ip_input.c revision 1.12
1/*
2 * Copyright (c) 1982, 1986, 1988 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)ip_input.c	7.19 (Berkeley) 5/25/91
34 *	$Id: ip_input.c,v 1.12 1994/02/14 21:45:53 mycroft Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/domain.h>
42#include <sys/protosw.h>
43#include <sys/socket.h>
44#include <sys/errno.h>
45#include <sys/time.h>
46#include <sys/kernel.h>
47
48#include <net/if.h>
49#include <net/route.h>
50
51#include <netinet/in.h>
52#include <netinet/in_systm.h>
53#include <netinet/ip.h>
54#include <netinet/in_pcb.h>
55#include <netinet/in_var.h>
56#include <netinet/ip_var.h>
57#include <netinet/ip_icmp.h>
58#include <netinet/ip_mroute.h>
59
60#ifndef	IPFORWARDING
61#ifdef GATEWAY
62#define	IPFORWARDING	1	/* forward IP packets not for us */
63#else /* GATEWAY */
64#define	IPFORWARDING	0	/* don't forward IP packets not for us */
65#endif /* GATEWAY */
66#endif /* IPFORWARDING */
67#ifndef	IPSENDREDIRECTS
68#define	IPSENDREDIRECTS	1
69#endif
70int	ipforwarding = IPFORWARDING;
71int	ipsendredirects = IPSENDREDIRECTS;
72#ifdef DIAGNOSTIC
73int	ipprintfs = 0;
74#endif
75
76extern	struct domain inetdomain;
77extern	struct protosw inetsw[];
78u_char	ip_protox[IPPROTO_MAX];
79int	ipqmaxlen = IFQ_MAXLEN;
80struct	in_ifaddr *in_ifaddr;			/* first inet address */
81
82/*
83 * We need to save the IP options in case a protocol wants to respond
84 * to an incoming packet over the same route if the packet got here
85 * using IP source routing.  This allows connection establishment and
86 * maintenance when the remote end is on a network that is not known
87 * to us.
88 */
89int	ip_nhops = 0;
90static	struct ip_srcrt {
91	struct	in_addr dst;			/* final destination */
92	char	nop;				/* one NOP to align */
93	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
94	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
95} ip_srcrt;
96
97#ifdef GATEWAY
98extern	int if_index;
99u_long	*ip_ifmatrix;
100#endif
101
102static void	ip_forward __P((struct mbuf *, int));
103static void	save_rte __P((u_char *, struct in_addr));
104
105/*
106 * IP initialization: fill in IP protocol switch table.
107 * All protocols not implemented in kernel go to raw IP protocol handler.
108 */
109void
110ip_init()
111{
112	register struct protosw *pr;
113	register int i;
114
115	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
116	if (pr == 0)
117		panic("ip_init");
118	for (i = 0; i < IPPROTO_MAX; i++)
119		ip_protox[i] = pr - inetsw;
120	for (pr = inetdomain.dom_protosw;
121	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
122		if (pr->pr_domain->dom_family == PF_INET &&
123		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
124			ip_protox[pr->pr_protocol] = pr - inetsw;
125	ipq.next = ipq.prev = &ipq;
126	ip_id = time.tv_sec & 0xffff;
127	ipintrq.ifq_maxlen = ipqmaxlen;
128#ifdef GATEWAY
129	i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
130	if ((ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK)) == 0)
131		panic("no memory for ip_ifmatrix");
132#endif
133}
134
135struct	ip *ip_reass();
136struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
137struct	route ipforward_rt;
138
139/*
140 * Ip input routine.  Checksum and byte swap header.  If fragmented
141 * try to reassemble.  Process options.  Pass to next level.
142 */
143void
144ipintr()
145{
146	register struct ip *ip;
147	register struct mbuf *m;
148	register struct ipq *fp;
149	register struct in_ifaddr *ia;
150	int hlen, s;
151#ifdef DIAGNOSTIC
152	static int busy = 0;
153
154	if (busy)
155		panic("ipintr: called recursively\n");
156	++busy;
157#endif
158next:
159	/*
160	 * Get next datagram off input queue and get IP header
161	 * in first mbuf.
