ip_input.c revision 1.2
1/*
2 * Copyright (c) 1982, 1986, 1988 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	7.19 (Berkeley) 5/25/91
34 */
35
36#include "param.h"
37#include "systm.h"
38#include "malloc.h"
39#include "mbuf.h"
40#include "domain.h"
41#include "protosw.h"
42#include "socket.h"
43#include "errno.h"
44#include "time.h"
45#include "kernel.h"
46
47#include "../net/if.h"
48#include "../net/route.h"
49
50#include "in.h"
51#include "in_systm.h"
52#include "ip.h"
53#include "in_pcb.h"
54#include "in_var.h"
55#include "ip_var.h"
56#include "ip_icmp.h"
57
58#ifndef	IPFORWARDING
59#ifdef GATEWAY
60#define	IPFORWARDING	1	/* forward IP packets not for us */
61#else /* GATEWAY */
62#define	IPFORWARDING	0	/* don't forward IP packets not for us */
63#endif /* GATEWAY */
64#endif /* IPFORWARDING */
65#ifndef	IPSENDREDIRECTS
66#define	IPSENDREDIRECTS	1
67#endif
68int	ipforwarding = IPFORWARDING;
69int	ipsendredirects = IPSENDREDIRECTS;
70#ifdef DIAGNOSTIC
71int	ipprintfs = 0;
72#endif
73
74extern	struct domain inetdomain;
75extern	struct protosw inetsw[];
76u_char	ip_protox[IPPROTO_MAX];
77int	ipqmaxlen = IFQ_MAXLEN;
78struct	in_ifaddr *in_ifaddr;			/* first inet address */
79
80/*
81 * We need to save the IP options in case a protocol wants to respond
82 * to an incoming packet over the same route if the packet got here
83 * using IP source routing.  This allows connection establishment and
84 * maintenance when the remote end is on a network that is not known
85 * to us.
86 */
87int	ip_nhops = 0;
88static	struct ip_srcrt {
89	struct	in_addr dst;			/* final destination */
90	char	nop;				/* one NOP to align */
91	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
92	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
93} ip_srcrt;
94
95#ifdef GATEWAY
96extern	int if_index;
97u_long	*ip_ifmatrix;
98#endif
99
100/*
101 * IP initialization: fill in IP protocol switch table.
102 * All protocols not implemented in kernel go to raw IP protocol handler.
103 */
104ip_init()
105{
106	register struct protosw *pr;
107	register int i;
108
109	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
110	if (pr == 0)
111		panic("ip_init");
112	for (i = 0; i < IPPROTO_MAX; i++)
113		ip_protox[i] = pr - inetsw;
114	for (pr = inetdomain.dom_protosw;
115	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
116		if (pr->pr_domain->dom_family == PF_INET &&
117		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
118			ip_protox[pr->pr_protocol] = pr - inetsw;
119	ipq.next = ipq.prev = &ipq;
120	ip_id = time.tv_sec & 0xffff;
121	ipintrq.ifq_maxlen = ipqmaxlen;
122#ifdef GATEWAY
123	i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
124	if ((ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK)) == 0)
125		panic("no memory for ip_ifmatrix");
126#endif
127}
128
129struct	ip *ip_reass();
130struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
131struct	route ipforward_rt;
132
133/*
134 * Ip input routine.  Checksum and byte swap header.  If fragmented
135 * try to reassemble.  Process options.  Pass to next level.
136 */
137ipintr()
138{
139	register struct ip *ip;
140	register struct mbuf *m;
141	register struct ipq *fp;
142	register struct in_ifaddr *ia;
143	int hlen, s;
144#ifdef PARANOID
145	static int busy = 0;
146
147	if (busy)
148		panic("ipintr: called recursively\n");
149	++busy;
150#endif
151next:
152	/*
153	 * Get next datagram off input queue and get IP header
154	 * in first mbuf.
