ip_input.c revision 1.10
1/*
2 * Copyright (c) 1982, 1986, 1988 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)ip_input.c	7.19 (Berkeley) 5/25/91
34 *	$Id: ip_input.c,v 1.10 1994/01/29 11:58:01 brezak Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/domain.h>
42#include <sys/protosw.h>
43#include <sys/socket.h>
44#include <sys/errno.h>
45#include <sys/time.h>
46#include <sys/kernel.h>
47
48#include <net/if.h>
49#include <net/route.h>
50
51#include <netinet/in.h>
52#include <netinet/in_systm.h>
53#include <netinet/ip.h>
54#include <netinet/in_pcb.h>
55#include <netinet/in_var.h>
56#include <netinet/ip_var.h>
57#include <netinet/ip_icmp.h>
58#include <netinet/ip_mroute.h>
59
60#ifndef	IPFORWARDING
61#ifdef GATEWAY
62#define	IPFORWARDING	1	/* forward IP packets not for us */
63#else /* GATEWAY */
64#define	IPFORWARDING	0	/* don't forward IP packets not for us */
65#endif /* GATEWAY */
66#endif /* IPFORWARDING */
67#ifndef	IPSENDREDIRECTS
68#define	IPSENDREDIRECTS	1
69#endif
70int	ipforwarding = IPFORWARDING;
71int	ipsendredirects = IPSENDREDIRECTS;
72#ifdef DIAGNOSTIC
73int	ipprintfs = 0;
74#endif
75
76extern	struct domain inetdomain;
77extern	struct protosw inetsw[];
78u_char	ip_protox[IPPROTO_MAX];
79int	ipqmaxlen = IFQ_MAXLEN;
80struct	in_ifaddr *in_ifaddr;			/* first inet address */
81
82/*
83 * We need to save the IP options in case a protocol wants to respond
84 * to an incoming packet over the same route if the packet got here
85 * using IP source routing.  This allows connection establishment and
86 * maintenance when the remote end is on a network that is not known
87 * to us.
88 */
89int	ip_nhops = 0;
90static	struct ip_srcrt {
91	struct	in_addr dst;			/* final destination */
92	char	nop;				/* one NOP to align */
93	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
94	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
95} ip_srcrt;
96
97#ifdef GATEWAY
98extern	int if_index;
99u_long	*ip_ifmatrix;
100#endif
101
102static void	ip_forward __P((struct mbuf *, int));
103static void	save_rte __P((u_char *, struct in_addr));
104
105/*
106 * IP initialization: fill in IP protocol switch table.
107 * All protocols not implemented in kernel go to raw IP protocol handler.
108 */
109void
110ip_init()
111{
112	register struct protosw *pr;
113	register int i;
114
115	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
116	if (pr == 0)
117		panic("ip_init");
118	for (i = 0; i < IPPROTO_MAX; i++)
119		ip_protox[i] = pr - inetsw;
120	for (pr = inetdomain.dom_protosw;
121	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
122		if (pr->pr_domain->dom_family == PF_INET &&
123		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
124			ip_protox[pr->pr_protocol] = pr - inetsw;
125	ipq.next = ipq.prev = &ipq;
126	ip_id = time.tv_sec & 0xffff;
127	ipintrq.ifq_maxlen = ipqmaxlen;
128#ifdef GATEWAY
129	i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
130	if ((ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK)) == 0)
131		panic("no memory for ip_ifmatrix");
132#endif
133}
134
135struct	ip *ip_reass();
136struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
137struct	route ipforward_rt;
138
139/*
140 * Ip input routine.  Checksum and byte swap header.  If fragmented
141 * try to reassemble.  Process options.  Pass to next level.
142 */
143void
144ipintr()
145{
146	register struct ip *ip;
147	register struct mbuf *m;
148	register struct ipq *fp;
149	register struct in_ifaddr *ia;
150	int hlen, s;
151#ifdef PARANOID
152	static int busy = 0;
153
154	if (busy)
155		panic("ipintr: called recursively\n");
156	++busy;
157#endif
158next:
159	/*
160	 * Get next datagram off input queue and get IP header
161	 * in first mbuf.
