ip_input.c revision 1.201
1/*	$NetBSD: ip_input.c,v 1.201 2004/05/01 02:20:42 matt Exp $	*/
2
3/*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32/*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix").  It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 *    notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 *    notice, this list of conditions and the following disclaimer in the
47 *    documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 *    must display the following acknowledgement:
50 *	This product includes software developed by the NetBSD
51 *	Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 *    contributors may be used to endorse or promote products derived
54 *    from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69/*
70 * Copyright (c) 1982, 1986, 1988, 1993
71 *	The Regents of the University of California.  All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 *    notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 *    notice, this list of conditions and the following disclaimer in the
80 *    documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 *    may be used to endorse or promote products derived from this software
83 *    without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
98 */
99
100#include <sys/cdefs.h>
101__KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.201 2004/05/01 02:20:42 matt Exp $");
102
103#include "opt_inet.h"
104#include "opt_gateway.h"
105#include "opt_pfil_hooks.h"
106#include "opt_ipsec.h"
107#include "opt_mrouting.h"
108#include "opt_mbuftrace.h"
109#include "opt_inet_csum.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/malloc.h>
114#include <sys/mbuf.h>
115#include <sys/domain.h>
116#include <sys/protosw.h>
117#include <sys/socket.h>
118#include <sys/socketvar.h>
119#include <sys/errno.h>
120#include <sys/time.h>
121#include <sys/kernel.h>
122#include <sys/pool.h>
123#include <sys/sysctl.h>
124
125#include <net/if.h>
126#include <net/if_dl.h>
127#include <net/route.h>
128#include <net/pfil.h>
129
130#include <netinet/in.h>
131#include <netinet/in_systm.h>
132#include <netinet/ip.h>
133#include <netinet/in_pcb.h>
134#include <netinet/in_var.h>
135#include <netinet/ip_var.h>
136#include <netinet/ip_icmp.h>
137/* just for gif_ttl */
138#include <netinet/in_gif.h>
139#include "gif.h"
140#include <net/if_gre.h>
141#include "gre.h"
142
143#ifdef MROUTING
144#include <netinet/ip_mroute.h>
145#endif
146
147#ifdef IPSEC
148#include <netinet6/ipsec.h>
149#include <netkey/key.h>
150#endif
151#ifdef FAST_IPSEC
152#include <netipsec/ipsec.h>
153#include <netipsec/key.h>
154#endif	/* FAST_IPSEC*/
155
156#ifndef	IPFORWARDING
157#ifdef GATEWAY
158#define	IPFORWARDING	1	/* forward IP packets not for us */
159#else /* GATEWAY */
160#define	IPFORWARDING	0	/* don't forward IP packets not for us */
161#endif /* GATEWAY */
162#endif /* IPFORWARDING */
163#ifndef	IPSENDREDIRECTS
164#define	IPSENDREDIRECTS	1
165#endif
166#ifndef IPFORWSRCRT
167#define	IPFORWSRCRT	1	/* forward source-routed packets */
168#endif
169#ifndef IPALLOWSRCRT
170#define	IPALLOWSRCRT	1	/* allow source-routed packets */
171#endif
172#ifndef IPMTUDISC
173#define IPMTUDISC	1
174#endif
175#ifndef IPMTUDISCTIMEOUT
176#define IPMTUDISCTIMEOUT (10 * 60)	/* as per RFC 1191 */
177#endif
178
179/*
180 * Note: DIRECTED_BROADCAST is handled this way so that previous
181 * configuration using this option will Just Work.
182 */
183#ifndef IPDIRECTEDBCAST
184#ifdef DIRECTED_BROADCAST
185#define IPDIRECTEDBCAST	1
186#else
187#define	IPDIRECTEDBCAST	0
188#endif /* DIRECTED_BROADCAST */
189#endif /* IPDIRECTEDBCAST */
190int	ipforwarding = IPFORWARDING;
191int	ipsendredirects = IPSENDREDIRECTS;
192int	ip_defttl = IPDEFTTL;
193int	ip_forwsrcrt = IPFORWSRCRT;
194int	ip_directedbcast = IPDIRECTEDBCAST;
195int	ip_allowsrcrt = IPALLOWSRCRT;
196int	ip_mtudisc = IPMTUDISC;
197int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
198#ifdef DIAGNOSTIC
199int	ipprintfs = 0;
200#endif
201
202int	ip_do_randomid = 0;
203
204/*
205 * XXX - Setting ip_checkinterface mostly implements the receive side of
206 * the Strong ES model described in RFC 1122, but since the routing table
207 * and transmit implementation do not implement the Strong ES model,
208 * setting this to 1 results in an odd hybrid.
209 *
210 * XXX - ip_checkinterface currently must be disabled if you use ipnat
211 * to translate the destination address to another local interface.
212 *
213 * XXX - ip_checkinterface must be disabled if you add IP aliases
214 * to the loopback interface instead of the interface where the
215 * packets for those addresses are received.
216 */
217int	ip_checkinterface = 0;
218
219
220struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
221
222int	ipqmaxlen = IFQ_MAXLEN;
223u_long	in_ifaddrhash;				/* size of hash table - 1 */
224int	in_ifaddrentries;			/* total number of addrs */
225struct in_ifaddrhead in_ifaddrhead;
226struct	in_ifaddrhashhead *in_ifaddrhashtbl;
227u_long	in_multihash;				/* size of hash table - 1 */
228int	in_multientries;			/* total number of addrs */
229struct	in_multihashhead *in_multihashtbl;
230struct	ifqueue ipintrq;
231struct	ipstat	ipstat;
232uint16_t ip_id;
233
234#ifdef PFIL_HOOKS
235struct pfil_head inet_pfil_hook;
236#endif
237
238/*
239 * Cached copy of nmbclusters. If nbclusters is different,
240 * recalculate IP parameters derived from nmbclusters.
241 */
242static int	ip_nmbclusters;			/* copy of nmbclusters */
243static void	ip_nmbclusters_changed __P((void));	/* recalc limits */
244
245#define CHECK_NMBCLUSTER_PARAMS()				\
246do {								\
247	if (__predict_false(ip_nmbclusters != nmbclusters))	\
248		ip_nmbclusters_changed();			\
249} while (/*CONSTCOND*/0)
250
251/* IP datagram reassembly queues (hashed) */
252#define IPREASS_NHASH_LOG2      6
253#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
254#define IPREASS_HMASK           (IPREASS_NHASH - 1)
255#define IPREASS_HASH(x,y) \
256	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
257struct ipqhead ipq[IPREASS_NHASH];
258int	ipq_locked;
259static int	ip_nfragpackets;	/* packets in reass queue */
260static int	ip_nfrags;		/* total fragments in reass queues */
261
262int	ip_maxfragpackets = 200;	/* limit on packets. XXX sysctl */
263int	ip_maxfrags;		        /* limit on fragments. XXX sysctl */
264
265
266/*
267 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
268 * IP reassembly queue buffer managment.
269 *
270 * We keep a count of total IP fragments (NB: not fragmented packets!)
271 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
272 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
273 * total fragments in  reassembly queues.This AIMD policy avoids
274 * repeatedly deleting single packets under heavy fragmentation load
275 * (e.g., from lossy NFS peers).
276 */
277static u_int	ip_reass_ttl_decr __P((u_int ticks));
278static void	ip_reass_drophalf __P((void));
279
280
281static __inline int ipq_lock_try __P((void));
282static __inline void ipq_unlock __P((void));
283
284static __inline int
285ipq_lock_try()
286{
287	int s;
288
289	/*
290	 * Use splvm() -- we're blocking things that would cause
291	 * mbuf allocation.
292	 */
293	s = splvm();
294	if (ipq_locked) {
295		splx(s);
296		return (0);
297	}
298	ipq_locked = 1;
299	splx(s);
300	return (1);
301}
302
303static __inline void
304ipq_unlock()
305{
306	int s;
307
308	s = splvm();
309	ipq_locked = 0;
310	splx(s);
311}
312
313#ifdef DIAGNOSTIC
314#define	IPQ_LOCK()							\
315do {									\
316	if (ipq_lock_try() == 0) {					\
317		printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
318		panic("ipq_lock");					\
319	}								\
320} while (/*CONSTCOND*/ 0)
321#define	IPQ_LOCK_CHECK()						\
322do {									\
323	if (ipq_locked == 0) {						\
324		printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
325		panic("ipq lock check");				\
326	}								\
327} while (/*CONSTCOND*/ 0)
328#else
329#define	IPQ_LOCK()		(void) ipq_lock_try()
330#define	IPQ_LOCK_CHECK()	/* nothing */
331#endif
332
333#define	IPQ_UNLOCK()		ipq_unlock()
334
335POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL);
336POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL);
337
338#ifdef INET_CSUM_COUNTERS
339#include <sys/device.h>
340
341struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342    NULL, "inet", "hwcsum bad");
343struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
344    NULL, "inet", "hwcsum ok");
345struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346    NULL, "inet", "swcsum");
347
348#define	INET_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
349
350EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
351EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
352EVCNT_ATTACH_STATIC(ip_swcsum);
353
354#else
355
356#define	INET_CSUM_COUNTER_INCR(ev)	/* nothing */
357
358#endif /* INET_CSUM_COUNTERS */
359
360/*
361 * We need to save the IP options in case a protocol wants to respond
362 * to an incoming packet over the same route if the packet got here
363 * using IP source routing.  This allows connection establishment and
364 * maintenance when the remote end is on a network that is not known
365 * to us.