162	 */
163	s = splimp();
164	IF_DEQUEUE(&ipintrq, m);
165	splx(s);
166	if (m == 0) {
167#ifdef DIAGNOSTIC
168		--busy;
169#endif
170		return;
171	}
172#ifdef	DIAGNOSTIC
173	if ((m->m_flags & M_PKTHDR) == 0)
174		panic("ipintr no HDR");
175#endif
176	/*
177	 * If no IP addresses have been set yet but the interfaces
178	 * are receiving, can't do anything with incoming packets yet.
179	 */
180	if (in_ifaddr == NULL)
181		goto bad;
182	ipstat.ips_total++;
183	if (m->m_len < sizeof (struct ip) &&
184	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
185		ipstat.ips_toosmall++;
186		goto next;
187	}
188	ip = mtod(m, struct ip *);
189	hlen = ip->ip_hl << 2;
190	if (hlen < sizeof(struct ip)) {	/* minimum header length */
191		ipstat.ips_badhlen++;
192		goto bad;
193	}
194	if (hlen > m->m_len) {
195		if ((m = m_pullup(m, hlen)) == 0) {
196			ipstat.ips_badhlen++;
197			goto next;
198		}
199		ip = mtod(m, struct ip *);
200	}
201	if (ip->ip_sum = in_cksum(m, hlen)) {
202		ipstat.ips_badsum++;
203		goto bad;
204	}
205
206	/*
207	 * Convert fields to host representation.
208	 */
209	NTOHS(ip->ip_len);
210	if (ip->ip_len < hlen) {
211		ipstat.ips_badlen++;
212		goto bad;
213	}
214	NTOHS(ip->ip_id);
215	NTOHS(ip->ip_off);
216
217	/*
218	 * Check that the amount of data in the buffers
219	 * is as at least much as the IP header would have us expect.
220	 * Trim mbufs if longer than we expect.
221	 * Drop packet if shorter than we expect.
222	 */
223	if (m->m_pkthdr.len < ip->ip_len) {
224		ipstat.ips_tooshort++;
225		goto bad;
226	}
227	if (m->m_pkthdr.len > ip->ip_len) {
228		if (m->m_len == m->m_pkthdr.len) {
229			m->m_len = ip->ip_len;
230			m->m_pkthdr.len = ip->ip_len;
231		} else
232			m_adj(m, ip->ip_len - m->m_pkthdr.len);
233	}
234
235	/*
236	 * Process options and, if not destined for us,
237	 * ship it on.  ip_dooptions returns 1 when an
238	 * error was detected (causing an icmp message
239	 * to be sent and the original packet to be freed).
240	 */
241	ip_nhops = 0;		/* for source routed packets */
242	if (hlen > sizeof (struct ip) && ip_dooptions(m))
243		goto next;
244
245	/*
246	 * Check our list of addresses, to see if the packet is for us.
247	 */
248	for (ia = in_ifaddr; ia; ia = ia->ia_next) {
249#define	satosin(sa)	((struct sockaddr_in *)(sa))
250
251		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
252			goto ours;
253		if (
254#ifdef	DIRECTED_BROADCAST
255		    ia->ia_ifp == m->m_pkthdr.rcvif &&
256#endif
257		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
258			u_long t;
259
260			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
261			    ip->ip_dst.s_addr)
262				goto ours;
263			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
264				goto ours;
265			/*
266			 * Look for all-0's host part (old broadcast addr),
267			 * either for subnet or net.
268			 */
269			t = ntohl(ip->ip_dst.s_addr);
270			if (t == ia->ia_subnet)
271				goto ours;
272			if (t == ia->ia_net)
273				goto ours;
274		}
275	}
276	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
277		struct in_multi *inm;
278#ifdef MROUTING
279		extern struct socket *ip_mrouter;
280
281		if (m->m_flags & M_EXT) {
282			if ((m = m_pullup(m, hlen)) == 0) {
283				ipstat.ips_toosmall++;
284				goto next;
285			}
286			ip = mtod(m, struct ip *);
287		}
288
289		if (ip_mrouter) {
290			/*
291			 * If we are acting as a multicast router, all
292			 * incoming multicast packets are passed to the
293			 * kernel-level multicast forwarding function.
294			 * The packet is returned (relatively) intact; if
295			 * ip_mforward() returns a non-zero value, the packet
296			 * must be discarded, else it may be accepted below.
297			 *
298			 * (The IP ident field is put in the same byte order
299			 * as expected when ip_mforward() is called from
300			 * ip_output().)
