SYSCTL_DESCR("Lowest privileged ephemeral port number "
2326				    "to assign"),
2327		       sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2328		       CTL_NET, PF_INET, IPPROTO_IP,
2329		       IPCTL_LOWPORTMIN, CTL_EOL);
2330	sysctl_createv(clog, 0, NULL, NULL,
2331		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2332		       CTLTYPE_INT, "lowportmax",
2333		       SYSCTL_DESCR("Highest privileged ephemeral port number "
2334				    "to assign"),
2335		       sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2336		       CTL_NET, PF_INET, IPPROTO_IP,
2337		       IPCTL_LOWPORTMAX, CTL_EOL);
2338#endif /* IPNOPRIVPORTS */
2339	sysctl_createv(clog, 0, NULL, NULL,
2340		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2341		       CTLTYPE_INT, "maxfragpackets",
2342		       SYSCTL_DESCR("Maximum number of fragments to retain for "
2343				    "possible reassembly"),
2344		       NULL, 0, &ip_maxfragpackets, 0,
2345		       CTL_NET, PF_INET, IPPROTO_IP,
2346		       IPCTL_MAXFRAGPACKETS, CTL_EOL);
2347#if NGRE > 0
2348	sysctl_createv(clog, 0, NULL, NULL,
2349		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2350		       CTLTYPE_INT, "grettl",
2351		       SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2352		       NULL, 0, &ip_gre_ttl, 0,
2353		       CTL_NET, PF_INET, IPPROTO_IP,
2354		       IPCTL_GRE_TTL, CTL_EOL);
2355#endif /* NGRE */
2356	sysctl_createv(clog, 0, NULL, NULL,
2357		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2358		       CTLTYPE_INT, "checkinterface",
2359		       SYSCTL_DESCR("Enable receive side of Strong ES model "
2360				    "from RFC1122"),
2361		       NULL, 0, &ip_checkinterface, 0,
2362		       CTL_NET, PF_INET, IPPROTO_IP,
2363		       IPCTL_CHECKINTERFACE, CTL_EOL);
2364	sysctl_createv(clog, 0, NULL, NULL,
2365		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2366		       CTLTYPE_INT, "random_id",
2367		       SYSCTL_DESCR("Assign random ip_id values"),
2368		       NULL, 0, &ip_do_randomid, 0,
2369		       CTL_NET, PF_INET, IPPROTO_IP,
2370		       IPCTL_RANDOMID, CTL_EOL);
2371	sysctl_createv(clog, 0, NULL, NULL,
2372		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2373		       CTLTYPE_INT, "do_loopback_cksum",
2374		       SYSCTL_DESCR("Perform IP checksum on loopback"),
2375		       NULL, 0, &ip_do_loopback_cksum, 0,
2376		       CTL_NET, PF_INET, IPPROTO_IP,
2377		       IPCTL_LOOPBACKCKSUM, CTL_EOL);
2378	sysctl_createv(clog, 0, NULL, NULL,
2379		       CTLFLAG_PERMANENT,
2380		       CTLTYPE_STRUCT, "stats",
2381		       SYSCTL_DESCR("IP statistics"),
2382		       NULL, 0, &ipstat, sizeof(ipstat),
2383		       CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2384		       CTL_EOL);
2385}
2386