366 */
367int	ip_nhops = 0;
368static	struct ip_srcrt {
369	struct	in_addr dst;			/* final destination */
370	char	nop;				/* one NOP to align */
371	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
372	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
373} ip_srcrt;
374
375static void save_rte __P((u_char *, struct in_addr));
376
377#ifdef MBUFTRACE
378struct mowner ip_rx_mowner = { "internet", "rx" };
379struct mowner ip_tx_mowner = { "internet", "tx" };
380#endif
381
382/*
383 * Compute IP limits derived from the value of nmbclusters.
384 */
385static void
386ip_nmbclusters_changed(void)
387{
388	ip_maxfrags = nmbclusters / 4;
389	ip_nmbclusters =  nmbclusters;
390}
391
392/*
393 * IP initialization: fill in IP protocol switch table.
394 * All protocols not implemented in kernel go to raw IP protocol handler.
395 */
396void
397ip_init()
398{
399	const struct protosw *pr;
400	int i;
401
402	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
403	if (pr == 0)
404		panic("ip_init");
405	for (i = 0; i < IPPROTO_MAX; i++)
406		ip_protox[i] = pr - inetsw;
407	for (pr = inetdomain.dom_protosw;
408	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
409		if (pr->pr_domain->dom_family == PF_INET &&
410		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
411			ip_protox[pr->pr_protocol] = pr - inetsw;
412
413	for (i = 0; i < IPREASS_NHASH; i++)
414	    	LIST_INIT(&ipq[i]);
415
416	ip_id = time.tv_sec & 0xfffff;
417
418	ipintrq.ifq_maxlen = ipqmaxlen;
419	ip_nmbclusters_changed();
420
421	TAILQ_INIT(&in_ifaddrhead);
422	in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IFADDR,
423	    M_WAITOK, &in_ifaddrhash);
424	in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, M_IPMADDR,
425	    M_WAITOK, &in_multihash);
426	ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
427#ifdef GATEWAY
428	ipflow_init();
429#endif
430
431#ifdef PFIL_HOOKS
432	/* Register our Packet Filter hook. */
433	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
434	inet_pfil_hook.ph_af   = AF_INET;
435	i = pfil_head_register(&inet_pfil_hook);
436	if (i != 0)
437		printf("ip_init: WARNING: unable to register pfil hook, "
438		    "error %d\n", i);
439#endif /* PFIL_HOOKS */
440
441#ifdef MBUFTRACE
442	MOWNER_ATTACH(&ip_tx_mowner);
443	MOWNER_ATTACH(&ip_rx_mowner);
444#endif /* MBUFTRACE */
445}
446
447struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
448struct	route ipforward_rt;
449
450/*
451 * IP software interrupt routine
452 */
453void
454ipintr()
455{
456	int s;
457	struct mbuf *m;
458
459	while (1) {
460		s = splnet();
461		IF_DEQUEUE(&ipintrq, m);
462		splx(s);
463		if (m == 0)
464			return;
465		MCLAIM(m, &ip_rx_mowner);
466		ip_input(m);
467	}
468}
469
470/*
471 * Ip input routine.  Checksum and byte swap header.  If fragmented
472 * try to reassemble.  Process options.  Pass to next level.
473 */
474void
475ip_input(struct mbuf *m)
476{
477	struct ip *ip = NULL;
478	struct ipq *fp;
479	struct in_ifaddr *ia;
480	struct ifaddr *ifa;
481	struct ipqent *ipqe;
482	int hlen = 0, mff, len;
483	int downmatch;
484	int checkif;
485	int srcrt = 0;
486	u_int hash;
487#ifdef FAST_IPSEC
488	struct m_tag *mtag;
489	struct tdb_ident *tdbi;
490	struct secpolicy *sp;
491	int s, error;
492#endif /* FAST_IPSEC */
493
494	MCLAIM(m, &ip_rx_mowner);
495#ifdef	DIAGNOSTIC
496	if ((m->m_flags & M_PKTHDR) == 0)
497		panic("ipintr no HDR");
498#endif
499
500	/*
501	 * If no IP addresses have been set yet but the interfaces
502	 * are receiving, can't do anything with incoming packets yet.
503	 */
504	if (TAILQ_FIRST(&in_ifaddrhead) == 0)
505		goto bad;
506	ipstat.ips_total++;
507	/*
508	 * If the IP header is not aligned, slurp it up into a new
509	 * mbuf with space for link headers, in the event we forward
510	 * it.  Otherwise, if it is aligned, make sure the entire
511	 * base IP header is in the first mbuf of the chain.
512	 */
513	if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
514		if ((m = m_copyup(m, sizeof(struct ip),
515				  (max_linkhdr + 3) & ~3)) == NULL) {
516			/* XXXJRT new stat, please */
517			ipstat.ips_toosmall++;
518			return;
519		}
520	} else if (__predict_false(m->m_len < sizeof (struct ip))) {
521		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
522			ipstat.ips_toosmall++;
523			return;
524		}
525	}
526	ip = mtod(m, struct ip *);
527	if (ip->ip_v != IPVERSION) {
528		ipstat.ips_badvers++;
529		goto bad;
530	}
531	hlen = ip->ip_hl << 2;
532	if (hlen < sizeof(struct ip)) {	/* minimum header length */
533		ipstat.ips_badhlen++;
534		goto bad;
535	}
536	if (hlen > m->m_len) {
537		if ((m = m_pullup(m, hlen)) == 0) {
538			ipstat.ips_badhlen++;
539			return;
540		}
541		ip = mtod(m, struct ip *);
542	}
543
544	/*
545	 * RFC1122: packets with a multicast source address are
546	 * not allowed.
547	 */
548	if (IN_MULTICAST(ip->ip_src.s_addr)) {
549		ipstat.ips_badaddr++;
550		goto bad;
551	}
552
553	/* 127/8 must not appear on wire - RFC1122 */
554	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
555	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
556		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
557			ipstat.ips_badaddr++;
558			goto bad;
559		}
560	}
561
562	switch (m->m_pkthdr.csum_flags &
563		((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
564		 M_CSUM_IPv4_BAD)) {
565	case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
566		INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
567		goto badcsum;
568
569	case M_CSUM_IPv4:
570		/* Checksum was okay. */
571		INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
572		break;
573
574	default:
575		/* Must compute it ourselves. */
576		INET_CSUM_COUNTER_INCR(&ip_swcsum);
577		if (in_cksum(m, hlen) != 0)
578			goto bad;
579		break;
580	}
581
582	/* Retrieve the packet length. */
583	len = ntohs(ip->ip_len);
584
585	/*
586	 * Check for additional length bogosity
587	 */
588	if (len < hlen) {
589	 	ipstat.ips_badlen++;
590		goto bad;
591	}
592
593	/*
594	 * Check that the amount of data in the buffers
595	 * is as at least much as the IP header would have us expect.
596	 * Trim mbufs if longer than we expect.
597	 * Drop packet if shorter than we expect.
598	 */
599	if (m->m_pkthdr.len < len) {
600		ipstat.ips_tooshort++;
601		goto bad;
602	}
603	if (m->m_pkthdr.len > len) {
604		if (m->m_len == m->m_pkthdr.len) {
605			m->m_len = len;
606			m->m_pkthdr.len = len;
607		} else
608			m_adj(m, len - m->m_pkthdr.len);
609	}
610
611#if defined(IPSEC)
612	/* ipflow (IP fast forwarding) is not compatible with IPsec. */
613	m->m_flags &= ~M_CANFASTFWD;
614#else
615	/*
616	 * Assume that we can create a fast-forward IP flow entry
617	 * based on this packet.
618	 */
619	m->m_flags |= M_CANFASTFWD;
620#endif
621
622#ifdef PFIL_HOOKS
623	/*
624	 * Run through list of hooks for input packets.  If there are any
625	 * filters which require that additional packets in the flow are
626	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
627	 * Note that filters must _never_ set this flag, as another filter
628	 * in the list may have previously cleared it.
629	 */
630	/*
631	 * let ipfilter look at packet on the wire,
632	 * not the decapsulated packet.
633	 */
634#ifdef IPSEC
635	if (!ipsec_getnhist(m))
636#elif defined(FAST_IPSEC)
637	if (!ipsec_indone(m))
638#else
639	if (1)
640#endif
641	{
642		struct in_addr odst;
643
644		odst = ip->ip_dst;
645		if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
646		    PFIL_IN) != 0)
647			return;
648		if (m == NULL)
649			return;
650		ip = mtod(m, struct ip *);
651		hlen = ip->ip_hl << 2;
652		srcrt = (odst.s_addr != ip->ip_dst.s_addr);
653	}
654#endif /* PFIL_HOOKS */
655
656#ifdef ALTQ
657	/* XXX Temporary until ALTQ is changed to use a pfil hook */
658	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
659		/* packet dropped by traffic conditioner */
660		return;
661	}
662#endif
663
664	/*
665	 * Process options and, if not destined for us,
666	 * ship it on.  ip_dooptions returns 1 when an
667	 * error was detected (causing an icmp message
668	 * to be sent and the original packet to be freed).