301			 */
302			ip->ip_id = htons(ip->ip_id);
303			if (ip_mforward(ip, m->m_pkthdr.rcvif, m) != 0) {
304				m_freem(m);
305				goto next;
306			}
307			ip->ip_id = ntohs(ip->ip_id);
308
309			/*
310			 * The process-level routing demon needs to receive
311			 * all multicast IGMP packets, whether or not this
312			 * host belongs to their destination groups.
313			 */
314			if (ip->ip_p == IPPROTO_IGMP)
315				goto ours;
316		}
317#endif
318		/*
319		 * See if we belong to the destination multicast group on the
320		 * arrival interface.
321		 */
322		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
323		if (inm == NULL) {
324			m_freem(m);
325			goto next;
326		}
327		goto ours;
328	}
329	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
330		goto ours;
331	if (ip->ip_dst.s_addr == INADDR_ANY)
332		goto ours;
333
334	/*
335	 * Not for us; forward if possible and desirable.
336	 */
337	if (ipforwarding == 0) {
338		ipstat.ips_cantforward++;
339		m_freem(m);
340	} else
341		ip_forward(m, 0);
342	goto next;
343
344ours:
345	/*
346	 * If offset or IP_MF are set, must reassemble.
347	 * Otherwise, nothing need be done.
348	 * (We could look in the reassembly queue to see
349	 * if the packet was previously fragmented,
350	 * but it's not worth the time; just let them time out.)
351	 */
352	if (ip->ip_off &~ IP_DF) {
353		if (m->m_flags & M_EXT) {		/* XXX */
354			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
355				ipstat.ips_toosmall++;
356				goto next;
357			}
358			ip = mtod(m, struct ip *);
359		}
360		/*
361		 * Look for queue of fragments
362		 * of this datagram.
363		 */
364		for (fp = ipq.next; fp != &ipq; fp = fp->next)
365			if (ip->ip_id == fp->ipq_id &&
366			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
367			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
368			    ip->ip_p == fp->ipq_p)
369				goto found;
370		fp = 0;
371found:
372
373		/*
374		 * Adjust ip_len to not reflect header,
375		 * set ip_mff if more fragments are expected,
376		 * convert offset of this to bytes.
377		 */
378		ip->ip_len -= hlen;
379		((struct ipasfrag *)ip)->ipf_mff = 0;
380		if (ip->ip_off & IP_MF)
381			((struct ipasfrag *)ip)->ipf_mff = 1;
382		ip->ip_off <<= 3;
383
384		/*
385		 * If datagram marked as having more fragments
386		 * or if this is not the first fragment,
387		 * attempt reassembly; if it succeeds, proceed.
388		 */
389		if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
390			ipstat.ips_fragments++;
391			ip = ip_reass((struct ipasfrag *)ip, fp);
392			if (ip == 0)
393				goto next;
394			else
395				ipstat.ips_reassembled++;
396			m = dtom(ip);
397		} else
398			if (fp)
399				ip_freef(fp);
400	} else
401		ip->ip_len -= hlen;
402
403	/*
404	 * Switch out to protocol's input routine.
405	 */
406	ipstat.ips_delivered++;
407	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
408	goto next;
409bad:
410	m_freem(m);
411	goto next;
412}
413
414/*
415 * Take incoming datagram fragment and try to
416 * reassemble it into whole datagram.  If a chain for
417 * reassembly of this datagram already exists, then it
418 * is given as fp; otherwise have to make a chain.
419 */
420struct ip *
421ip_reass(ip, fp)
422	register struct ipasfrag *ip;
423	register struct ipq *fp;
424{
425	register struct mbuf *m = dtom(ip);
426	register struct ipasfrag *q;
427	struct mbuf *t;
428	int hlen = ip->ip_hl << 2;
429	int i, next;
430
431	/*
432	 * Presence of header sizes in mbufs
433	 * would confuse code below.
434	 */
435	m->m_data += hlen;
436	m->m_len -= hlen;
437
438	/*
439	 * If first fragment to arrive, create a reassembly queue.