155	 */
156	s = splimp();
157	IF_DEQUEUE(&ipintrq, m);
158	splx(s);
159	if (m == 0) {
160#ifdef PARANOID
161		--busy;
162#endif
163		return;
164	}
165#ifdef	DIAGNOSTIC
166	if ((m->m_flags & M_PKTHDR) == 0)
167		panic("ipintr no HDR");
168#endif
169	/*
170	 * If no IP addresses have been set yet but the interfaces
171	 * are receiving, can't do anything with incoming packets yet.
172	 */
173	if (in_ifaddr == NULL)
174		goto bad;
175	ipstat.ips_total++;
176	if (m->m_len < sizeof (struct ip) &&
177	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
178		ipstat.ips_toosmall++;
179		goto next;
180	}
181	ip = mtod(m, struct ip *);
182	hlen = ip->ip_hl << 2;
183	if (hlen < sizeof(struct ip)) {	/* minimum header length */
184		ipstat.ips_badhlen++;
185		goto bad;
186	}
187	if (hlen > m->m_len) {
188		if ((m = m_pullup(m, hlen)) == 0) {
189			ipstat.ips_badhlen++;
190			goto next;
191		}
192		ip = mtod(m, struct ip *);
193	}
194	if (ip->ip_sum = in_cksum(m, hlen)) {
195		ipstat.ips_badsum++;
196		goto bad;
197	}
198
199	/*
200	 * Convert fields to host representation.
201	 */
202	NTOHS(ip->ip_len);
203	if (ip->ip_len < hlen) {
204		ipstat.ips_badlen++;
205		goto bad;
206	}
207	NTOHS(ip->ip_id);
208	NTOHS(ip->ip_off);
209
210	/*
211	 * Check that the amount of data in the buffers
212	 * is as at least much as the IP header would have us expect.
213	 * Trim mbufs if longer than we expect.
214	 * Drop packet if shorter than we expect.
215	 */
216	if (m->m_pkthdr.len < ip->ip_len) {
217		ipstat.ips_tooshort++;
218		goto bad;
219	}
220	if (m->m_pkthdr.len > ip->ip_len) {
221		if (m->m_len == m->m_pkthdr.len) {
222			m->m_len = ip->ip_len;
223			m->m_pkthdr.len = ip->ip_len;
224		} else
225			m_adj(m, ip->ip_len - m->m_pkthdr.len);
226	}
227
228	/*
229	 * Process options and, if not destined for us,
230	 * ship it on.  ip_dooptions returns 1 when an
231	 * error was detected (causing an icmp message
232	 * to be sent and the original packet to be freed).
233	 */
234	ip_nhops = 0;		/* for source routed packets */
235	if (hlen > sizeof (struct ip) && ip_dooptions(m))
236		goto next;
237
238	/*
239	 * Check our list of addresses, to see if the packet is for us.
240	 */
241	for (ia = in_ifaddr; ia; ia = ia->ia_next) {
242#define	satosin(sa)	((struct sockaddr_in *)(sa))
243
244		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
245			goto ours;
246		if (
247#ifdef	DIRECTED_BROADCAST
248		    ia->ia_ifp == m->m_pkthdr.rcvif &&
249#endif
250		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
251			u_long t;
252
253			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
254			    ip->ip_dst.s_addr)
255				goto ours;
256			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
257				goto ours;
258			/*
259			 * Look for all-0's host part (old broadcast addr),
260			 * either for subnet or net.
261			 */
262			t = ntohl(ip->ip_dst.s_addr);
263			if (t == ia->ia_subnet)
264				goto ours;
265			if (t == ia->ia_net)
266				goto ours;
267		}
268	}
269	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
270		goto ours;
271	if (ip->ip_dst.s_addr == INADDR_ANY)
272		goto ours;
273
274	/*
275	 * Not for us; forward if possible and desirable.
276	 */
277	if (ipforwarding == 0) {
278		ipstat.ips_cantforward++;
279		m_freem(m);
280	} else
281		ip_forward(m, 0);
282	goto next;
283
284ours:
285	/*
286	 * If offset or IP_MF are set, must reassemble.