669	 */
670	ip_nhops = 0;		/* for source routed packets */
671	if (hlen > sizeof (struct ip) && ip_dooptions(m))
672		return;
673
674	/*
675	 * Enable a consistency check between the destination address
676	 * and the arrival interface for a unicast packet (the RFC 1122
677	 * strong ES model) if IP forwarding is disabled and the packet
678	 * is not locally generated.
679	 *
680	 * XXX - Checking also should be disabled if the destination
681	 * address is ipnat'ed to a different interface.
682	 *
683	 * XXX - Checking is incompatible with IP aliases added
684	 * to the loopback interface instead of the interface where
685	 * the packets are received.
686	 *
687	 * XXX - We need to add a per ifaddr flag for this so that
688	 * we get finer grain control.
689	 */
690	checkif = ip_checkinterface && (ipforwarding == 0) &&
691	    (m->m_pkthdr.rcvif != NULL) &&
692	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
693
694	/*
695	 * Check our list of addresses, to see if the packet is for us.
696	 *
697	 * Traditional 4.4BSD did not consult IFF_UP at all.
698	 * The behavior here is to treat addresses on !IFF_UP interface
699	 * as not mine.
700	 */
701	downmatch = 0;
702	LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
703		if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
704			if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
705				continue;
706			if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
707				break;
708			else
709				downmatch++;
710		}
711	}
712	if (ia != NULL)
713		goto ours;
714	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
715		TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrlist, ifa_list) {
716			if (ifa->ifa_addr->sa_family != AF_INET)
717				continue;
718			ia = ifatoia(ifa);
719			if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
720			    in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
721			    /*
722			     * Look for all-0's host part (old broadcast addr),
723			     * either for subnet or net.
724			     */
725			    ip->ip_dst.s_addr == ia->ia_subnet ||
726			    ip->ip_dst.s_addr == ia->ia_net)
727				goto ours;
728			/*
729			 * An interface with IP address zero accepts
730			 * all packets that arrive on that interface.
731			 */
732			if (in_nullhost(ia->ia_addr.sin_addr))
733				goto ours;
734		}
735	}
736	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
737		struct in_multi *inm;
738#ifdef MROUTING
739		extern struct socket *ip_mrouter;
740
741		if (M_READONLY(m)) {
742			if ((m = m_pullup(m, hlen)) == 0) {
743				ipstat.ips_toosmall++;
744				return;
745			}
746			ip = mtod(m, struct ip *);
747		}
748
749		if (ip_mrouter) {
750			/*
751			 * If we are acting as a multicast router, all
752			 * incoming multicast packets are passed to the
753			 * kernel-level multicast forwarding function.
754			 * The packet is returned (relatively) intact; if
755			 * ip_mforward() returns a non-zero value, the packet
756			 * must be discarded, else it may be accepted below.
757			 *
758			 * (The IP ident field is put in the same byte order
759			 * as expected when ip_mforward() is called from
760			 * ip_output().)
761			 */
762			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
763				ipstat.ips_cantforward++;
764				m_freem(m);
765				return;
766			}
767
768			/*
769			 * The process-level routing demon needs to receive
770			 * all multicast IGMP packets, whether or not this
771			 * host belongs to their destination groups.
772			 */
773			if (ip->ip_p == IPPROTO_IGMP)
774				goto ours;
775			ipstat.ips_forward++;
776		}
777#endif
778		/*
779		 * See if we belong to the destination multicast group on the
780		 * arrival interface.
781		 */
782		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
783		if (inm == NULL) {
784			ipstat.ips_cantforward++;
785			m_freem(m);
786			return;
787		}
788		goto ours;
789	}
790	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
791	    in_nullhost(ip->ip_dst))
792		goto ours;
793
794	/*
795	 * Not for us; forward if possible and desirable.
796	 */
797	if (ipforwarding == 0) {
798		ipstat.ips_cantforward++;
799		m_freem(m);
800	} else {
801		/*
802		 * If ip_dst matched any of my address on !IFF_UP interface,
803		 * and there's no IFF_UP interface that matches ip_dst,
804		 * send icmp unreach.  Forwarding it will result in in-kernel
805		 * forwarding loop till TTL goes to 0.
806		 */
807		if (downmatch) {
808			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
809			ipstat.ips_cantforward++;
810			return;
811		}
812#ifdef IPSEC
813		if (ipsec4_in_reject(m, NULL)) {
814			ipsecstat.in_polvio++;
815			goto bad;
816		}
817#endif
818#ifdef FAST_IPSEC
819		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
820		s = splsoftnet();
821		if (mtag != NULL) {
822			tdbi = (struct tdb_ident *)(mtag + 1);
823			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
824		} else {
825			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
826						   IP_FORWARDING, &error);
827		}
828		if (sp == NULL) {	/* NB: can happen if error */
829			splx(s);
830			/*XXX error stat???*/
831			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
832			goto bad;
833		}
834
835		/*
836		 * Check security policy against packet attributes.
837		 */
838		error = ipsec_in_reject(sp, m);
839		KEY_FREESP(&sp);
840		splx(s);
841		if (error) {
842			ipstat.ips_cantforward++;
843			goto bad;
844		}
845
846		/*
847		 * Peek at the outbound SP for this packet to determine if
848		 * it's a Fast Forward candidate.
849		 */
850		mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
851		if (mtag != NULL)
852			m->m_flags &= ~M_CANFASTFWD;
853		else {
854			s = splsoftnet();
855			sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
856			    (IP_FORWARDING |
857			     (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
858			    &error, NULL);
859			if (sp != NULL) {
860				m->m_flags &= ~M_CANFASTFWD;
861				KEY_FREESP(&sp);
862			}
863			splx(s);
864		}
865#endif	/* FAST_IPSEC */
866
867		ip_forward(m, srcrt);
868	}
869	return;
870
871ours:
872	/*
873	 * If offset or IP_MF are set, must reassemble.
874	 * Otherwise, nothing need be done.
875	 * (We could look in the reassembly queue to see
876	 * if the packet was previously fragmented,
877	 * but it's not worth the time; just let them time out.)
878	 */
879	if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
880		if (M_READONLY(m)) {
881			if ((m = m_pullup(m, hlen)) == NULL) {
882				ipstat.ips_toosmall++;
883				goto bad;
884			}
885			ip = mtod(m, struct ip *);
886		}
887
888		/*
889		 * Look for queue of fragments
890		 * of this datagram.
891		 */
892		IPQ_LOCK();
893		hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
894		/* XXX LIST_FOREACH(fp, &ipq[hash], ipq_q) */
895		for (fp = LIST_FIRST(&ipq[hash]); fp != NULL;
896		     fp = LIST_NEXT(fp, ipq_q)) {
897			if (ip->ip_id == fp->ipq_id &&
898			    in_hosteq(ip->ip_src, fp->ipq_src) &&
899			    in_hosteq(ip->ip_dst, fp->ipq_dst) &&
900			    ip->ip_p == fp->ipq_p)
901				goto found;
902
903		}
904		fp = 0;
905found:
906
907		/*
908		 * Adjust ip_len to not reflect header,
909		 * set ipqe_mff if more fragments are expected,
910		 * convert offset of this to bytes.
911		 */
912		ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
913		mff = (ip->ip_off & htons(IP_MF)) != 0;
914		if (mff) {
915		        /*
916		         * Make sure that fragments have a data length
917			 * that's a non-zero multiple of 8 bytes.
918		         */
919			if (ntohs(ip->ip_len) == 0 ||
920			    (ntohs(ip->ip_len) & 0x7) != 0) {
921				ipstat.ips_badfrags++;
922				IPQ_UNLOCK();
923				goto bad;
924			}
925		}
926		ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
927
928		/*
929		 * If datagram marked as having more fragments
930		 * or if this is not the first fragment,
931		 * attempt reassembly; if it succeeds, proceed.
932		 */
933		if (mff || ip->ip_off != htons(0)) {
934			ipstat.ips_fragments++;
935			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
936			if (ipqe == NULL) {
937				ipstat.ips_rcvmemdrop++;
938				IPQ_UNLOCK();
939				goto bad;
940			}
941			ipqe->ipqe_mff = mff;
942			ipqe->ipqe_m = m;
943			ipqe->ipqe_ip = ip;
944			m = ip_reass(ipqe, fp, &ipq[hash]);
945			if (m == 0) {
946				IPQ_UNLOCK();
947				return;
948			}
949			ipstat.ips_reassembled++;
950			ip = mtod(m, struct ip *);
951			hlen = ip->ip_hl << 2;
952			ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
953		} else
954			if (fp)
955				ip_freef(fp);
956		IPQ_UNLOCK();
957	}
958
959#if defined(IPSEC)
960	/*
961	 * enforce IPsec policy checking if we are seeing last header.
962	 * note that we do not visit this with protocols with pcb layer
963	 * code - like udp/tcp/raw ip.