162	 */
163	s = splimp();
164	IF_DEQUEUE(&ipintrq, m);
165	splx(s);
166	if (m == 0) {
167#ifdef PARANOID
168		--busy;
169#endif
170		return;
171	}
172#ifdef	DIAGNOSTIC
173	if ((m->m_flags & M_PKTHDR) == 0)
174		panic("ipintr no HDR");
175#endif
176	/*
177	 * If no IP addresses have been set yet but the interfaces
178	 * are receiving, can't do anything with incoming packets yet.
179	 */
180	if (in_ifaddr == NULL)
181		goto bad;
182	ipstat.ips_total++;
183	if (m->m_len < sizeof (struct ip) &&
184	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
185		ipstat.ips_toosmall++;
186		goto next;
187	}
188	ip = mtod(m, struct ip *);
189	hlen = ip->ip_hl << 2;
190	if (hlen < sizeof(struct ip)) {	/* minimum header length */
191		ipstat.ips_badhlen++;
192		goto bad;
193	}
194	if (hlen > m->m_len) {
195		if ((m = m_pullup(m, hlen)) == 0) {
196			ipstat.ips_badhlen++;
197			goto next;
198		}
199		ip = mtod(m, struct ip *);
200	}
201	if (ip->ip_sum = in_cksum(m, hlen)) {
202		ipstat.ips_badsum++;
203		goto bad;
204	}
205
206	/*
207	 * Convert fields to host representation.
208	 */
209	NTOHS(ip->ip_len);
210	if (ip->ip_len < hlen) {
211		ipstat.ips_badlen++;
212		goto bad;
213	}
214	NTOHS(ip->ip_id);
215	NTOHS(ip->ip_off);
216
217	/*
218	 * Check that the amount of data in the buffers
219	 * is as at least much as the IP header would have us expect.
220	 * Trim mbufs if longer than we expect.
221	 * Drop packet if shorter than we expect.
222	 */
223	if (m->m_pkthdr.len < ip->ip_len) {
224		ipstat.ips_tooshort++;
225		goto bad;
226	}
227	if (m->m_pkthdr.len > ip->ip_len) {
228		if (m->m_len == m->m_pkthdr.len) {
229			m->m_len = ip->ip_len;
230			m->m_pkthdr.len = ip->ip_len;
231		} else
232			m_adj(m, ip->ip_len - m->m_pkthdr.len);
233	}
234
235	/*
236	 * Process options and, if not destined for us,
237	 * ship it on.  ip_dooptions returns 1 when an
238	 * error was detected (causing an icmp message
239	 * to be sent and the original packet to be freed).
240	 */
241	ip_nhops = 0;		/* for source routed packets */
242	if (hlen > sizeof (struct ip) && ip_dooptions(m))
243		goto next;
244
245	/*
246	 * Check our list of addresses, to see if the packet is for us.
247	 */
248	for (ia = in_ifaddr; ia; ia = ia->ia_next) {
249#define	satosin(sa)	((struct sockaddr_in *)(sa))
250
251		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
252			goto ours;
253		if (
254#ifdef	DIRECTED_BROADCAST
255		    ia->ia_ifp == m->m_pkthdr.rcvif &&
256#endif
257		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
258			u_long t;
259
260			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
261			    ip->ip_dst.s_addr)
262				goto ours;
263			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
264				goto ours;
265			/*
266			 * Look for all-0's host part (old broadcast addr),
267			 * either for subnet or net.
268			 */
269			t = ntohl(ip->ip_dst.s_addr);
270			if (t == ia->ia_subnet)
271				goto ours;
272			if (t == ia->ia_net)
273				goto ours;
274		}
275	}
276#ifdef MULTICAST
277	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
278		struct in_multi *inm;
279#ifdef MROUTING
280		extern struct socket *ip_mrouter;
281
282		if (m->m_flags & M_EXT) {
283			if ((m = m_pullup(m, hlen)) == 0) {
284				ipstat.ips_toosmall++;
285				goto next;
286			}
287			ip = mtod(m, struct ip *);
288		}
289
290		if (ip_mrouter) {
291			/*
292			 * If we are acting as a multicast router, all
293			 * incoming multicast packets are passed to the
294			 * kernel-level multicast forwarding function.
295			 * The packet is returned (relatively) intact; if
296			 * ip_mforward() returns a non-zero value, the packet
297			 * must be discarded, else it may be accepted below.
298			 *
299			 * (The IP ident field is put in the same byte order
300			 * as expected when ip_mforward() is called from
301			 * ip_output().)