440	 */
441	if (fp == 0) {
442		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
443			goto dropfrag;
444		fp = mtod(t, struct ipq *);
445		insque(fp, &ipq);
446		fp->ipq_ttl = IPFRAGTTL;
447		fp->ipq_p = ip->ip_p;
448		fp->ipq_id = ip->ip_id;
449		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
450		fp->ipq_src = ((struct ip *)ip)->ip_src;
451		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
452		q = (struct ipasfrag *)fp;
453		goto insert;
454	}
455
456	/*
457	 * Find a segment which begins after this one does.
458	 */
459	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
460		if (q->ip_off > ip->ip_off)
461			break;
462
463	/*
464	 * If there is a preceding segment, it may provide some of
465	 * our data already.  If so, drop the data from the incoming
466	 * segment.  If it provides all of our data, drop us.
467	 */
468	if (q->ipf_prev != (struct ipasfrag *)fp) {
469		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
470		if (i > 0) {
471			if (i >= ip->ip_len)
472				goto dropfrag;
473			m_adj(dtom(ip), i);
474			ip->ip_off += i;
475			ip->ip_len -= i;
476		}
477	}
478
479	/*
480	 * While we overlap succeeding segments trim them or,
481	 * if they are completely covered, dequeue them.
482	 */
483	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
484		i = (ip->ip_off + ip->ip_len) - q->ip_off;
485		if (i < q->ip_len) {
486			q->ip_len -= i;
487			q->ip_off += i;
488			m_adj(dtom(q), i);
489			break;
490		}
491		q = q->ipf_next;
492		m_freem(dtom(q->ipf_prev));
493		ip_deq(q->ipf_prev);
494	}
495
496insert:
497	/*
498	 * Stick new segment in its place;
499	 * check for complete reassembly.
500	 */
501	ip_enq(ip, q->ipf_prev);
502	next = 0;
503	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
504		if (q->ip_off != next)
505			return (0);
506		next += q->ip_len;
507	}
508	if (q->ipf_prev->ipf_mff)
509		return (0);
510
511	/*
512	 * Reassembly is complete; concatenate fragments.
513	 */
514	q = fp->ipq_next;
515	m = dtom(q);
516	t = m->m_next;
517	m->m_next = 0;
518	m_cat(m, t);
519	q = q->ipf_next;
520	while (q != (struct ipasfrag *)fp) {
521		t = dtom(q);
522		q = q->ipf_next;
523		m_cat(m, t);
524	}
525
526	/*
527	 * Create header for new ip packet by
528	 * modifying header of first packet;
529	 * dequeue and discard fragment reassembly header.
530	 * Make header visible.
531	 */
532	ip = fp->ipq_next;
533	ip->ip_len = next;
534	((struct ip *)ip)->ip_src = fp->ipq_src;
535	((struct ip *)ip)->ip_dst = fp->ipq_dst;
536	remque(fp);
537	(void) m_free(dtom(fp));
538	m = dtom(ip);
539	m->m_len += (ip->ip_hl << 2);
540	m->m_data -= (ip->ip_hl << 2);
541	/* some debugging cruft by sklower, below, will go away soon */
542	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
543		register int plen = 0;
544		for (t = m; m; m = m->m_next)
545			plen += m->m_len;
546		t->m_pkthdr.len = plen;
547	}
548	return ((struct ip *)ip);
549
550dropfrag:
551	ipstat.ips_fragdropped++;
552	m_freem(m);
553	return (0);
554}
555
556/*
557 * Free a fragment reassembly header and all
558 * associated datagrams.
559 */
560void
561ip_freef(fp)
562	struct ipq *fp;
563{
564	register struct ipasfrag *q, *p;
565
566	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
567		p = q->ipf_next;
568		ip_deq(q);
569		m_freem(dtom(q));
570	}
571	remque(fp);
572	(void) m_free(dtom(fp));
573}
574
575/*
576 * Put an ip fragment on a reassembly chain.
577 * Like insque, but pointers in middle of structure.
578 */
579void
580ip_enq(p, prev)
581	register struct ipasfrag *p, *prev;
582{
583
584	p->ipf_prev = prev;
585	p->ipf_next = prev->ipf_next;
586	prev->ipf_next->ipf_prev = p;
587	prev->ipf_next = p;
588}
589
590/*
591 * To ip_enq as remque is to insque.