964	 */
965	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
966	    ipsec4_in_reject(m, NULL)) {
967		ipsecstat.in_polvio++;
968		goto bad;
969	}
970#endif
971#if FAST_IPSEC
972	/*
973	 * enforce IPsec policy checking if we are seeing last header.
974	 * note that we do not visit this with protocols with pcb layer
975	 * code - like udp/tcp/raw ip.
976	 */
977	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
978		/*
979		 * Check if the packet has already had IPsec processing
980		 * done.  If so, then just pass it along.  This tag gets
981		 * set during AH, ESP, etc. input handling, before the
982		 * packet is returned to the ip input queue for delivery.
983		 */
984		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
985		s = splsoftnet();
986		if (mtag != NULL) {
987			tdbi = (struct tdb_ident *)(mtag + 1);
988			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
989		} else {
990			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
991						   IP_FORWARDING, &error);
992		}
993		if (sp != NULL) {
994			/*
995			 * Check security policy against packet attributes.
996			 */
997			error = ipsec_in_reject(sp, m);
998			KEY_FREESP(&sp);
999		} else {
1000			/* XXX error stat??? */
1001			error = EINVAL;
1002DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1003			goto bad;
1004		}
1005		splx(s);
1006		if (error)
1007			goto bad;
1008	}
1009#endif /* FAST_IPSEC */
1010
1011	/*
1012	 * Switch out to protocol's input routine.
1013	 */
1014#if IFA_STATS
1015	if (ia && ip)
1016		ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1017#endif
1018	ipstat.ips_delivered++;
1019    {
1020	int off = hlen, nh = ip->ip_p;
1021
1022	(*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1023	return;
1024    }
1025bad:
1026	m_freem(m);
1027	return;
1028
1029badcsum:
1030	ipstat.ips_badsum++;
1031	m_freem(m);
1032}
1033
1034/*
1035 * Take incoming datagram fragment and try to
1036 * reassemble it into whole datagram.  If a chain for
1037 * reassembly of this datagram already exists, then it
1038 * is given as fp; otherwise have to make a chain.
1039 */
1040struct mbuf *
1041ip_reass(ipqe, fp, ipqhead)
1042	struct ipqent *ipqe;
1043	struct ipq *fp;
1044	struct ipqhead *ipqhead;
1045{
1046	struct mbuf *m = ipqe->ipqe_m;
1047	struct ipqent *nq, *p, *q;
1048	struct ip *ip;
1049	struct mbuf *t;
1050	int hlen = ipqe->ipqe_ip->ip_hl << 2;
1051	int i, next;
1052
1053	IPQ_LOCK_CHECK();
1054
1055	/*
1056	 * Presence of header sizes in mbufs
1057	 * would confuse code below.
1058	 */
1059	m->m_data += hlen;
1060	m->m_len -= hlen;
1061
1062#ifdef	notyet
1063	/* make sure fragment limit is up-to-date */
1064	CHECK_NMBCLUSTER_PARAMS();
1065
1066	/* If we have too many fragments, drop the older half. */
1067	if (ip_nfrags >= ip_maxfrags)
1068		ip_reass_drophalf(void);
1069#endif
1070
1071	/*
1072	 * We are about to add a fragment; increment frag count.
1073	 */
1074	ip_nfrags++;
1075
1076	/*
1077	 * If first fragment to arrive, create a reassembly queue.
1078	 */
1079	if (fp == 0) {
1080		/*
1081		 * Enforce upper bound on number of fragmented packets
1082		 * for which we attempt reassembly;
1083		 * If maxfrag is 0, never accept fragments.
1084		 * If maxfrag is -1, accept all fragments without limitation.
1085		 */
1086		if (ip_maxfragpackets < 0)
1087			;
1088		else if (ip_nfragpackets >= ip_maxfragpackets)
1089			goto dropfrag;
1090		ip_nfragpackets++;
1091		MALLOC(fp, struct ipq *, sizeof (struct ipq),
1092		    M_FTABLE, M_NOWAIT);
1093		if (fp == NULL)
1094			goto dropfrag;
1095		LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1096		fp->ipq_nfrags = 1;
1097		fp->ipq_ttl = IPFRAGTTL;
1098		fp->ipq_p = ipqe->ipqe_ip->ip_p;
1099		fp->ipq_id = ipqe->ipqe_ip->ip_id;
1100		TAILQ_INIT(&fp->ipq_fragq);
1101		fp->ipq_src = ipqe->ipqe_ip->ip_src;
1102		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1103		p = NULL;
1104		goto insert;
1105	} else {
1106		fp->ipq_nfrags++;
1107	}
1108
1109	/*
1110	 * Find a segment which begins after this one does.
1111	 */
1112	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1113	    p = q, q = TAILQ_NEXT(q, ipqe_q))
1114		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1115			break;
1116
1117	/*
1118	 * If there is a preceding segment, it may provide some of
1119	 * our data already.  If so, drop the data from the incoming
1120	 * segment.  If it provides all of our data, drop us.
1121	 */
1122	if (p != NULL) {
1123		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1124		    ntohs(ipqe->ipqe_ip->ip_off);
1125		if (i > 0) {
1126			if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1127				goto dropfrag;
1128			m_adj(ipqe->ipqe_m, i);
1129			ipqe->ipqe_ip->ip_off =
1130			    htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1131			ipqe->ipqe_ip->ip_len =
1132			    htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1133		}
1134	}
1135
1136	/*
1137	 * While we overlap succeeding segments trim them or,
1138	 * if they are completely covered, dequeue them.
1139	 */
1140	for (; q != NULL &&
1141	    ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1142	    ntohs(q->ipqe_ip->ip_off); q = nq) {
1143		i = (ntohs(ipqe->ipqe_ip->ip_off) +
1144		    ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1145		if (i < ntohs(q->ipqe_ip->ip_len)) {
1146			q->ipqe_ip->ip_len =
1147			    htons(ntohs(q->ipqe_ip->ip_len) - i);
1148			q->ipqe_ip->ip_off =
1149			    htons(ntohs(q->ipqe_ip->ip_off) + i);
1150			m_adj(q->ipqe_m, i);
1151			break;
1152		}
1153		nq = TAILQ_NEXT(q, ipqe_q);
1154		m_freem(q->ipqe_m);
1155		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1156		pool_put(&ipqent_pool, q);
1157		fp->ipq_nfrags--;
1158		ip_nfrags--;
1159	}
1160
1161insert:
1162	/*
1163	 * Stick new segment in its place;
1164	 * check for complete reassembly.
1165	 */
1166	if (p == NULL) {
1167		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1168	} else {
1169		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1170	}
1171	next = 0;
1172	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1173	    p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1174		if (ntohs(q->ipqe_ip->ip_off) != next)
1175			return (0);
1176		next += ntohs(q->ipqe_ip->ip_len);
1177	}
1178	if (p->ipqe_mff)
1179		return (0);
1180
1181	/*
1182	 * Reassembly is complete.  Check for a bogus message size and
1183	 * concatenate fragments.
1184	 */
1185	q = TAILQ_FIRST(&fp->ipq_fragq);
1186	ip = q->ipqe_ip;
1187	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1188		ipstat.ips_toolong++;
1189		ip_freef(fp);
1190		return (0);
1191	}
1192	m = q->ipqe_m;
1193	t = m->m_next;
1194	m->m_next = 0;
1195	m_cat(m, t);
1196	nq = TAILQ_NEXT(q, ipqe_q);
1197	pool_put(&ipqent_pool, q);
1198	for (q = nq; q != NULL; q = nq) {
1199		t = q->ipqe_m;
1200		nq = TAILQ_NEXT(q, ipqe_q);
1201		pool_put(&ipqent_pool, q);
1202		m_cat(m, t);
1203	}
1204	ip_nfrags -= fp->ipq_nfrags;
1205
1206	/*
1207	 * Create header for new ip packet by
1208	 * modifying header of first packet;
1209	 * dequeue and discard fragment reassembly header.
1210	 * Make header visible.
1211	 */
1212	ip->ip_len = htons(next);
1213	ip->ip_src = fp->ipq_src;
1214	ip->ip_dst = fp->ipq_dst;
1215	LIST_REMOVE(fp, ipq_q);
1216	FREE(fp, M_FTABLE);
1217	ip_nfragpackets--;
1218	m->m_len += (ip->ip_hl << 2);
1219	m->m_data -= (ip->ip_hl << 2);
1220	/* some debugging cruft by sklower, below, will go away soon */
1221	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1222		int plen = 0;
1223		for (t = m; t; t = t->m_next)
1224			plen += t->m_len;
1225		m->m_pkthdr.len = plen;
1226	}
1227	return (m);
1228
1229dropfrag:
1230	if (fp != 0)
1231		fp->ipq_nfrags--;
1232	ip_nfrags--;
1233	ipstat.ips_fragdropped++;
1234	m_freem(m);
1235	pool_put(&ipqent_pool, ipqe);
1236	return (0);
1237}
1238
1239/*
1240 * Free a fragment reassembly header and all
1241 * associated datagrams.