302			 */
303			ip->ip_id = htons(ip->ip_id);
304			if (ip_mforward(ip, m->m_pkthdr.rcvif, m) != 0) {
305				m_freem(m);
306				goto next;
307			}
308			ip->ip_id = ntohs(ip->ip_id);
309
310			/*
311			 * The process-level routing demon needs to receive
312			 * all multicast IGMP packets, whether or not this
313			 * host belongs to their destination groups.
314			 */
315			if (ip->ip_p == IPPROTO_IGMP)
316				goto ours;
317		}
318#endif
319		/*
320		 * See if we belong to the destination multicast group on the
321		 * arrival interface.
322		 */
323		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
324		if (inm == NULL) {
325			m_freem(m);
326			goto next;
327		}
328		goto ours;
329	}
330#endif
331	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
332		goto ours;
333	if (ip->ip_dst.s_addr == INADDR_ANY)
334		goto ours;
335
336	/*
337	 * Not for us; forward if possible and desirable.
338	 */
339	if (ipforwarding == 0) {
340		ipstat.ips_cantforward++;
341		m_freem(m);
342	} else
343		ip_forward(m, 0);
344	goto next;
345
346ours:
347	/*
348	 * If offset or IP_MF are set, must reassemble.
349	 * Otherwise, nothing need be done.
350	 * (We could look in the reassembly queue to see
351	 * if the packet was previously fragmented,
352	 * but it's not worth the time; just let them time out.)
353	 */
354	if (ip->ip_off &~ IP_DF) {
355		if (m->m_flags & M_EXT) {		/* XXX */
356			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
357				ipstat.ips_toosmall++;
358				goto next;
359			}
360			ip = mtod(m, struct ip *);
361		}
362		/*
363		 * Look for queue of fragments
364		 * of this datagram.
365		 */
366		for (fp = ipq.next; fp != &ipq; fp = fp->next)
367			if (ip->ip_id == fp->ipq_id &&
368			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
369			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
370			    ip->ip_p == fp->ipq_p)
371				goto found;
372		fp = 0;
373found:
374
375		/*
376		 * Adjust ip_len to not reflect header,
377		 * set ip_mff if more fragments are expected,
378		 * convert offset of this to bytes.
379		 */
380		ip->ip_len -= hlen;
381		((struct ipasfrag *)ip)->ipf_mff = 0;
382		if (ip->ip_off & IP_MF)
383			((struct ipasfrag *)ip)->ipf_mff = 1;
384		ip->ip_off <<= 3;
385
386		/*
387		 * If datagram marked as having more fragments
388		 * or if this is not the first fragment,
389		 * attempt reassembly; if it succeeds, proceed.
390		 */
391		if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
392			ipstat.ips_fragments++;
393			ip = ip_reass((struct ipasfrag *)ip, fp);
394			if (ip == 0)
395				goto next;
396			else
397				ipstat.ips_reassembled++;
398			m = dtom(ip);
399		} else
400			if (fp)
401				ip_freef(fp);
402	} else
403		ip->ip_len -= hlen;
404
405	/*
406	 * Switch out to protocol's input routine.
407	 */
408	ipstat.ips_delivered++;
409	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
410	goto next;
411bad:
412	m_freem(m);
413	goto next;
414}
415
416/*
417 * Take incoming datagram fragment and try to
418 * reassemble it into whole datagram.  If a chain for
419 * reassembly of this datagram already exists, then it
420 * is given as fp; otherwise have to make a chain.
421 */
422struct ip *
423ip_reass(ip, fp)
424	register struct ipasfrag *ip;
425	register struct ipq *fp;
426{
427	register struct mbuf *m = dtom(ip);
428	register struct ipasfrag *q;
429	struct mbuf *t;
430	int hlen = ip->ip_hl << 2;
431	int i, next;
432
433	/*
434	 * Presence of header sizes in mbufs
435	 * would confuse code below.
436	 */
437	m->m_data += hlen;
438	m->m_len -= hlen;
439
440	/*
441	 * If first fragment to arrive, create a reassembly queue.