287	 * Otherwise, nothing need be done.
288	 * (We could look in the reassembly queue to see
289	 * if the packet was previously fragmented,
290	 * but it's not worth the time; just let them time out.)
291	 */
292	if (ip->ip_off &~ IP_DF) {
293		if (m->m_flags & M_EXT) {		/* XXX */
294			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
295				ipstat.ips_toosmall++;
296				goto next;
297			}
298			ip = mtod(m, struct ip *);
299		}
300		/*
301		 * Look for queue of fragments
302		 * of this datagram.
303		 */
304		for (fp = ipq.next; fp != &ipq; fp = fp->next)
305			if (ip->ip_id == fp->ipq_id &&
306			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
307			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
308			    ip->ip_p == fp->ipq_p)
309				goto found;
310		fp = 0;
311found:
312
313		/*
314		 * Adjust ip_len to not reflect header,
315		 * set ip_mff if more fragments are expected,
316		 * convert offset of this to bytes.
317		 */
318		ip->ip_len -= hlen;
319		((struct ipasfrag *)ip)->ipf_mff = 0;
320		if (ip->ip_off & IP_MF)
321			((struct ipasfrag *)ip)->ipf_mff = 1;
322		ip->ip_off <<= 3;
323
324		/*
325		 * If datagram marked as having more fragments
326		 * or if this is not the first fragment,
327		 * attempt reassembly; if it succeeds, proceed.
328		 */
329		if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
330			ipstat.ips_fragments++;
331			ip = ip_reass((struct ipasfrag *)ip, fp);
332			if (ip == 0)
333				goto next;
334			else
335				ipstat.ips_reassembled++;
336			m = dtom(ip);
337		} else
338			if (fp)
339				ip_freef(fp);
340	} else
341		ip->ip_len -= hlen;
342
343	/*
344	 * Switch out to protocol's input routine.
345	 */
346	ipstat.ips_delivered++;
347	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
348	goto next;
349bad:
350	m_freem(m);
351	goto next;
352}
353
354/*
355 * Take incoming datagram fragment and try to
356 * reassemble it into whole datagram.  If a chain for
357 * reassembly of this datagram already exists, then it
358 * is given as fp; otherwise have to make a chain.
359 */
360struct ip *
361ip_reass(ip, fp)
362	register struct ipasfrag *ip;
363	register struct ipq *fp;
364{
365	register struct mbuf *m = dtom(ip);
366	register struct ipasfrag *q;
367	struct mbuf *t;
368	int hlen = ip->ip_hl << 2;
369	int i, next;
370
371	/*
372	 * Presence of header sizes in mbufs
373	 * would confuse code below.
374	 */
375	m->m_data += hlen;
376	m->m_len -= hlen;
377
378	/*
379	 * If first fragment to arrive, create a reassembly queue.
380	 */
381	if (fp == 0) {
382		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
383			goto dropfrag;
384		fp = mtod(t, struct ipq *);
385		insque(fp, &ipq);
386		fp->ipq_ttl = IPFRAGTTL;
387		fp->ipq_p = ip->ip_p;
388		fp->ipq_id = ip->ip_id;
389		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
390		fp->ipq_src = ((struct ip *)ip)->ip_src;
391		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
392		q = (struct ipasfrag *)fp;
393		goto insert;
394	}
395
396	/*
397	 * Find a segment which begins after this one does.
398	 */
399	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
400		if (q->ip_off > ip->ip_off)
401			break;
402
403	/*
404	 * If there is a preceding segment, it may provide some of
405	 * our data already.  If so, drop the data from the incoming
406	 * segment.  If it provides all of our data, drop us.
407	 */
408	if (q->ipf_prev != (struct ipasfrag *)fp) {
409		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
410		if (i > 0) {
411			if (i >= ip->ip_len)
412				goto dropfrag;
413			m_adj(dtom(ip), i);
414			ip->ip_off += i;
415			ip->ip_len -= i;
416		}
417	}
418
419	/*
420	 * While we overlap succeeding segments trim them or,
421	 * if they are completely covered, dequeue them.