1242 */
1243void
1244ip_freef(fp)
1245	struct ipq *fp;
1246{
1247	struct ipqent *q, *p;
1248	u_int nfrags = 0;
1249
1250	IPQ_LOCK_CHECK();
1251
1252	for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1253		p = TAILQ_NEXT(q, ipqe_q);
1254		m_freem(q->ipqe_m);
1255		nfrags++;
1256		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1257		pool_put(&ipqent_pool, q);
1258	}
1259
1260	if (nfrags != fp->ipq_nfrags)
1261	    printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1262	ip_nfrags -= nfrags;
1263	LIST_REMOVE(fp, ipq_q);
1264	FREE(fp, M_FTABLE);
1265	ip_nfragpackets--;
1266}
1267
1268/*
1269 * IP reassembly TTL machinery for  multiplicative drop.
1270 */
1271static u_int	fragttl_histo[(IPFRAGTTL+1)];
1272
1273
1274/*
1275 * Decrement TTL of all reasembly queue entries by `ticks'.
1276 * Count number of distinct fragments (as opposed to partial, fragmented
1277 * datagrams) in the reassembly queue.  While we  traverse the entire
1278 * reassembly queue, compute and return the median TTL over all fragments.
1279 */
1280static u_int
1281ip_reass_ttl_decr(u_int ticks)
1282{
1283	u_int nfrags, median, dropfraction, keepfraction;
1284	struct ipq *fp, *nfp;
1285	int i;
1286
1287	nfrags = 0;
1288	memset(fragttl_histo, 0, sizeof fragttl_histo);
1289
1290	for (i = 0; i < IPREASS_NHASH; i++) {
1291		for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1292			fp->ipq_ttl = ((fp->ipq_ttl  <= ticks) ?
1293				       0 : fp->ipq_ttl - ticks);
1294			nfp = LIST_NEXT(fp, ipq_q);
1295			if (fp->ipq_ttl == 0) {
1296				ipstat.ips_fragtimeout++;
1297				ip_freef(fp);
1298			} else {
1299				nfrags += fp->ipq_nfrags;
1300				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1301			}
1302		}
1303	}
1304
1305	KASSERT(ip_nfrags == nfrags);
1306
1307	/* Find median (or other drop fraction) in histogram. */
1308	dropfraction = (ip_nfrags / 2);
1309	keepfraction = ip_nfrags - dropfraction;
1310	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1311		median +=  fragttl_histo[i];
1312		if (median >= keepfraction)
1313			break;
1314	}
1315
1316	/* Return TTL of median (or other fraction). */
1317	return (u_int)i;
1318}
1319
1320void
1321ip_reass_drophalf(void)
1322{
1323
1324	u_int median_ticks;
1325	/*
1326	 * Compute median TTL of all fragments, and count frags
1327	 * with that TTL or lower (roughly half of all fragments).
1328	 */
1329	median_ticks = ip_reass_ttl_decr(0);
1330
1331	/* Drop half. */
1332	median_ticks = ip_reass_ttl_decr(median_ticks);
1333
1334}
1335
1336/*
1337 * IP timer processing;
1338 * if a timer expires on a reassembly
1339 * queue, discard it.
1340 */
1341void
1342ip_slowtimo()
1343{
1344	static u_int dropscanidx = 0;
1345	u_int i;
1346	u_int median_ttl;
1347	int s = splsoftnet();
1348
1349	IPQ_LOCK();
1350
1351	/* Age TTL of all fragments by 1 tick .*/
1352	median_ttl = ip_reass_ttl_decr(1);
1353
1354	/* make sure fragment limit is up-to-date */
1355	CHECK_NMBCLUSTER_PARAMS();
1356
1357	/* If we have too many fragments, drop the older half. */
1358	if (ip_nfrags > ip_maxfrags)
1359		ip_reass_ttl_decr(median_ttl);
1360
1361	/*
1362	 * If we are over the maximum number of fragmented packets
1363	 * (due to the limit being lowered), drain off
1364	 * enough to get down to the new limit. Start draining
1365	 * from the reassembly hashqueue most recently drained.
1366	 */
1367	if (ip_maxfragpackets < 0)
1368		;
1369	else {
1370		int wrapped = 0;
1371
1372		i = dropscanidx;
1373		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1374			while (LIST_FIRST(&ipq[i]) != NULL)
1375				ip_freef(LIST_FIRST(&ipq[i]));
1376			if (++i >= IPREASS_NHASH) {
1377				i = 0;
1378			}
1379			/*
1380			 * Dont scan forever even if fragment counters are
1381			 * wrong: stop after scanning entire reassembly queue.
1382			 */
1383			if (i == dropscanidx)
1384			    wrapped = 1;
1385		}
1386		dropscanidx = i;
1387	}
1388	IPQ_UNLOCK();
1389#ifdef GATEWAY
1390	ipflow_slowtimo();
1391#endif
1392	splx(s);
1393}
1394
1395/*
1396 * Drain off all datagram fragments.
1397 */
1398void
1399ip_drain()
1400{
1401
1402	/*
1403	 * We may be called from a device's interrupt context.  If
1404	 * the ipq is already busy, just bail out now.
1405	 */
1406	if (ipq_lock_try() == 0)
1407		return;
1408
1409	/*
1410	 * Drop half the total fragments now. If more mbufs are needed,
1411	 *  we will be called again soon.
1412	 */
1413	ip_reass_drophalf();
1414
1415	IPQ_UNLOCK();
1416}
1417
1418/*
1419 * Do option processing on a datagram,
1420 * possibly discarding it if bad options are encountered,
1421 * or forwarding it if source-routed.
1422 * Returns 1 if packet has been forwarded/freed,
1423 * 0 if the packet should be processed further.
1424 */
1425int
1426ip_dooptions(m)
1427	struct mbuf *m;
1428{
1429	struct ip *ip = mtod(m, struct ip *);
1430	u_char *cp, *cp0;
1431	struct ip_timestamp *ipt;
1432	struct in_ifaddr *ia;
1433	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1434	struct in_addr dst;
1435	n_time ntime;
1436
1437	dst = ip->ip_dst;
1438	cp = (u_char *)(ip + 1);
1439	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1440	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1441		opt = cp[IPOPT_OPTVAL];
1442		if (opt == IPOPT_EOL)
1443			break;
1444		if (opt == IPOPT_NOP)
1445			optlen = 1;
1446		else {
1447			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1448				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1449				goto bad;
1450			}
1451			optlen = cp[IPOPT_OLEN];
1452			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1453				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1454				goto bad;
1455			}
1456		}
1457		switch (opt) {
1458
1459		default:
1460			break;
1461
1462		/*
1463		 * Source routing with record.
1464		 * Find interface with current destination address.
1465		 * If none on this machine then drop if strictly routed,
1466		 * or do nothing if loosely routed.
1467		 * Record interface address and bring up next address
1468		 * component.  If strictly routed make sure next
1469		 * address is on directly accessible net.
1470		 */
1471		case IPOPT_LSRR:
1472		case IPOPT_SSRR:
1473			if (ip_allowsrcrt == 0) {
1474				type = ICMP_UNREACH;
1475				code = ICMP_UNREACH_NET_PROHIB;
1476				goto bad;
1477			}
1478			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1479				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1480				goto bad;
1481			}
1482			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1483				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1484				goto bad;
1485			}
1486			ipaddr.sin_addr = ip->ip_dst;
1487			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1488			if (ia == 0) {
1489				if (opt == IPOPT_SSRR) {
1490					type = ICMP_UNREACH;
1491					code = ICMP_UNREACH_SRCFAIL;
1492					goto bad;
1493				}
1494				/*
1495				 * Loose routing, and not at next destination
1496				 * yet; nothing to do except forward.
1497				 */
1498				break;
1499			}
1500			off--;			/* 0 origin */
1501			if ((off + sizeof(struct in_addr)) > optlen) {
1502				/*
1503				 * End of source route.  Should be for us.
1504				 */
1505				save_rte(cp, ip->ip_src);
1506				break;
1507			}
1508			/*
1509			 * locate outgoing interface
1510			 */
1511			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
1512			    sizeof(ipaddr.sin_addr));
1513			if (opt == IPOPT_SSRR)
1514				ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1515			else
1516				ia = ip_rtaddr(ipaddr.sin_addr);
1517			if (ia == 0) {
1518				type = ICMP_UNREACH;
1519				code = ICMP_UNREACH_SRCFAIL;
1520				goto bad;
1521			}
1522			ip->ip_dst = ipaddr.sin_addr;
1523			bcopy((caddr_t)&ia->ia_addr.sin_addr,
1524			    (caddr_t)(cp + off), sizeof(struct in_addr));
1525			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1526			/*
1527			 * Let ip_intr's mcast routing check handle mcast pkts
1528			 */
1529			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1530			break;
1531
1532		case IPOPT_RR:
1533			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1534				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1535				goto bad;
1536			}
1537			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1538				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1539				goto bad;
1540			}
1541			/*
1542			 * If no space remains, ignore.
1543			 */
1544			off--;			/* 0 origin */
1545			if ((off + sizeof(struct in_addr)) > optlen)
1546				break;
1547			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
1548			    sizeof(ipaddr.sin_addr));
1549			/*
1550			 * locate outgoing interface; if we're the destination,
1551			 * use the incoming interface (should be same).