442	 */
443	if (fp == 0) {
444		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
445			goto dropfrag;
446		fp = mtod(t, struct ipq *);
447		insque(fp, &ipq);
448		fp->ipq_ttl = IPFRAGTTL;
449		fp->ipq_p = ip->ip_p;
450		fp->ipq_id = ip->ip_id;
451		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
452		fp->ipq_src = ((struct ip *)ip)->ip_src;
453		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
454		q = (struct ipasfrag *)fp;
455		goto insert;
456	}
457
458	/*
459	 * Find a segment which begins after this one does.
460	 */
461	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
462		if (q->ip_off > ip->ip_off)
463			break;
464
465	/*
466	 * If there is a preceding segment, it may provide some of
467	 * our data already.  If so, drop the data from the incoming
468	 * segment.  If it provides all of our data, drop us.
469	 */
470	if (q->ipf_prev != (struct ipasfrag *)fp) {
471		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
472		if (i > 0) {
473			if (i >= ip->ip_len)
474				goto dropfrag;
475			m_adj(dtom(ip), i);
476			ip->ip_off += i;
477			ip->ip_len -= i;
478		}
479	}
480
481	/*
482	 * While we overlap succeeding segments trim them or,
483	 * if they are completely covered, dequeue them.
484	 */
485	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
486		i = (ip->ip_off + ip->ip_len) - q->ip_off;
487		if (i < q->ip_len) {
488			q->ip_len -= i;
489			q->ip_off += i;
490			m_adj(dtom(q), i);
491			break;
492		}
493		q = q->ipf_next;
494		m_freem(dtom(q->ipf_prev));
495		ip_deq(q->ipf_prev);
496	}
497
498insert:
499	/*
500	 * Stick new segment in its place;
501	 * check for complete reassembly.
502	 */
503	ip_enq(ip, q->ipf_prev);
504	next = 0;
505	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
506		if (q->ip_off != next)
507			return (0);
508		next += q->ip_len;
509	}
510	if (q->ipf_prev->ipf_mff)
511		return (0);
512
513	/*
514	 * Reassembly is complete; concatenate fragments.
515	 */
516	q = fp->ipq_next;
517	m = dtom(q);
518	t = m->m_next;
519	m->m_next = 0;
520	m_cat(m, t);
521	q = q->ipf_next;
522	while (q != (struct ipasfrag *)fp) {
523		t = dtom(q);
524		q = q->ipf_next;
525		m_cat(m, t);
526	}
527
528	/*
529	 * Create header for new ip packet by
530	 * modifying header of first packet;
531	 * dequeue and discard fragment reassembly header.
532	 * Make header visible.
533	 */
534	ip = fp->ipq_next;
535	ip->ip_len = next;
536	((struct ip *)ip)->ip_src = fp->ipq_src;
537	((struct ip *)ip)->ip_dst = fp->ipq_dst;
538	remque(fp);
539	(void) m_free(dtom(fp));
540	m = dtom(ip);
541	m->m_len += (ip->ip_hl << 2);
542	m->m_data -= (ip->ip_hl << 2);
543	/* some debugging cruft by sklower, below, will go away soon */
544	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
545		register int plen = 0;
546		for (t = m; m; m = m->m_next)
547			plen += m->m_len;
548		t->m_pkthdr.len = plen;
549	}
550	return ((struct ip *)ip);
551
552dropfrag:
553	ipstat.ips_fragdropped++;
554	m_freem(m);
555	return (0);
556}
557
558/*
559 * Free a fragment reassembly header and all
560 * associated datagrams.
561 */
562void
563ip_freef(fp)
564	struct ipq *fp;
565{
566	register struct ipasfrag *q, *p;
567
568	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
569		p = q->ipf_next;
570		ip_deq(q);
571		m_freem(dtom(q));
572	}
573	remque(fp);
574	(void) m_free(dtom(fp));
575}
576
577/*
578 * Put an ip fragment on a reassembly chain.
579 * Like insque, but pointers in middle of structure.
580 */
581void
582ip_enq(p, prev)
583	register struct ipasfrag *p, *prev;
584{
585
586	p->ipf_prev = prev;
587	p->ipf_next = prev->ipf_next;
588	prev->ipf_next->ipf_prev = p;
589	prev->ipf_next = p;
590}
591
592/*
593 * To ip_enq as remque is to insque.