592 */
593void
594ip_deq(p)
595	register struct ipasfrag *p;
596{
597
598	p->ipf_prev->ipf_next = p->ipf_next;
599	p->ipf_next->ipf_prev = p->ipf_prev;
600}
601
602/*
603 * IP timer processing;
604 * if a timer expires on a reassembly
605 * queue, discard it.
606 */
607void
608ip_slowtimo()
609{
610	register struct ipq *fp;
611	int s = splnet();
612
613	fp = ipq.next;
614	if (fp == 0) {
615		splx(s);
616		return;
617	}
618	while (fp != &ipq) {
619		--fp->ipq_ttl;
620		fp = fp->next;
621		if (fp->prev->ipq_ttl == 0) {
622			ipstat.ips_fragtimeout++;
623			ip_freef(fp->prev);
624		}
625	}
626	splx(s);
627}
628
629/*
630 * Drain off all datagram fragments.
631 */
632void
633ip_drain()
634{
635
636	while (ipq.next != &ipq) {
637		ipstat.ips_fragdropped++;
638		ip_freef(ipq.next);
639	}
640}
641
642extern struct in_ifaddr *ifptoia();
643struct in_ifaddr *ip_rtaddr();
644
645/*
646 * Do option processing on a datagram,
647 * possibly discarding it if bad options are encountered,
648 * or forwarding it if source-routed.
649 * Returns 1 if packet has been forwarded/freed,
650 * 0 if the packet should be processed further.
651 */
652int
653ip_dooptions(m)
654	struct mbuf *m;
655{
656	register struct ip *ip = mtod(m, struct ip *);
657	register u_char *cp;
658	register struct ip_timestamp *ipt;
659	register struct in_ifaddr *ia;
660	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
661	struct in_addr *sin;
662	n_time ntime;
663
664	cp = (u_char *)(ip + 1);
665	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
666	for (; cnt > 0; cnt -= optlen, cp += optlen) {
667		opt = cp[IPOPT_OPTVAL];
668		if (opt == IPOPT_EOL)
669			break;
670		if (opt == IPOPT_NOP)
671			optlen = 1;
672		else {
673			optlen = cp[IPOPT_OLEN];
674			if (optlen <= 0 || optlen > cnt) {
675				code = &cp[IPOPT_OLEN] - (u_char *)ip;
676				goto bad;
677			}
678		}
679		switch (opt) {
680
681		default:
682			break;
683
684		/*
685		 * Source routing with record.
686		 * Find interface with current destination address.
687		 * If none on this machine then drop if strictly routed,
688		 * or do nothing if loosely routed.
689		 * Record interface address and bring up next address
690		 * component.  If strictly routed make sure next
691		 * address is on directly accessible net.
692		 */
693		case IPOPT_LSRR:
694		case IPOPT_SSRR:
695			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
696				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
697				goto bad;
698			}
699			ipaddr.sin_addr = ip->ip_dst;
700			ia = (struct in_ifaddr *)
701				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
702			if (ia == 0) {
703				if (opt == IPOPT_SSRR) {
704					type = ICMP_UNREACH;
705					code = ICMP_UNREACH_SRCFAIL;
706					goto bad;
707				}
708				/*
709				 * Loose routing, and not at next destination
710				 * yet; nothing to do except forward.
711				 */
712				break;
713			}
714			off--;			/* 0 origin */
715			if (off > optlen - sizeof(struct in_addr)) {
716				/*
717				 * End of source route.  Should be for us.
718				 */
719				save_rte(cp, ip->ip_src);
720				break;
721			}
722			/*
723			 * locate outgoing interface
724			 */
725			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
726			    sizeof(ipaddr.sin_addr));
727			if (opt == IPOPT_SSRR) {
728#define	INA	struct in_ifaddr *
729#define	SA	struct sockaddr *
730			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
731				ia = in_iaonnetof(in_netof(ipaddr.sin_addr));
732			} else
733				ia = ip_rtaddr(ipaddr.sin_addr);
734			if (ia == 0) {
735				type = ICMP_UNREACH;
736				code = ICMP_UNREACH_SRCFAIL;
737				goto bad;
738			}
739			ip->ip_dst = ipaddr.sin_addr;
740			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
741			    (caddr_t)(cp + off), sizeof(struct in_addr));
742			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
743			forward = 1;
744			break;
745
746		case IPOPT_RR:
747			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
748				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
749				goto bad;
750			}
751			/*
752			 * If no space remains, ignore.