1552			 */
1553			if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1554			    == NULL &&
1555			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1556				type = ICMP_UNREACH;
1557				code = ICMP_UNREACH_HOST;
1558				goto bad;
1559			}
1560			bcopy((caddr_t)&ia->ia_addr.sin_addr,
1561			    (caddr_t)(cp + off), sizeof(struct in_addr));
1562			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1563			break;
1564
1565		case IPOPT_TS:
1566			code = cp - (u_char *)ip;
1567			ipt = (struct ip_timestamp *)cp;
1568			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1569				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1570				goto bad;
1571			}
1572			if (ipt->ipt_ptr < 5) {
1573				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1574				goto bad;
1575			}
1576			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1577				if (++ipt->ipt_oflw == 0) {
1578					code = (u_char *)&ipt->ipt_ptr -
1579					    (u_char *)ip;
1580					goto bad;
1581				}
1582				break;
1583			}
1584			cp0 = (cp + ipt->ipt_ptr - 1);
1585			switch (ipt->ipt_flg) {
1586
1587			case IPOPT_TS_TSONLY:
1588				break;
1589
1590			case IPOPT_TS_TSANDADDR:
1591				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1592				    sizeof(struct in_addr) > ipt->ipt_len) {
1593					code = (u_char *)&ipt->ipt_ptr -
1594					    (u_char *)ip;
1595					goto bad;
1596				}
1597				ipaddr.sin_addr = dst;
1598				ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1599				    m->m_pkthdr.rcvif));
1600				if (ia == 0)
1601					continue;
1602				bcopy(&ia->ia_addr.sin_addr,
1603				    cp0, sizeof(struct in_addr));
1604				ipt->ipt_ptr += sizeof(struct in_addr);
1605				break;
1606
1607			case IPOPT_TS_PRESPEC:
1608				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1609				    sizeof(struct in_addr) > ipt->ipt_len) {
1610					code = (u_char *)&ipt->ipt_ptr -
1611					    (u_char *)ip;
1612					goto bad;
1613				}
1614				bcopy(cp0, &ipaddr.sin_addr,
1615				    sizeof(struct in_addr));
1616				if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1617				    == NULL)
1618					continue;
1619				ipt->ipt_ptr += sizeof(struct in_addr);
1620				break;
1621
1622			default:
1623				/* XXX can't take &ipt->ipt_flg */
1624				code = (u_char *)&ipt->ipt_ptr -
1625				    (u_char *)ip + 1;
1626				goto bad;
1627			}
1628			ntime = iptime();
1629			cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1630			bcopy(cp0, (caddr_t)cp + ipt->ipt_ptr - 1,
1631			    sizeof(n_time));
1632			ipt->ipt_ptr += sizeof(n_time);
1633		}
1634	}
1635	if (forward) {
1636		if (ip_forwsrcrt == 0) {
1637			type = ICMP_UNREACH;
1638			code = ICMP_UNREACH_SRCFAIL;
1639			goto bad;
1640		}
1641		ip_forward(m, 1);
1642		return (1);
1643	}
1644	return (0);
1645bad:
1646	icmp_error(m, type, code, 0, 0);
1647	ipstat.ips_badoptions++;
1648	return (1);
1649}
1650
1651/*
1652 * Given address of next destination (final or next hop),
1653 * return internet address info of interface to be used to get there.
1654 */
1655struct in_ifaddr *
1656ip_rtaddr(dst)
1657	 struct in_addr dst;
1658{
1659	struct sockaddr_in *sin;
1660
1661	sin = satosin(&ipforward_rt.ro_dst);
1662
1663	if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
1664		if (ipforward_rt.ro_rt) {
1665			RTFREE(ipforward_rt.ro_rt);
1666			ipforward_rt.ro_rt = 0;
1667		}
1668		sin->sin_family = AF_INET;
1669		sin->sin_len = sizeof(*sin);
1670		sin->sin_addr = dst;
1671
1672		rtalloc(&ipforward_rt);
1673	}
1674	if (ipforward_rt.ro_rt == 0)
1675		return ((struct in_ifaddr *)0);
1676	return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
1677}
1678
1679/*
1680 * Save incoming source route for use in replies,
1681 * to be picked up later by ip_srcroute if the receiver is interested.
1682 */
1683void
1684save_rte(option, dst)
1685	u_char *option;
1686	struct in_addr dst;
1687{
1688	unsigned olen;
1689
1690	olen = option[IPOPT_OLEN];
1691#ifdef DIAGNOSTIC
1692	if (ipprintfs)
1693		printf("save_rte: olen %d\n", olen);
1694#endif /* 0 */
1695	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1696		return;
1697	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
1698	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1699	ip_srcrt.dst = dst;
1700}
1701
1702/*
1703 * Retrieve incoming source route for use in replies,
1704 * in the same form used by setsockopt.
1705 * The first hop is placed before the options, will be removed later.
1706 */
1707struct mbuf *
1708ip_srcroute()
1709{
1710	struct in_addr *p, *q;
1711	struct mbuf *m;
1712
1713	if (ip_nhops == 0)
1714		return ((struct mbuf *)0);
1715	m = m_get(M_DONTWAIT, MT_SOOPTS);
1716	if (m == 0)
1717		return ((struct mbuf *)0);
1718
1719	MCLAIM(m, &inetdomain.dom_mowner);
1720#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1721
1722	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1723	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1724	    OPTSIZ;
1725#ifdef DIAGNOSTIC
1726	if (ipprintfs)
1727		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1728#endif
1729
1730	/*
1731	 * First save first hop for return route
1732	 */
1733	p = &ip_srcrt.route[ip_nhops - 1];
1734	*(mtod(m, struct in_addr *)) = *p--;
1735#ifdef DIAGNOSTIC
1736	if (ipprintfs)
1737		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1738#endif
1739
1740	/*
1741	 * Copy option fields and padding (nop) to mbuf.
1742	 */
1743	ip_srcrt.nop = IPOPT_NOP;
1744	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1745	bcopy((caddr_t)&ip_srcrt.nop,
1746	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
1747	q = (struct in_addr *)(mtod(m, caddr_t) +
1748	    sizeof(struct in_addr) + OPTSIZ);
1749#undef OPTSIZ
1750	/*
1751	 * Record return path as an IP source route,
1752	 * reversing the path (pointers are now aligned).
1753	 */
1754	while (p >= ip_srcrt.route) {
1755#ifdef DIAGNOSTIC
1756		if (ipprintfs)
1757			printf(" %x", ntohl(q->s_addr));
1758#endif
1759		*q++ = *p--;
1760	}
1761	/*
1762	 * Last hop goes to final destination.
1763	 */
1764	*q = ip_srcrt.dst;
1765#ifdef DIAGNOSTIC
1766	if (ipprintfs)
1767		printf(" %x\n", ntohl(q->s_addr));
1768#endif
1769	return (m);
1770}
1771
1772/*
1773 * Strip out IP options, at higher
1774 * level protocol in the kernel.
1775 * Second argument is buffer to which options
1776 * will be moved, and return value is their length.
1777 * XXX should be deleted; last arg currently ignored.
1778 */
1779void
1780ip_stripoptions(m, mopt)
1781	struct mbuf *m;
1782	struct mbuf *mopt;
1783{
1784	int i;
1785	struct ip *ip = mtod(m, struct ip *);
1786	caddr_t opts;
1787	int olen;
1788
1789	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1790	opts = (caddr_t)(ip + 1);
1791	i = m->m_len - (sizeof (struct ip) + olen);
1792	bcopy(opts  + olen, opts, (unsigned)i);
1793	m->m_len -= olen;
1794	if (m->m_flags & M_PKTHDR)
1795		m->m_pkthdr.len -= olen;
1796	ip->ip_len = htons(ntohs(ip->ip_len) - olen);
1797	ip->ip_hl = sizeof (struct ip) >> 2;
1798}
1799
1800const int inetctlerrmap[PRC_NCMDS] = {
1801	0,		0,		0,		0,
1802	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1803	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1804	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1805	0,		0,		0,		0,
1806	ENOPROTOOPT
1807};
1808
1809/*
1810 * Forward a packet.  If some error occurs return the sender
1811 * an icmp packet.  Note we can't always generate a meaningful
1812 * icmp message because icmp doesn't have a large enough repertoire
1813 * of codes and types.
1814 *
1815 * If not forwarding, just drop the packet.  This could be confusing
1816 * if ipforwarding was zero but some routing protocol was advancing
1817 * us as a gateway to somewhere.  However, we must let the routing
1818 * protocol deal with that.
1819 *
1820 * The srcrt parameter indicates whether the packet is being forwarded
1821 * via a source route.
1822 */
1823void
1824ip_forward(m, srcrt)
1825	struct mbuf *m;
1826	int srcrt;
1827{
1828	struct ip *ip = mtod(m, struct ip *);
1829	struct sockaddr_in *sin;
1830	struct rtentry *rt;
1831	int error, type = 0, code = 0;
1832	struct mbuf *mcopy;
1833	n_long dest;
1834	struct ifnet *destifp;
1835#if defined(IPSEC) || defined(FAST_IPSEC)
1836	struct ifnet dummyifp;
1837#endif
1838
1839	/*
1840	 * We are now in the output path.