422	 */
423	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
424		i = (ip->ip_off + ip->ip_len) - q->ip_off;
425		if (i < q->ip_len) {
426			q->ip_len -= i;
427			q->ip_off += i;
428			m_adj(dtom(q), i);
429			break;
430		}
431		q = q->ipf_next;
432		m_freem(dtom(q->ipf_prev));
433		ip_deq(q->ipf_prev);
434	}
435
436insert:
437	/*
438	 * Stick new segment in its place;
439	 * check for complete reassembly.
440	 */
441	ip_enq(ip, q->ipf_prev);
442	next = 0;
443	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
444		if (q->ip_off != next)
445			return (0);
446		next += q->ip_len;
447	}
448	if (q->ipf_prev->ipf_mff)
449		return (0);
450
451	/*
452	 * Reassembly is complete; concatenate fragments.
453	 */
454	q = fp->ipq_next;
455	m = dtom(q);
456	t = m->m_next;
457	m->m_next = 0;
458	m_cat(m, t);
459	q = q->ipf_next;
460	while (q != (struct ipasfrag *)fp) {
461		t = dtom(q);
462		q = q->ipf_next;
463		m_cat(m, t);
464	}
465
466	/*
467	 * Create header for new ip packet by
468	 * modifying header of first packet;
469	 * dequeue and discard fragment reassembly header.
470	 * Make header visible.
471	 */
472	ip = fp->ipq_next;
473	ip->ip_len = next;
474	((struct ip *)ip)->ip_src = fp->ipq_src;
475	((struct ip *)ip)->ip_dst = fp->ipq_dst;
476	remque(fp);
477	(void) m_free(dtom(fp));
478	m = dtom(ip);
479	m->m_len += (ip->ip_hl << 2);
480	m->m_data -= (ip->ip_hl << 2);
481	/* some debugging cruft by sklower, below, will go away soon */
482	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
483		register int plen = 0;
484		for (t = m; m; m = m->m_next)
485			plen += m->m_len;
486		t->m_pkthdr.len = plen;
487	}
488	return ((struct ip *)ip);
489
490dropfrag:
491	ipstat.ips_fragdropped++;
492	m_freem(m);
493	return (0);
494}
495
496/*
497 * Free a fragment reassembly header and all
498 * associated datagrams.
499 */
500ip_freef(fp)
501	struct ipq *fp;
502{
503	register struct ipasfrag *q, *p;
504
505	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
506		p = q->ipf_next;
507		ip_deq(q);
508		m_freem(dtom(q));
509	}
510	remque(fp);
511	(void) m_free(dtom(fp));
512}
513
514/*
515 * Put an ip fragment on a reassembly chain.
516 * Like insque, but pointers in middle of structure.
517 */
518ip_enq(p, prev)
519	register struct ipasfrag *p, *prev;
520{
521
522	p->ipf_prev = prev;
523	p->ipf_next = prev->ipf_next;
524	prev->ipf_next->ipf_prev = p;
525	prev->ipf_next = p;
526}
527
528/*
529 * To ip_enq as remque is to insque.
530 */
531ip_deq(p)
532	register struct ipasfrag *p;
533{
534
535	p->ipf_prev->ipf_next = p->ipf_next;
536	p->ipf_next->ipf_prev = p->ipf_prev;
537}
538
539/*
540 * IP timer processing;
541 * if a timer expires on a reassembly
542 * queue, discard it.
543 */
544ip_slowtimo()
545{
546	register struct ipq *fp;
547	int s = splnet();
548
549	fp = ipq.next;
550	if (fp == 0) {
551		splx(s);
552		return;
553	}
554	while (fp != &ipq) {
555		--fp->ipq_ttl;
556		fp = fp->next;
557		if (fp->prev->ipq_ttl == 0) {
558			ipstat.ips_fragtimeout++;
559			ip_freef(fp->prev);
560		}
561	}
562	splx(s);
563}
564
565/*
566 * Drain off all datagram fragments.