594 */
595void
596ip_deq(p)
597	register struct ipasfrag *p;
598{
599
600	p->ipf_prev->ipf_next = p->ipf_next;
601	p->ipf_next->ipf_prev = p->ipf_prev;
602}
603
604/*
605 * IP timer processing;
606 * if a timer expires on a reassembly
607 * queue, discard it.
608 */
609void
610ip_slowtimo()
611{
612	register struct ipq *fp;
613	int s = splnet();
614
615	fp = ipq.next;
616	if (fp == 0) {
617		splx(s);
618		return;
619	}
620	while (fp != &ipq) {
621		--fp->ipq_ttl;
622		fp = fp->next;
623		if (fp->prev->ipq_ttl == 0) {
624			ipstat.ips_fragtimeout++;
625			ip_freef(fp->prev);
626		}
627	}
628	splx(s);
629}
630
631/*
632 * Drain off all datagram fragments.
633 */
634void
635ip_drain()
636{
637
638	while (ipq.next != &ipq) {
639		ipstat.ips_fragdropped++;
640		ip_freef(ipq.next);
641	}
642}
643
644extern struct in_ifaddr *ifptoia();
645struct in_ifaddr *ip_rtaddr();
646
647/*
648 * Do option processing on a datagram,
649 * possibly discarding it if bad options are encountered,
650 * or forwarding it if source-routed.
651 * Returns 1 if packet has been forwarded/freed,
652 * 0 if the packet should be processed further.
653 */
654int
655ip_dooptions(m)
656	struct mbuf *m;
657{
658	register struct ip *ip = mtod(m, struct ip *);
659	register u_char *cp;
660	register struct ip_timestamp *ipt;
661	register struct in_ifaddr *ia;
662	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
663	struct in_addr *sin;
664	n_time ntime;
665
666	cp = (u_char *)(ip + 1);
667	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
668	for (; cnt > 0; cnt -= optlen, cp += optlen) {
669		opt = cp[IPOPT_OPTVAL];
670		if (opt == IPOPT_EOL)
671			break;
672		if (opt == IPOPT_NOP)
673			optlen = 1;
674		else {
675			optlen = cp[IPOPT_OLEN];
676			if (optlen <= 0 || optlen > cnt) {
677				code = &cp[IPOPT_OLEN] - (u_char *)ip;
678				goto bad;
679			}
680		}
681		switch (opt) {
682
683		default:
684			break;
685
686		/*
687		 * Source routing with record.
688		 * Find interface with current destination address.
689		 * If none on this machine then drop if strictly routed,
690		 * or do nothing if loosely routed.
691		 * Record interface address and bring up next address
692		 * component.  If strictly routed make sure next
693		 * address is on directly accessible net.
694		 */
695		case IPOPT_LSRR:
696		case IPOPT_SSRR:
697			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
698				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
699				goto bad;
700			}
701			ipaddr.sin_addr = ip->ip_dst;
702			ia = (struct in_ifaddr *)
703				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
704			if (ia == 0) {
705				if (opt == IPOPT_SSRR) {
706					type = ICMP_UNREACH;
707					code = ICMP_UNREACH_SRCFAIL;
708					goto bad;
709				}
710				/*
711				 * Loose routing, and not at next destination
712				 * yet; nothing to do except forward.
713				 */
714				break;
715			}
716			off--;			/* 0 origin */
717			if (off > optlen - sizeof(struct in_addr)) {
718				/*
719				 * End of source route.  Should be for us.
720				 */
721				save_rte(cp, ip->ip_src);
722				break;
723			}
724			/*
725			 * locate outgoing interface
726			 */
727			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
728			    sizeof(ipaddr.sin_addr));
729			if (opt == IPOPT_SSRR) {
730#define	INA	struct in_ifaddr *
731#define	SA	struct sockaddr *
732			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
733				ia = in_iaonnetof(in_netof(ipaddr.sin_addr));
734			} else
735				ia = ip_rtaddr(ipaddr.sin_addr);
736			if (ia == 0) {
737				type = ICMP_UNREACH;
738				code = ICMP_UNREACH_SRCFAIL;
739				goto bad;
740			}
741			ip->ip_dst = ipaddr.sin_addr;
742			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
743			    (caddr_t)(cp + off), sizeof(struct in_addr));
744			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
745			forward = 1;
746			break;
747
748		case IPOPT_RR:
749			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
750				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
751				goto bad;
752			}
753			/*
754			 * If no space remains, ignore.