1841	 */
1842	MCLAIM(m, &ip_tx_mowner);
1843
1844	/*
1845	 * Clear any in-bound checksum flags for this packet.
1846	 */
1847	m->m_pkthdr.csum_flags = 0;
1848
1849	dest = 0;
1850#ifdef DIAGNOSTIC
1851	if (ipprintfs)
1852		printf("forward: src %2.2x dst %2.2x ttl %x\n",
1853		    ntohl(ip->ip_src.s_addr),
1854		    ntohl(ip->ip_dst.s_addr), ip->ip_ttl);
1855#endif
1856	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1857		ipstat.ips_cantforward++;
1858		m_freem(m);
1859		return;
1860	}
1861	if (ip->ip_ttl <= IPTTLDEC) {
1862		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1863		return;
1864	}
1865	ip->ip_ttl -= IPTTLDEC;
1866
1867	sin = satosin(&ipforward_rt.ro_dst);
1868	if ((rt = ipforward_rt.ro_rt) == 0 ||
1869	    !in_hosteq(ip->ip_dst, sin->sin_addr)) {
1870		if (ipforward_rt.ro_rt) {
1871			RTFREE(ipforward_rt.ro_rt);
1872			ipforward_rt.ro_rt = 0;
1873		}
1874		sin->sin_family = AF_INET;
1875		sin->sin_len = sizeof(struct sockaddr_in);
1876		sin->sin_addr = ip->ip_dst;
1877
1878		rtalloc(&ipforward_rt);
1879		if (ipforward_rt.ro_rt == 0) {
1880			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1881			return;
1882		}
1883		rt = ipforward_rt.ro_rt;
1884	}
1885
1886	/*
1887	 * Save at most 68 bytes of the packet in case
1888	 * we need to generate an ICMP message to the src.
1889	 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1890	 */
1891	mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1892	if (mcopy)
1893		mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1894
1895	/*
1896	 * If forwarding packet using same interface that it came in on,
1897	 * perhaps should send a redirect to sender to shortcut a hop.
1898	 * Only send redirect if source is sending directly to us,
1899	 * and if packet was not source routed (or has any options).
1900	 * Also, don't send redirect if forwarding using a default route
1901	 * or a route modified by a redirect.
1902	 */
1903	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1904	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1905	    !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
1906	    ipsendredirects && !srcrt) {
1907		if (rt->rt_ifa &&
1908		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1909		    ifatoia(rt->rt_ifa)->ia_subnet) {
1910			if (rt->rt_flags & RTF_GATEWAY)
1911				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1912			else
1913				dest = ip->ip_dst.s_addr;
1914			/*
1915			 * Router requirements says to only send host
1916			 * redirects.
1917			 */
1918			type = ICMP_REDIRECT;
1919			code = ICMP_REDIRECT_HOST;
1920#ifdef DIAGNOSTIC
1921			if (ipprintfs)
1922				printf("redirect (%d) to %x\n", code,
1923				    (u_int32_t)dest);
1924#endif
1925		}
1926	}
1927
1928	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1929	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1930	    (struct ip_moptions *)NULL, (struct socket *)NULL);
1931
1932	if (error)
1933		ipstat.ips_cantforward++;
1934	else {
1935		ipstat.ips_forward++;
1936		if (type)
1937			ipstat.ips_redirectsent++;
1938		else {
1939			if (mcopy) {
1940#ifdef GATEWAY
1941				if (mcopy->m_flags & M_CANFASTFWD)
1942					ipflow_create(&ipforward_rt, mcopy);
1943#endif
1944				m_freem(mcopy);
1945			}
1946			return;
1947		}
1948	}
1949	if (mcopy == NULL)
1950		return;
1951	destifp = NULL;
1952
1953	switch (error) {
1954
1955	case 0:				/* forwarded, but need redirect */
1956		/* type, code set above */
1957		break;
1958
1959	case ENETUNREACH:		/* shouldn't happen, checked above */
1960	case EHOSTUNREACH:
1961	case ENETDOWN:
1962	case EHOSTDOWN:
1963	default:
1964		type = ICMP_UNREACH;
1965		code = ICMP_UNREACH_HOST;
1966		break;
1967
1968	case EMSGSIZE:
1969		type = ICMP_UNREACH;
1970		code = ICMP_UNREACH_NEEDFRAG;
1971#if !defined(IPSEC) && !defined(FAST_IPSEC)
1972		if (ipforward_rt.ro_rt)
1973			destifp = ipforward_rt.ro_rt->rt_ifp;
1974#else
1975		/*
1976		 * If the packet is routed over IPsec tunnel, tell the
1977		 * originator the tunnel MTU.
1978		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1979		 * XXX quickhack!!!
1980		 */
1981		if (ipforward_rt.ro_rt) {
1982			struct secpolicy *sp;
1983			int ipsecerror;
1984			size_t ipsechdr;
1985			struct route *ro;
1986
1987			sp = ipsec4_getpolicybyaddr(mcopy,
1988			    IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1989			    &ipsecerror);
1990
1991			if (sp == NULL)
1992				destifp = ipforward_rt.ro_rt->rt_ifp;
1993			else {
1994				/* count IPsec header size */
1995				ipsechdr = ipsec4_hdrsiz(mcopy,
1996				    IPSEC_DIR_OUTBOUND, NULL);
1997
1998				/*
1999				 * find the correct route for outer IPv4
2000				 * header, compute tunnel MTU.
2001				 *
2002				 * XXX BUG ALERT
2003				 * The "dummyifp" code relies upon the fact
2004				 * that icmp_error() touches only ifp->if_mtu.
2005				 */
2006				/*XXX*/
2007				destifp = NULL;
2008				if (sp->req != NULL
2009				 && sp->req->sav != NULL
2010				 && sp->req->sav->sah != NULL) {
2011					ro = &sp->req->sav->sah->sa_route;
2012					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
2013						dummyifp.if_mtu =
2014						    ro->ro_rt->rt_rmx.rmx_mtu ?
2015						    ro->ro_rt->rt_rmx.rmx_mtu :
2016						    ro->ro_rt->rt_ifp->if_mtu;
2017						dummyifp.if_mtu -= ipsechdr;
2018						destifp = &dummyifp;
2019					}
2020				}
2021
2022#ifdef	IPSEC
2023				key_freesp(sp);
2024#else
2025				KEY_FREESP(&sp);
2026#endif
2027			}
2028		}
2029#endif /*IPSEC*/
2030		ipstat.ips_cantfrag++;
2031		break;
2032
2033	case ENOBUFS:
2034#if 1
2035		/*
2036		 * a router should not generate ICMP_SOURCEQUENCH as
2037		 * required in RFC1812 Requirements for IP Version 4 Routers.
2038		 * source quench could be a big problem under DoS attacks,
2039		 * or if the underlying interface is rate-limited.
2040		 */
2041		if (mcopy)
2042			m_freem(mcopy);
2043		return;
2044#else
2045		type = ICMP_SOURCEQUENCH;
2046		code = 0;
2047		break;
2048#endif
2049	}
2050	icmp_error(mcopy, type, code, dest, destifp);
2051}
2052
2053void
2054ip_savecontrol(inp, mp, ip, m)
2055	struct inpcb *inp;
2056	struct mbuf **mp;
2057	struct ip *ip;
2058	struct mbuf *m;
2059{
2060
2061	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2062		struct timeval tv;
2063
2064		microtime(&tv);
2065		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2066		    SCM_TIMESTAMP, SOL_SOCKET);
2067		if (*mp)
2068			mp = &(*mp)->m_next;
2069	}
2070	if (inp->inp_flags & INP_RECVDSTADDR) {
2071		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2072		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2073		if (*mp)
2074			mp = &(*mp)->m_next;
2075	}
2076#ifdef notyet
2077	/*
2078	 * XXX
2079	 * Moving these out of udp_input() made them even more broken
2080	 * than they already were.
2081	 *	- fenner@parc.xerox.com
2082	 */
2083	/* options were tossed already */
2084	if (inp->inp_flags & INP_RECVOPTS) {
2085		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2086		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2087		if (*mp)
2088			mp = &(*mp)->m_next;
2089	}
2090	/* ip_srcroute doesn't do what we want here, need to fix */
2091	if (inp->inp_flags & INP_RECVRETOPTS) {
2092		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2093		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2094		if (*mp)
2095			mp = &(*mp)->m_next;
2096	}
2097#endif
2098	if (inp->inp_flags & INP_RECVIF) {
2099		struct sockaddr_dl sdl;
2100
2101		sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
2102		sdl.sdl_family = AF_LINK;
2103		sdl.sdl_index = m->m_pkthdr.rcvif ?
2104		    m->m_pkthdr.rcvif->if_index : 0;
2105		sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
2106		*mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
2107		    IP_RECVIF, IPPROTO_IP);
2108		if (*mp)
2109			mp = &(*mp)->m_next;
2110	}
2111}
2112
2113/*
2114 * sysctl helper routine for net.inet.ip.mtudisctimeout.  checks the
2115 * range of the new value and tweaks timers if it changes.