567 */
568ip_drain()
569{
570
571	while (ipq.next != &ipq) {
572		ipstat.ips_fragdropped++;
573		ip_freef(ipq.next);
574	}
575}
576
577extern struct in_ifaddr *ifptoia();
578struct in_ifaddr *ip_rtaddr();
579
580/*
581 * Do option processing on a datagram,
582 * possibly discarding it if bad options are encountered,
583 * or forwarding it if source-routed.
584 * Returns 1 if packet has been forwarded/freed,
585 * 0 if the packet should be processed further.
586 */
587ip_dooptions(m)
588	struct mbuf *m;
589{
590	register struct ip *ip = mtod(m, struct ip *);
591	register u_char *cp;
592	register struct ip_timestamp *ipt;
593	register struct in_ifaddr *ia;
594	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
595	struct in_addr *sin;
596	n_time ntime;
597
598	cp = (u_char *)(ip + 1);
599	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
600	for (; cnt > 0; cnt -= optlen, cp += optlen) {
601		opt = cp[IPOPT_OPTVAL];
602		if (opt == IPOPT_EOL)
603			break;
604		if (opt == IPOPT_NOP)
605			optlen = 1;
606		else {
607			optlen = cp[IPOPT_OLEN];
608			if (optlen <= 0 || optlen > cnt) {
609				code = &cp[IPOPT_OLEN] - (u_char *)ip;
610				goto bad;
611			}
612		}
613		switch (opt) {
614
615		default:
616			break;
617
618		/*
619		 * Source routing with record.
620		 * Find interface with current destination address.
621		 * If none on this machine then drop if strictly routed,
622		 * or do nothing if loosely routed.
623		 * Record interface address and bring up next address
624		 * component.  If strictly routed make sure next
625		 * address is on directly accessible net.
626		 */
627		case IPOPT_LSRR:
628		case IPOPT_SSRR:
629			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
630				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
631				goto bad;
632			}
633			ipaddr.sin_addr = ip->ip_dst;
634			ia = (struct in_ifaddr *)
635				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
636			if (ia == 0) {
637				if (opt == IPOPT_SSRR) {
638					type = ICMP_UNREACH;
639					code = ICMP_UNREACH_SRCFAIL;
640					goto bad;
641				}
642				/*
643				 * Loose routing, and not at next destination
644				 * yet; nothing to do except forward.
645				 */
646				break;
647			}
648			off--;			/* 0 origin */
649			if (off > optlen - sizeof(struct in_addr)) {
650				/*
651				 * End of source route.  Should be for us.
652				 */
653				save_rte(cp, ip->ip_src);
654				break;
655			}
656			/*
657			 * locate outgoing interface
658			 */
659			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
660			    sizeof(ipaddr.sin_addr));
661			if (opt == IPOPT_SSRR) {
662#define	INA	struct in_ifaddr *
663#define	SA	struct sockaddr *
664			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
665				ia = in_iaonnetof(in_netof(ipaddr.sin_addr));
666			} else
667				ia = ip_rtaddr(ipaddr.sin_addr);
668			if (ia == 0) {
669				type = ICMP_UNREACH;
670				code = ICMP_UNREACH_SRCFAIL;
671				goto bad;
672			}
673			ip->ip_dst = ipaddr.sin_addr;
674			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
675			    (caddr_t)(cp + off), sizeof(struct in_addr));
676			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
677			forward = 1;
678			break;
679
680		case IPOPT_RR:
681			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
682				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
683				goto bad;
684			}
685			/*
686			 * If no space remains, ignore.
687			 */
688			off--;			/* 0 origin */
689			if (off > optlen - sizeof(struct in_addr))
690				break;
691			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
692			    sizeof(ipaddr.sin_addr));
693			/*
694			 * locate outgoing interface; if we're the destination,
695			 * use the incoming interface (should be same).