755			 */
756			off--;			/* 0 origin */
757			if (off > optlen - sizeof(struct in_addr))
758				break;
759			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
760			    sizeof(ipaddr.sin_addr));
761			/*
762			 * locate outgoing interface; if we're the destination,
763			 * use the incoming interface (should be same).
764			 */
765			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
766			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
767				type = ICMP_UNREACH;
768				code = ICMP_UNREACH_HOST;
769				goto bad;
770			}
771			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
772			    (caddr_t)(cp + off), sizeof(struct in_addr));
773			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
774			break;
775
776		case IPOPT_TS:
777			code = cp - (u_char *)ip;
778			ipt = (struct ip_timestamp *)cp;
779			if (ipt->ipt_len < 5)
780				goto bad;
781			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
782				if (++ipt->ipt_oflw == 0)
783					goto bad;
784				break;
785			}
786			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
787			switch (ipt->ipt_flg) {
788
789			case IPOPT_TS_TSONLY:
790				break;
791
792			case IPOPT_TS_TSANDADDR:
793				if (ipt->ipt_ptr + sizeof(n_time) +
794				    sizeof(struct in_addr) > ipt->ipt_len)
795					goto bad;
796				ia = ifptoia(m->m_pkthdr.rcvif);
797				bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
798				    (caddr_t)sin, sizeof(struct in_addr));
799				ipt->ipt_ptr += sizeof(struct in_addr);
800				break;
801
802			case IPOPT_TS_PRESPEC:
803				if (ipt->ipt_ptr + sizeof(n_time) +
804				    sizeof(struct in_addr) > ipt->ipt_len)
805					goto bad;
806				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
807				    sizeof(struct in_addr));
808				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
809					continue;
810				ipt->ipt_ptr += sizeof(struct in_addr);
811				break;
812
813			default:
814				goto bad;
815			}
816			ntime = iptime();
817			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
818			    sizeof(n_time));
819			ipt->ipt_ptr += sizeof(n_time);
820		}
821	}
822	if (forward) {
823		ip_forward(m, 1);
824		return (1);
825	} else
826		return (0);
827bad:
828    {
829	register struct in_addr foo = {};
830	icmp_error(m, type, code, foo);
831    }
832	return (1);
833}
834
835/*
836 * Given address of next destination (final or next hop),
837 * return internet address info of interface to be used to get there.
838 */
839struct in_ifaddr *
840ip_rtaddr(dst)
841	 struct in_addr dst;
842{
843	register struct sockaddr_in *sin;
844
845	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
846
847	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
848		if (ipforward_rt.ro_rt) {
849			RTFREE(ipforward_rt.ro_rt);
850			ipforward_rt.ro_rt = 0;
851		}
852		sin->sin_family = AF_INET;
853		sin->sin_len = sizeof(*sin);
854		sin->sin_addr = dst;
855
856		rtalloc(&ipforward_rt);
857	}
858	if (ipforward_rt.ro_rt == 0)
859		return ((struct in_ifaddr *)0);
860	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
861}
862
863/*
864 * Save incoming source route for use in replies,
865 * to be picked up later by ip_srcroute if the receiver is interested.
866 */
867static void
868save_rte(option, dst)
869	u_char *option;
870	struct in_addr dst;
871{
872	unsigned olen;
873
874	olen = option[IPOPT_OLEN];
875#ifdef DIAGNOSTIC
876	if (ipprintfs)
877		printf("save_rte: olen %d\n", olen);
878#endif
879	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
880		return;
881	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
882	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
883	ip_srcrt.dst = dst;
884}
885
886/*
887 * Retrieve incoming source route for use in replies,
888 * in the same form used by setsockopt.
889 * The first hop is placed before the options, will be removed later.
890 */
891struct mbuf *
892ip_srcroute()
893{
894	register struct in_addr *p, *q;
895	register struct mbuf *m;
896
897	if (ip_nhops == 0)
898		return ((struct mbuf *)0);
899	m = m_get(M_DONTWAIT, MT_SOOPTS);
900	if (m == 0)
901		return ((struct mbuf *)0);
902
903#define	OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
904
905	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
906	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
907	    OPTSIZ;
908#ifdef DIAGNOSTIC
909	if (ipprintfs)
910		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
911#endif
912
913	/*
914	 * First save first hop for return route
915	 */
916	p = &ip_srcrt.route[ip_nhops - 1];
917	*(mtod(m, struct in_addr *)) = *p--;
918#ifdef DIAGNOSTIC
919	if (ipprintfs)
920		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
921#endif
922
923	/*
924	 * Copy option fields and padding (nop) to mbuf.