2116 */
2117static int
2118sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2119{
2120	int error, tmp;
2121	struct sysctlnode node;
2122
2123	node = *rnode;
2124	tmp = ip_mtudisc_timeout;
2125	node.sysctl_data = &tmp;
2126	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2127	if (error || newp == NULL)
2128		return (error);
2129	if (tmp < 0)
2130		return (EINVAL);
2131
2132	ip_mtudisc_timeout = tmp;
2133	rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2134
2135	return (0);
2136}
2137
2138#ifdef GATEWAY
2139/*
2140 * sysctl helper routine for net.inet.ip.maxflows.  apparently if
2141 * maxflows is even looked up, we "reap flows".
2142 */
2143static int
2144sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2145{
2146	int s;
2147
2148	s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2149	if (s)
2150		return (s);
2151
2152	s = splsoftnet();
2153	ipflow_reap(0);
2154	splx(s);
2155
2156	return (0);
2157}
2158#endif /* GATEWAY */
2159
2160
2161SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2162{
2163	extern int subnetsarelocal, hostzeroisbroadcast;
2164
2165	sysctl_createv(clog, 0, NULL, NULL,
2166		       CTLFLAG_PERMANENT,
2167		       CTLTYPE_NODE, "net", NULL,
2168		       NULL, 0, NULL, 0,
2169		       CTL_NET, CTL_EOL);
2170	sysctl_createv(clog, 0, NULL, NULL,
2171		       CTLFLAG_PERMANENT,
2172		       CTLTYPE_NODE, "inet", NULL,
2173		       NULL, 0, NULL, 0,
2174		       CTL_NET, PF_INET, CTL_EOL);
2175	sysctl_createv(clog, 0, NULL, NULL,
2176		       CTLFLAG_PERMANENT,
2177		       CTLTYPE_NODE, "ip", NULL,
2178		       NULL, 0, NULL, 0,
2179		       CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2180
2181	sysctl_createv(clog, 0, NULL, NULL,
2182		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2183		       CTLTYPE_INT, "forwarding", NULL,
2184		       NULL, 0, &ipforwarding, 0,
2185		       CTL_NET, PF_INET, IPPROTO_IP,
2186		       IPCTL_FORWARDING, CTL_EOL);
2187	sysctl_createv(clog, 0, NULL, NULL,
2188		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2189		       CTLTYPE_INT, "redirect", NULL,
2190		       NULL, 0, &ipsendredirects, 0,
2191		       CTL_NET, PF_INET, IPPROTO_IP,
2192		       IPCTL_SENDREDIRECTS, CTL_EOL);
2193	sysctl_createv(clog, 0, NULL, NULL,
2194		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2195		       CTLTYPE_INT, "ttl", NULL,
2196		       NULL, 0, &ip_defttl, 0,
2197		       CTL_NET, PF_INET, IPPROTO_IP,
2198		       IPCTL_DEFTTL, CTL_EOL);
2199#ifdef IPCTL_DEFMTU
2200	sysctl_createv(clog, 0, NULL, NULL,
2201		       CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2202		       CTLTYPE_INT, "mtu", NULL,
2203		       NULL, 0, &ip_mtu, 0,
2204		       CTL_NET, PF_INET, IPPROTO_IP,
2205		       IPCTL_DEFMTU, CTL_EOL);
2206#endif /* IPCTL_DEFMTU */
2207	sysctl_createv(clog, 0, NULL, NULL,
2208		       CTLFLAG_PERMANENT|CTLFLAG_READONLY1,
2209		       CTLTYPE_INT, "forwsrcrt", NULL,
2210		       NULL, 0, &ip_forwsrcrt, 0,
2211		       CTL_NET, PF_INET, IPPROTO_IP,
2212		       IPCTL_FORWSRCRT, CTL_EOL);
2213	sysctl_createv(clog, 0, NULL, NULL,
2214		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2215		       CTLTYPE_INT, "directed-broadcast", NULL,
2216		       NULL, 0, &ip_directedbcast, 0,
2217		       CTL_NET, PF_INET, IPPROTO_IP,
2218		       IPCTL_DIRECTEDBCAST, CTL_EOL);
2219	sysctl_createv(clog, 0, NULL, NULL,
2220		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2221		       CTLTYPE_INT, "allowsrcrt", NULL,
2222		       NULL, 0, &ip_allowsrcrt, 0,
2223		       CTL_NET, PF_INET, IPPROTO_IP,
2224		       IPCTL_ALLOWSRCRT, CTL_EOL);
2225	sysctl_createv(clog, 0, NULL, NULL,
2226		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2227		       CTLTYPE_INT, "subnetsarelocal", NULL,
2228		       NULL, 0, &subnetsarelocal, 0,
2229		       CTL_NET, PF_INET, IPPROTO_IP,
2230		       IPCTL_SUBNETSARELOCAL, CTL_EOL);
2231	sysctl_createv(clog, 0, NULL, NULL,
2232		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2233		       CTLTYPE_INT, "mtudisc", NULL,
2234		       NULL, 0, &ip_mtudisc, 0,
2235		       CTL_NET, PF_INET, IPPROTO_IP,
2236		       IPCTL_MTUDISC, CTL_EOL);
2237	sysctl_createv(clog, 0, NULL, NULL,
2238		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2239		       CTLTYPE_INT, "anonportmin", NULL,
2240		       sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2241		       CTL_NET, PF_INET, IPPROTO_IP,
2242		       IPCTL_ANONPORTMIN, CTL_EOL);
2243	sysctl_createv(clog, 0, NULL, NULL,
2244		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2245		       CTLTYPE_INT, "anonportmax", NULL,
2246		       sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2247		       CTL_NET, PF_INET, IPPROTO_IP,
2248		       IPCTL_ANONPORTMAX, CTL_EOL);
2249	sysctl_createv(clog, 0, NULL, NULL,
2250		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2251		       CTLTYPE_INT, "mtudisctimeout", NULL,
2252		       sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2253		       CTL_NET, PF_INET, IPPROTO_IP,
2254		       IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2255#ifdef GATEWAY
2256	sysctl_createv(clog, 0, NULL, NULL,
2257		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2258		       CTLTYPE_INT, "maxflows", NULL,
2259		       sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2260		       CTL_NET, PF_INET, IPPROTO_IP,
2261		       IPCTL_MAXFLOWS, CTL_EOL);
2262#endif /* GATEWAY */
2263	sysctl_createv(clog, 0, NULL, NULL,
2264		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2265		       CTLTYPE_INT, "hostzerobroadcast", NULL,
2266		       NULL, 0, &hostzeroisbroadcast, 0,
2267		       CTL_NET, PF_INET, IPPROTO_IP,
2268		       IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2269#if NGIF > 0
2270	sysctl_createv(clog, 0, NULL, NULL,
2271		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2272		       CTLTYPE_INT, "gifttl", NULL,
2273		       NULL, 0, &ip_gif_ttl, 0,
2274		       CTL_NET, PF_INET, IPPROTO_IP,
2275		       IPCTL_GIF_TTL, CTL_EOL);
2276#endif /* NGIF */
2277#ifndef IPNOPRIVPORTS
2278	sysctl_createv(clog, 0, NULL, NULL,
2279		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2280		       CTLTYPE_INT, "lowportmin", NULL,
2281		       sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2282		       CTL_NET, PF_INET, IPPROTO_IP,
2283		       IPCTL_LOWPORTMIN, CTL_EOL);
2284	sysctl_createv(clog, 0, NULL, NULL,
2285		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2286		       CTLTYPE_INT, "lowportmax", NULL,
2287		       sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2288		       CTL_NET, PF_INET, IPPROTO_IP,
2289		       IPCTL_LOWPORTMAX, CTL_EOL);
2290#endif /* IPNOPRIVPORTS */
2291	sysctl_createv(clog, 0, NULL, NULL,
2292		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2293		       CTLTYPE_INT, "maxfragpackets", NULL,
2294		       NULL, 0, &ip_maxfragpackets, 0,
2295		       CTL_NET, PF_INET, IPPROTO_IP,
2296		       IPCTL_MAXFRAGPACKETS, CTL_EOL);
2297#if NGRE > 0
2298	sysctl_createv(clog, 0, NULL, NULL,
2299		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2300		       CTLTYPE_INT, "grettl", NULL,
2301		       NULL, 0, &ip_gre_ttl, 0,
2302		       CTL_NET, PF_INET, IPPROTO_IP,
2303		       IPCTL_GRE_TTL, CTL_EOL);
2304#endif /* NGRE */
2305	sysctl_createv(clog, 0, NULL, NULL,
2306		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2307		       CTLTYPE_INT, "checkinterface", NULL,
2308		       NULL, 0, &ip_checkinterface, 0,
2309		       CTL_NET, PF_INET, IPPROTO_IP,
2310		       IPCTL_CHECKINTERFACE, CTL_EOL);
2311	sysctl_createv(clog, 0, NULL, NULL,
2312		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2313		       CTLTYPE_INT, "random_id", NULL,
2314		       NULL, 0, &ip_do_randomid, 0,
2315		       CTL_NET, PF_INET, IPPROTO_IP,
2316		       IPCTL_RANDOMID, CTL_EOL);
2317}
2318