753			 */
754			off--;			/* 0 origin */
755			if (off > optlen - sizeof(struct in_addr))
756				break;
757			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
758			    sizeof(ipaddr.sin_addr));
759			/*
760			 * locate outgoing interface; if we're the destination,
761			 * use the incoming interface (should be same).
762			 */
763			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
764			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
765				type = ICMP_UNREACH;
766				code = ICMP_UNREACH_HOST;
767				goto bad;
768			}
769			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
770			    (caddr_t)(cp + off), sizeof(struct in_addr));
771			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
772			break;
773
774		case IPOPT_TS:
775			code = cp - (u_char *)ip;
776			ipt = (struct ip_timestamp *)cp;
777			if (ipt->ipt_len < 5)
778				goto bad;
779			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
780				if (++ipt->ipt_oflw == 0)
781					goto bad;
782				break;
783			}
784			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
785			switch (ipt->ipt_flg) {
786
787			case IPOPT_TS_TSONLY:
788				break;
789
790			case IPOPT_TS_TSANDADDR:
791				if (ipt->ipt_ptr + sizeof(n_time) +
792				    sizeof(struct in_addr) > ipt->ipt_len)
793					goto bad;
794				ia = ifptoia(m->m_pkthdr.rcvif);
795				bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
796				    (caddr_t)sin, sizeof(struct in_addr));
797				ipt->ipt_ptr += sizeof(struct in_addr);
798				break;
799
800			case IPOPT_TS_PRESPEC:
801				if (ipt->ipt_ptr + sizeof(n_time) +
802				    sizeof(struct in_addr) > ipt->ipt_len)
803					goto bad;
804				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
805				    sizeof(struct in_addr));
806				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
807					continue;
808				ipt->ipt_ptr += sizeof(struct in_addr);
809				break;
810
811			default:
812				goto bad;
813			}
814			ntime = iptime();
815			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
816			    sizeof(n_time));
817			ipt->ipt_ptr += sizeof(n_time);
818		}
819	}
820	if (forward) {
821		ip_forward(m, 1);
822		return (1);
823	} else
824		return (0);
825bad:
826    {
827	register struct in_addr foo = {};
828	icmp_error(m, type, code, foo);
829    }
830	return (1);
831}
832
833/*
834 * Given address of next destination (final or next hop),
835 * return internet address info of interface to be used to get there.
836 */
837struct in_ifaddr *
838ip_rtaddr(dst)
839	 struct in_addr dst;
840{
841	register struct sockaddr_in *sin;
842
843	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
844
845	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
846		if (ipforward_rt.ro_rt) {
847			RTFREE(ipforward_rt.ro_rt);
848			ipforward_rt.ro_rt = 0;
849		}
850		sin->sin_family = AF_INET;
851		sin->sin_len = sizeof(*sin);
852		sin->sin_addr = dst;
853
854		rtalloc(&ipforward_rt);
855	}
856	if (ipforward_rt.ro_rt == 0)
857		return ((struct in_ifaddr *)0);
858	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
859}
860
861/*
862 * Save incoming source route for use in replies,
863 * to be picked up later by ip_srcroute if the receiver is interested.
864 */
865static void
866save_rte(option, dst)
867	u_char *option;
868	struct in_addr dst;
869{
870	unsigned olen;
871
872	olen = option[IPOPT_OLEN];
873#ifdef DIAGNOSTIC
874	if (ipprintfs)
875		printf("save_rte: olen %d\n", olen);
876#endif
877	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
878		return;
879	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
880	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
881	ip_srcrt.dst = dst;
882}
883
884/*
885 * Retrieve incoming source route for use in replies,
886 * in the same form used by setsockopt.
887 * The first hop is placed before the options, will be removed later.
888 */
889struct mbuf *
890ip_srcroute()
891{
892	register struct in_addr *p, *q;
893	register struct mbuf *m;
894
895	if (ip_nhops == 0)
896		return ((struct mbuf *)0);
897	m = m_get(M_DONTWAIT, MT_SOOPTS);
898	if (m == 0)
899		return ((struct mbuf *)0);
900
901#define	OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
902
903	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
904	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
905	    OPTSIZ;
906#ifdef DIAGNOSTIC
907	if (ipprintfs)
908		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
909#endif
910
911	/*
912	 * First save first hop for return route
913	 */
914	p = &ip_srcrt.route[ip_nhops - 1];
915	*(mtod(m, struct in_addr *)) = *p--;
916#ifdef DIAGNOSTIC
917	if (ipprintfs)
918		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
919#endif
920
921	/*
922	 * Copy option fields and padding (nop) to mbuf.