925	 */
926	ip_srcrt.nop = IPOPT_NOP;
927	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
928	bcopy((caddr_t)&ip_srcrt.nop,
929	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
930	q = (struct in_addr *)(mtod(m, caddr_t) +
931	    sizeof(struct in_addr) + OPTSIZ);
932#undef OPTSIZ
933	/*
934	 * Record return path as an IP source route,
935	 * reversing the path (pointers are now aligned).
936	 */
937	while (p >= ip_srcrt.route) {
938#ifdef DIAGNOSTIC
939		if (ipprintfs)
940			printf(" %lx", ntohl(q->s_addr));
941#endif
942		*q++ = *p--;
943	}
944	/*
945	 * Last hop goes to final destination.
946	 */
947	*q = ip_srcrt.dst;
948#ifdef DIAGNOSTIC
949	if (ipprintfs)
950		printf(" %lx\n", ntohl(q->s_addr));
951#endif
952	return (m);
953}
954
955/*
956 * Strip out IP options, at higher
957 * level protocol in the kernel.
958 * Second argument is buffer to which options
959 * will be moved, and return value is their length.
960 * XXX should be deleted; last arg currently ignored.
961 */
962void
963ip_stripoptions(m, mopt)
964	register struct mbuf *m;
965	struct mbuf *mopt;
966{
967	register int i;
968	struct ip *ip = mtod(m, struct ip *);
969	register caddr_t opts;
970	int olen;
971
972	olen = (ip->ip_hl<<2) - sizeof (struct ip);
973	opts = (caddr_t)(ip + 1);
974	i = m->m_len - (sizeof (struct ip) + olen);
975	bcopy(opts  + olen, opts, (unsigned)i);
976	m->m_len -= olen;
977	if (m->m_flags & M_PKTHDR)
978		m->m_pkthdr.len -= olen;
979	ip->ip_hl = sizeof(struct ip) >> 2;
980}
981
982u_char inetctlerrmap[PRC_NCMDS] = {
983	0,		0,		0,		0,
984	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
985	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
986	EMSGSIZE,	EHOSTUNREACH,	0,		0,
987	0,		0,		0,		0,
988	ENOPROTOOPT
989};
990
991/*
992 * Forward a packet.  If some error occurs return the sender
993 * an icmp packet.  Note we can't always generate a meaningful
994 * icmp message because icmp doesn't have a large enough repertoire
995 * of codes and types.
996 *
997 * If not forwarding, just drop the packet.  This could be confusing
998 * if ipforwarding was zero but some routing protocol was advancing
999 * us as a gateway to somewhere.  However, we must let the routing
1000 * protocol deal with that.
1001 *
1002 * The srcrt parameter indicates whether the packet is being forwarded
1003 * via a source route.
1004 */
1005static void
1006ip_forward(m, srcrt)
1007	struct mbuf *m;
1008	int srcrt;
1009{
1010	register struct ip *ip = mtod(m, struct ip *);
1011	register struct sockaddr_in *sin;
1012	register struct rtentry *rt;
1013	int error, type = 0, code;
1014	struct mbuf *mcopy;
1015	struct in_addr dest;
1016
1017	dest.s_addr = 0;
1018#ifdef DIAGNOSTIC
1019	if (ipprintfs)
1020		printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1021			ip->ip_dst, ip->ip_ttl);
1022#endif
1023	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1024		ipstat.ips_cantforward++;
1025		m_freem(m);
1026		return;
1027	}
1028	HTONS(ip->ip_id);
1029	if (ip->ip_ttl <= IPTTLDEC) {
1030		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest);
1031		return;
1032	}
1033	ip->ip_ttl -= IPTTLDEC;
1034
1035	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1036	if ((rt = ipforward_rt.ro_rt) == 0 ||
1037	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1038		if (ipforward_rt.ro_rt) {
1039			RTFREE(ipforward_rt.ro_rt);
1040			ipforward_rt.ro_rt = 0;
1041		}
1042		sin->sin_family = AF_INET;
1043		sin->sin_len = sizeof(*sin);
1044		sin->sin_addr = ip->ip_dst;
1045
1046		rtalloc(&ipforward_rt);
1047		if (ipforward_rt.ro_rt == 0) {
1048			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest);
1049			return;
1050		}
1051		rt = ipforward_rt.ro_rt;
1052	}
1053
1054	/*
1055	 * Save at most 64 bytes of the packet in case
1056	 * we need to generate an ICMP message to the src.