696			 */
697			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
698			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
699				type = ICMP_UNREACH;
700				code = ICMP_UNREACH_HOST;
701				goto bad;
702			}
703			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
704			    (caddr_t)(cp + off), sizeof(struct in_addr));
705			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
706			break;
707
708		case IPOPT_TS:
709			code = cp - (u_char *)ip;
710			ipt = (struct ip_timestamp *)cp;
711			if (ipt->ipt_len < 5)
712				goto bad;
713			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
714				if (++ipt->ipt_oflw == 0)
715					goto bad;
716				break;
717			}
718			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
719			switch (ipt->ipt_flg) {
720
721			case IPOPT_TS_TSONLY:
722				break;
723
724			case IPOPT_TS_TSANDADDR:
725				if (ipt->ipt_ptr + sizeof(n_time) +
726				    sizeof(struct in_addr) > ipt->ipt_len)
727					goto bad;
728				ia = ifptoia(m->m_pkthdr.rcvif);
729				bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
730				    (caddr_t)sin, sizeof(struct in_addr));
731				ipt->ipt_ptr += sizeof(struct in_addr);
732				break;
733
734			case IPOPT_TS_PRESPEC:
735				if (ipt->ipt_ptr + sizeof(n_time) +
736				    sizeof(struct in_addr) > ipt->ipt_len)
737					goto bad;
738				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
739				    sizeof(struct in_addr));
740				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
741					continue;
742				ipt->ipt_ptr += sizeof(struct in_addr);
743				break;
744
745			default:
746				goto bad;
747			}
748			ntime = iptime();
749			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
750			    sizeof(n_time));
751			ipt->ipt_ptr += sizeof(n_time);
752		}
753	}
754	if (forward) {
755		ip_forward(m, 1);
756		return (1);
757	} else
758		return (0);
759bad:
760	icmp_error(m, type, code);
761	return (1);
762}
763
764/*
765 * Given address of next destination (final or next hop),
766 * return internet address info of interface to be used to get there.
767 */
768struct in_ifaddr *
769ip_rtaddr(dst)
770	 struct in_addr dst;
771{
772	register struct sockaddr_in *sin;
773
774	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
775
776	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
777		if (ipforward_rt.ro_rt) {
778			RTFREE(ipforward_rt.ro_rt);
779			ipforward_rt.ro_rt = 0;
780		}
781		sin->sin_family = AF_INET;
782		sin->sin_len = sizeof(*sin);
783		sin->sin_addr = dst;
784
785		rtalloc(&ipforward_rt);
786	}
787	if (ipforward_rt.ro_rt == 0)
788		return ((struct in_ifaddr *)0);
789	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
790}
791
792/*
793 * Save incoming source route for use in replies,
794 * to be picked up later by ip_srcroute if the receiver is interested.
795 */
796save_rte(option, dst)
797	u_char *option;
798	struct in_addr dst;
799{
800	unsigned olen;
801
802	olen = option[IPOPT_OLEN];
803#ifdef DIAGNOSTIC
804	if (ipprintfs)
805		printf("save_rte: olen %d\n", olen);
806#endif
807	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
808		return;
809	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
810	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
811	ip_srcrt.dst = dst;
812}
813
814/*
815 * Retrieve incoming source route for use in replies,
816 * in the same form used by setsockopt.
817 * The first hop is placed before the options, will be removed later.
818 */
819struct mbuf *
820ip_srcroute()
821{
822	register struct in_addr *p, *q;
823	register struct mbuf *m;
824
825	if (ip_nhops == 0)
826		return ((struct mbuf *)0);
827	m = m_get(M_DONTWAIT, MT_SOOPTS);
828	if (m == 0)
829		return ((struct mbuf *)0);
830
831#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
832
833	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
834	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
835	    OPTSIZ;
836#ifdef DIAGNOSTIC
837	if (ipprintfs)
838		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
839#endif
840
841	/*
842	 * First save first hop for return route
843	 */
844	p = &ip_srcrt.route[ip_nhops - 1];
845	*(mtod(m, struct in_addr *)) = *p--;
846#ifdef DIAGNOSTIC
847	if (ipprintfs)
848		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
849#endif
850
851	/*
852	 * Copy option fields and padding (nop) to mbuf.