923	 */
924	ip_srcrt.nop = IPOPT_NOP;
925	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
926	bcopy((caddr_t)&ip_srcrt.nop,
927	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
928	q = (struct in_addr *)(mtod(m, caddr_t) +
929	    sizeof(struct in_addr) + OPTSIZ);
930#undef OPTSIZ
931	/*
932	 * Record return path as an IP source route,
933	 * reversing the path (pointers are now aligned).
934	 */
935	while (p >= ip_srcrt.route) {
936#ifdef DIAGNOSTIC
937		if (ipprintfs)
938			printf(" %lx", ntohl(q->s_addr));
939#endif
940		*q++ = *p--;
941	}
942	/*
943	 * Last hop goes to final destination.
944	 */
945	*q = ip_srcrt.dst;
946#ifdef DIAGNOSTIC
947	if (ipprintfs)
948		printf(" %lx\n", ntohl(q->s_addr));
949#endif
950	return (m);
951}
952
953/*
954 * Strip out IP options, at higher
955 * level protocol in the kernel.
956 * Second argument is buffer to which options
957 * will be moved, and return value is their length.
958 * XXX should be deleted; last arg currently ignored.
959 */
960void
961ip_stripoptions(m, mopt)
962	register struct mbuf *m;
963	struct mbuf *mopt;
964{
965	register int i;
966	struct ip *ip = mtod(m, struct ip *);
967	register caddr_t opts;
968	int olen;
969
970	olen = (ip->ip_hl<<2) - sizeof (struct ip);
971	opts = (caddr_t)(ip + 1);
972	i = m->m_len - (sizeof (struct ip) + olen);
973	bcopy(opts  + olen, opts, (unsigned)i);
974	m->m_len -= olen;
975	if (m->m_flags & M_PKTHDR)
976		m->m_pkthdr.len -= olen;
977	ip->ip_hl = sizeof(struct ip) >> 2;
978}
979
980u_char inetctlerrmap[PRC_NCMDS] = {
981	0,		0,		0,		0,
982	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
983	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
984	EMSGSIZE,	EHOSTUNREACH,	0,		0,
985	0,		0,		0,		0,
986	ENOPROTOOPT
987};
988
989/*
990 * Forward a packet.  If some error occurs return the sender
991 * an icmp packet.  Note we can't always generate a meaningful
992 * icmp message because icmp doesn't have a large enough repertoire
993 * of codes and types.
994 *
995 * If not forwarding, just drop the packet.  This could be confusing
996 * if ipforwarding was zero but some routing protocol was advancing
997 * us as a gateway to somewhere.  However, we must let the routing
998 * protocol deal with that.
999 *
1000 * The srcrt parameter indicates whether the packet is being forwarded
1001 * via a source route.
1002 */
1003static void
1004ip_forward(m, srcrt)
1005	struct mbuf *m;
1006	int srcrt;
1007{
1008	register struct ip *ip = mtod(m, struct ip *);
1009	register struct sockaddr_in *sin;
1010	register struct rtentry *rt;
1011	int error, type = 0, code;
1012	struct mbuf *mcopy;
1013	struct in_addr dest;
1014
1015	dest.s_addr = 0;
1016#ifdef DIAGNOSTIC
1017	if (ipprintfs)
1018		printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1019			ip->ip_dst, ip->ip_ttl);
1020#endif
1021	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1022		ipstat.ips_cantforward++;
1023		m_freem(m);
1024		return;
1025	}
1026	HTONS(ip->ip_id);
1027	if (ip->ip_ttl <= IPTTLDEC) {
1028		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest);
1029		return;
1030	}
1031	ip->ip_ttl -= IPTTLDEC;
1032
1033	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1034	if ((rt = ipforward_rt.ro_rt) == 0 ||
1035	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1036		if (ipforward_rt.ro_rt) {
1037			RTFREE(ipforward_rt.ro_rt);
1038			ipforward_rt.ro_rt = 0;
1039		}
1040		sin->sin_family = AF_INET;
1041		sin->sin_len = sizeof(*sin);
1042		sin->sin_addr = ip->ip_dst;
1043
1044		rtalloc(&ipforward_rt);
1045		if (ipforward_rt.ro_rt == 0) {
1046			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest);
1047			return;
1048		}
1049		rt = ipforward_rt.ro_rt;
1050	}
1051
1052	/*
1053	 * Save at most 64 bytes of the packet in case
1054	 * we need to generate an ICMP message to the src.