1057	 */
1058	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1059
1060#ifdef GATEWAY
1061	ip_ifmatrix[rt->rt_ifp->if_index +
1062	     if_index * m->m_pkthdr.rcvif->if_index]++;
1063#endif
1064	/*
1065	 * If forwarding packet using same interface that it came in on,
1066	 * perhaps should send a redirect to sender to shortcut a hop.
1067	 * Only send redirect if source is sending directly to us,
1068	 * and if packet was not source routed (or has any options).
1069	 * Also, don't send redirect if forwarding using a default route
1070	 * or a route modified by a redirect.
1071	 */
1072#define	satosin(sa)	((struct sockaddr_in *)(sa))
1073	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1074	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1075	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1076	    ipsendredirects && !srcrt) {
1077		struct in_ifaddr *ia;
1078		u_long src = ntohl(ip->ip_src.s_addr);
1079		u_long dst = ntohl(ip->ip_dst.s_addr);
1080
1081		if ((ia = ifptoia(m->m_pkthdr.rcvif)) &&
1082		   (src & ia->ia_subnetmask) == ia->ia_subnet) {
1083		    if (rt->rt_flags & RTF_GATEWAY)
1084			dest = satosin(rt->rt_gateway)->sin_addr;
1085		    else
1086			dest = ip->ip_dst;
1087		    /*
1088		     * If the destination is reached by a route to host,
1089		     * is on a subnet of a local net, or is directly
1090		     * on the attached net (!), use host redirect.
1091		     * (We may be the correct first hop for other subnets.)
1092		     */
1093#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1094		    type = ICMP_REDIRECT;
1095		    if ((rt->rt_flags & RTF_HOST) ||
1096		        (rt->rt_flags & RTF_GATEWAY) == 0)
1097			    code = ICMP_REDIRECT_HOST;
1098		    else if (RTA(rt)->ia_subnetmask != RTA(rt)->ia_netmask &&
1099		        (dst & RTA(rt)->ia_netmask) ==  RTA(rt)->ia_net)
1100			    code = ICMP_REDIRECT_HOST;
1101		    else
1102			    code = ICMP_REDIRECT_NET;
1103#ifdef DIAGNOSTIC
1104		    if (ipprintfs)
1105		        printf("redirect (%d) to %x\n", code, dest.s_addr);
1106#endif
1107		}
1108	}
1109
1110	error = ip_output(m, NULL, &ipforward_rt, IP_FORWARDING
1111#ifdef DIRECTED_BROADCAST
1112	    | IP_ALLOWBROADCAST
1113#endif
1114	    , NULL);
1115	if (error)
1116		ipstat.ips_cantforward++;
1117	else {
1118		ipstat.ips_forward++;
1119		if (type)
1120			ipstat.ips_redirectsent++;
1121		else {
1122			if (mcopy)
1123				m_freem(mcopy);
1124			return;
1125		}
1126	}
1127	if (mcopy == NULL)
1128		return;
1129	switch (error) {
1130
1131	case 0:				/* forwarded, but need redirect */
1132		/* type, code set above */
1133		break;
1134
1135	case ENETUNREACH:		/* shouldn't happen, checked above */
1136	case EHOSTUNREACH:
1137	case ENETDOWN:
1138	case EHOSTDOWN:
1139	default:
1140		type = ICMP_UNREACH;
1141		code = ICMP_UNREACH_HOST;
1142		break;
1143
1144	case EMSGSIZE:
1145		type = ICMP_UNREACH;
1146		code = ICMP_UNREACH_NEEDFRAG;
1147		ipstat.ips_cantfrag++;
1148		break;
1149
1150	case ENOBUFS:
1151		type = ICMP_SOURCEQUENCH;
1152		code = 0;
1153		break;
1154	}
1155	icmp_error(mcopy, type, code, dest);
1156}
1157