853	 */
854	ip_srcrt.nop = IPOPT_NOP;
855	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
856	bcopy((caddr_t)&ip_srcrt.nop,
857	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
858	q = (struct in_addr *)(mtod(m, caddr_t) +
859	    sizeof(struct in_addr) + OPTSIZ);
860#undef OPTSIZ
861	/*
862	 * Record return path as an IP source route,
863	 * reversing the path (pointers are now aligned).
864	 */
865	while (p >= ip_srcrt.route) {
866#ifdef DIAGNOSTIC
867		if (ipprintfs)
868			printf(" %lx", ntohl(q->s_addr));
869#endif
870		*q++ = *p--;
871	}
872	/*
873	 * Last hop goes to final destination.
874	 */
875	*q = ip_srcrt.dst;
876#ifdef DIAGNOSTIC
877	if (ipprintfs)
878		printf(" %lx\n", ntohl(q->s_addr));
879#endif
880	return (m);
881}
882
883/*
884 * Strip out IP options, at higher
885 * level protocol in the kernel.
886 * Second argument is buffer to which options
887 * will be moved, and return value is their length.
888 * XXX should be deleted; last arg currently ignored.
889 */
890ip_stripoptions(m, mopt)
891	register struct mbuf *m;
892	struct mbuf *mopt;
893{
894	register int i;
895	struct ip *ip = mtod(m, struct ip *);
896	register caddr_t opts;
897	int olen;
898
899	olen = (ip->ip_hl<<2) - sizeof (struct ip);
900	opts = (caddr_t)(ip + 1);
901	i = m->m_len - (sizeof (struct ip) + olen);
902	bcopy(opts  + olen, opts, (unsigned)i);
903	m->m_len -= olen;
904	if (m->m_flags & M_PKTHDR)
905		m->m_pkthdr.len -= olen;
906	ip->ip_hl = sizeof(struct ip) >> 2;
907}
908
909u_char inetctlerrmap[PRC_NCMDS] = {
910	0,		0,		0,		0,
911	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
912	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
913	EMSGSIZE,	EHOSTUNREACH,	0,		0,
914	0,		0,		0,		0,
915	ENOPROTOOPT
916};
917
918/*
919 * Forward a packet.  If some error occurs return the sender
920 * an icmp packet.  Note we can't always generate a meaningful
921 * icmp message because icmp doesn't have a large enough repertoire
922 * of codes and types.
923 *
924 * If not forwarding, just drop the packet.  This could be confusing
925 * if ipforwarding was zero but some routing protocol was advancing
926 * us as a gateway to somewhere.  However, we must let the routing
927 * protocol deal with that.
928 *
929 * The srcrt parameter indicates whether the packet is being forwarded
930 * via a source route.
931 */
932ip_forward(m, srcrt)
933	struct mbuf *m;
934	int srcrt;
935{
936	register struct ip *ip = mtod(m, struct ip *);
937	register struct sockaddr_in *sin;
938	register struct rtentry *rt;
939	int error, type = 0, code;
940	struct mbuf *mcopy;
941	struct in_addr dest;
942
943	dest.s_addr = 0;
944#ifdef DIAGNOSTIC
945	if (ipprintfs)
946		printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
947			ip->ip_dst, ip->ip_ttl);
948#endif
949	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
950		ipstat.ips_cantforward++;
951		m_freem(m);
952		return;
953	}
954	HTONS(ip->ip_id);
955	if (ip->ip_ttl <= IPTTLDEC) {
956		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest);
957		return;
958	}
959	ip->ip_ttl -= IPTTLDEC;
960
961	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
962	if ((rt = ipforward_rt.ro_rt) == 0 ||
963	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
964		if (ipforward_rt.ro_rt) {
965			RTFREE(ipforward_rt.ro_rt);
966			ipforward_rt.ro_rt = 0;
967		}
968		sin->sin_family = AF_INET;
969		sin->sin_len = sizeof(*sin);
970		sin->sin_addr = ip->ip_dst;
971
972		rtalloc(&ipforward_rt);
973		if (ipforward_rt.ro_rt == 0) {
974			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest);
975			return;
976		}
977		rt = ipforward_rt.ro_rt;
978	}
979
980	/*
981	 * Save at most 64 bytes of the packet in case
982	 * we need to generate an ICMP message to the src.