1055	 */
1056	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1057
1058#ifdef GATEWAY
1059	ip_ifmatrix[rt->rt_ifp->if_index +
1060	     if_index * m->m_pkthdr.rcvif->if_index]++;
1061#endif
1062	/*
1063	 * If forwarding packet using same interface that it came in on,
1064	 * perhaps should send a redirect to sender to shortcut a hop.
1065	 * Only send redirect if source is sending directly to us,
1066	 * and if packet was not source routed (or has any options).
1067	 * Also, don't send redirect if forwarding using a default route
1068	 * or a route modified by a redirect.
1069	 */
1070#define	satosin(sa)	((struct sockaddr_in *)(sa))
1071	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1072	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1073	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1074	    ipsendredirects && !srcrt) {
1075		struct in_ifaddr *ia;
1076		u_long src = ntohl(ip->ip_src.s_addr);
1077		u_long dst = ntohl(ip->ip_dst.s_addr);
1078
1079		if ((ia = ifptoia(m->m_pkthdr.rcvif)) &&
1080		   (src & ia->ia_subnetmask) == ia->ia_subnet) {
1081		    if (rt->rt_flags & RTF_GATEWAY)
1082			dest = satosin(rt->rt_gateway)->sin_addr;
1083		    else
1084			dest = ip->ip_dst;
1085		    /*
1086		     * If the destination is reached by a route to host,
1087		     * is on a subnet of a local net, or is directly
1088		     * on the attached net (!), use host redirect.
1089		     * (We may be the correct first hop for other subnets.)
1090		     */
1091#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1092		    type = ICMP_REDIRECT;
1093		    if ((rt->rt_flags & RTF_HOST) ||
1094		        (rt->rt_flags & RTF_GATEWAY) == 0)
1095			    code = ICMP_REDIRECT_HOST;
1096		    else if (RTA(rt)->ia_subnetmask != RTA(rt)->ia_netmask &&
1097		        (dst & RTA(rt)->ia_netmask) ==  RTA(rt)->ia_net)
1098			    code = ICMP_REDIRECT_HOST;
1099		    else
1100			    code = ICMP_REDIRECT_NET;
1101#ifdef DIAGNOSTIC
1102		    if (ipprintfs)
1103		        printf("redirect (%d) to %x\n", code, dest.s_addr);
1104#endif
1105		}
1106	}
1107
1108	error = ip_output(m, NULL, &ipforward_rt, IP_FORWARDING
1109#ifdef DIRECTED_BROADCAST
1110	    | IP_ALLOWBROADCAST
1111#endif
1112	    , NULL);
1113	if (error)
1114		ipstat.ips_cantforward++;
1115	else {
1116		ipstat.ips_forward++;
1117		if (type)
1118			ipstat.ips_redirectsent++;
1119		else {
1120			if (mcopy)
1121				m_freem(mcopy);
1122			return;
1123		}
1124	}
1125	if (mcopy == NULL)
1126		return;
1127	switch (error) {
1128
1129	case 0:				/* forwarded, but need redirect */
1130		/* type, code set above */
1131		break;
1132
1133	case ENETUNREACH:		/* shouldn't happen, checked above */
1134	case EHOSTUNREACH:
1135	case ENETDOWN:
1136	case EHOSTDOWN:
1137	default:
1138		type = ICMP_UNREACH;
1139		code = ICMP_UNREACH_HOST;
1140		break;
1141
1142	case EMSGSIZE:
1143		type = ICMP_UNREACH;
1144		code = ICMP_UNREACH_NEEDFRAG;
1145		ipstat.ips_cantfrag++;
1146		break;
1147
1148	case ENOBUFS:
1149		type = ICMP_SOURCEQUENCH;
1150		code = 0;
1151		break;
1152	}
1153	icmp_error(mcopy, type, code, dest);
1154}
1155