983	 */
984	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
985
986#ifdef GATEWAY
987	ip_ifmatrix[rt->rt_ifp->if_index +
988	     if_index * m->m_pkthdr.rcvif->if_index]++;
989#endif
990	/*
991	 * If forwarding packet using same interface that it came in on,
992	 * perhaps should send a redirect to sender to shortcut a hop.
993	 * Only send redirect if source is sending directly to us,
994	 * and if packet was not source routed (or has any options).
995	 * Also, don't send redirect if forwarding using a default route
996	 * or a route modified by a redirect.
997	 */
998#define	satosin(sa)	((struct sockaddr_in *)(sa))
999	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1000	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1001	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1002	    ipsendredirects && !srcrt) {
1003		struct in_ifaddr *ia;
1004		u_long src = ntohl(ip->ip_src.s_addr);
1005		u_long dst = ntohl(ip->ip_dst.s_addr);
1006
1007		if ((ia = ifptoia(m->m_pkthdr.rcvif)) &&
1008		   (src & ia->ia_subnetmask) == ia->ia_subnet) {
1009		    if (rt->rt_flags & RTF_GATEWAY)
1010			dest = satosin(rt->rt_gateway)->sin_addr;
1011		    else
1012			dest = ip->ip_dst;
1013		    /*
1014		     * If the destination is reached by a route to host,
1015		     * is on a subnet of a local net, or is directly
1016		     * on the attached net (!), use host redirect.
1017		     * (We may be the correct first hop for other subnets.)
1018		     */
1019#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1020		    type = ICMP_REDIRECT;
1021		    if ((rt->rt_flags & RTF_HOST) ||
1022		        (rt->rt_flags & RTF_GATEWAY) == 0)
1023			    code = ICMP_REDIRECT_HOST;
1024		    else if (RTA(rt)->ia_subnetmask != RTA(rt)->ia_netmask &&
1025		        (dst & RTA(rt)->ia_netmask) ==  RTA(rt)->ia_net)
1026			    code = ICMP_REDIRECT_HOST;
1027		    else
1028			    code = ICMP_REDIRECT_NET;
1029#ifdef DIAGNOSTIC
1030		    if (ipprintfs)
1031		        printf("redirect (%d) to %x\n", code, dest.s_addr);
1032#endif
1033		}
1034	}
1035
1036	error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING);
1037	if (error)
1038		ipstat.ips_cantforward++;
1039	else {
1040		ipstat.ips_forward++;
1041		if (type)
1042			ipstat.ips_redirectsent++;
1043		else {
1044			if (mcopy)
1045				m_freem(mcopy);
1046			return;
1047		}
1048	}
1049	if (mcopy == NULL)
1050		return;
1051	switch (error) {
1052
1053	case 0:				/* forwarded, but need redirect */
1054		/* type, code set above */
1055		break;
1056
1057	case ENETUNREACH:		/* shouldn't happen, checked above */
1058	case EHOSTUNREACH:
1059	case ENETDOWN:
1060	case EHOSTDOWN:
1061	default:
1062		type = ICMP_UNREACH;
1063		code = ICMP_UNREACH_HOST;
1064		break;
1065
1066	case EMSGSIZE:
1067		type = ICMP_UNREACH;
1068		code = ICMP_UNREACH_NEEDFRAG;
1069		ipstat.ips_cantfrag++;
1070		break;
1071
1072	case ENOBUFS:
1073		type = ICMP_SOURCEQUENCH;
1074		code = 0;
1075		break;
1076	}
1077	icmp_error(mcopy, type, code, dest);
1078}
1079