radix.c revision 1.24
1/*	$NetBSD: radix.c,v 1.24 2004/08/17 07:05:34 itojun Exp $	*/
2
3/*
4 * Copyright (c) 1988, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)radix.c	8.6 (Berkeley) 10/17/95
32 */
33
34/*
35 * Routines to build and maintain radix trees for routing lookups.
36 */
37
38#include <sys/cdefs.h>
39__KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.24 2004/08/17 07:05:34 itojun Exp $");
40
41#ifndef _NET_RADIX_H_
42#include <sys/param.h>
43#ifdef	_KERNEL
44#include <sys/systm.h>
45#include <sys/malloc.h>
46#define	M_DONTWAIT M_NOWAIT
47#include <sys/domain.h>
48#include <netinet/ip_encap.h>
49#else
50#include <stdlib.h>
51#endif
52#include <sys/syslog.h>
53#include <net/radix.h>
54#endif
55
56int	max_keylen;
57struct radix_mask *rn_mkfreelist;
58struct radix_node_head *mask_rnhead;
59static char *addmask_key;
60static const char normal_chars[] =
61    {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
62static char *rn_zeros, *rn_ones;
63
64#define rn_masktop (mask_rnhead->rnh_treetop)
65#undef Bcmp
66#define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
67
68static int rn_satisfies_leaf(const char *, struct radix_node *, int);
69static int rn_lexobetter(const void *, const void *);
70static struct radix_mask *rn_new_radix_mask(struct radix_node *,
71    struct radix_mask *);
72
73/*
74 * The data structure for the keys is a radix tree with one way
75 * branching removed.  The index rn_b at an internal node n represents a bit
76 * position to be tested.  The tree is arranged so that all descendants
77 * of a node n have keys whose bits all agree up to position rn_b - 1.
78 * (We say the index of n is rn_b.)
79 *
80 * There is at least one descendant which has a one bit at position rn_b,
81 * and at least one with a zero there.
82 *
83 * A route is determined by a pair of key and mask.  We require that the
84 * bit-wise logical and of the key and mask to be the key.
85 * We define the index of a route to associated with the mask to be
86 * the first bit number in the mask where 0 occurs (with bit number 0
87 * representing the highest order bit).
88 *
89 * We say a mask is normal if every bit is 0, past the index of the mask.
90 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
91 * and m is a normal mask, then the route applies to every descendant of n.
92 * If the index(m) < rn_b, this implies the trailing last few bits of k
93 * before bit b are all 0, (and hence consequently true of every descendant
94 * of n), so the route applies to all descendants of the node as well.
95 *
96 * Similar logic shows that a non-normal mask m such that
97 * index(m) <= index(n) could potentially apply to many children of n.
98 * Thus, for each non-host route, we attach its mask to a list at an internal
99 * node as high in the tree as we can go.
100 *
101 * The present version of the code makes use of normal routes in short-
102 * circuiting an explict mask and compare operation when testing whether
103 * a key satisfies a normal route, and also in remembering the unique leaf
104 * that governs a subtree.
105 */
106
107struct radix_node *
108rn_search(
109	const void *v_arg,
110	struct radix_node *head)
111{
112	const u_char * const v = v_arg;
113	struct radix_node *x;
114
115	for (x = head; x->rn_b >= 0;) {
116		if (x->rn_bmask & v[x->rn_off])
117			x = x->rn_r;
118		else
119			x = x->rn_l;
120	}
121	return (x);
122}
123
124struct radix_node *
125rn_search_m(
126	const void *v_arg,
127	struct radix_node *head,
128	const void *m_arg)
129{
130	struct radix_node *x;
131	const u_char * const v = v_arg;
132	const u_char * const m = m_arg;
133
134	for (x = head; x->rn_b >= 0;) {
135		if ((x->rn_bmask & m[x->rn_off]) &&
136		    (x->rn_bmask & v[x->rn_off]))
137			x = x->rn_r;
138		else
139			x = x->rn_l;
140	}
141	return x;
142}
143
144int
145rn_refines(
146	const void *m_arg,
147	const void *n_arg)
148{
149	const char *m = m_arg;
150	const char *n = n_arg;
151	const char *lim = n + *(u_char *)n;
152	const char *lim2 = lim;
153	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
154	int masks_are_equal = 1;
155
156	if (longer > 0)
157		lim -= longer;
158	while (n < lim) {
159		if (*n & ~(*m))
160			return 0;
161		if (*n++ != *m++)
162			masks_are_equal = 0;
163	}
164	while (n < lim2)
165		if (*n++)
166			return 0;
167	if (masks_are_equal && (longer < 0))
168		for (lim2 = m - longer; m < lim2; )
169			if (*m++)
170				return 1;
171	return (!masks_are_equal);
172}
173
174struct radix_node *
175rn_lookup(
176	const void *v_arg,
177	const void *m_arg,
178	struct radix_node_head *head)
179{
180	struct radix_node *x;
181	const char *netmask = NULL;
182
183	if (m_arg) {
184		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
185			return (0);
186		netmask = x->rn_key;
187	}
188	x = rn_match(v_arg, head);
189	if (x && netmask) {
190		while (x && x->rn_mask != netmask)
191			x = x->rn_dupedkey;
192	}
193	return x;
194}
195
196static int
197rn_satisfies_leaf(
198	const char *trial,
199	struct radix_node *leaf,
200	int skip)
201{
202	const char *cp = trial;
203	const char *cp2 = leaf->rn_key;
204	const char *cp3 = leaf->rn_mask;
205	const char *cplim;
206	int length = min(*(u_char *)cp, *(u_char *)cp2);
207
208	if (cp3 == 0)
209		cp3 = rn_ones;
210	else
211		length = min(length, *(u_char *)cp3);
212	cplim = cp + length; cp3 += skip; cp2 += skip;
213	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
214		if ((*cp ^ *cp2) & *cp3)
215			return 0;
216	return 1;
217}
218
219struct radix_node *
220rn_match(
221	const void *v_arg,
222	struct radix_node_head *head)
223{
224	const char * const v = v_arg;
225	struct radix_node *t = head->rnh_treetop;
226	struct radix_node *top = t;
227	struct radix_node *x;
228	struct radix_node *saved_t;
229	const char *cp = v;
230	const char *cp2;
231	const char *cplim;
232	int off = t->rn_off;
233	int vlen = *(u_char *)cp;
234	int matched_off;
235	int test, b, rn_b;
236
237	/*
238	 * Open code rn_search(v, top) to avoid overhead of extra
239	 * subroutine call.
240	 */
241	for (; t->rn_b >= 0; ) {
242		if (t->rn_bmask & cp[t->rn_off])
243			t = t->rn_r;
244		else
245			t = t->rn_l;
246	}
247	/*
248	 * See if we match exactly as a host destination
249	 * or at least learn how many bits match, for normal mask finesse.
250	 *
251	 * It doesn't hurt us to limit how many bytes to check
252	 * to the length of the mask, since if it matches we had a genuine
253	 * match and the leaf we have is the most specific one anyway;
254	 * if it didn't match with a shorter length it would fail
255	 * with a long one.  This wins big for class B&C netmasks which
256	 * are probably the most common case...
257	 */
258	if (t->rn_mask)
259		vlen = *(u_char *)t->rn_mask;
260	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
261	for (; cp < cplim; cp++, cp2++)
262		if (*cp != *cp2)
263			goto on1;
264	/*
265	 * This extra grot is in case we are explicitly asked
266	 * to look up the default.  Ugh!
267	 */
268	if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
269		t = t->rn_dupedkey;
270	return t;
271on1:
272	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
273	for (b = 7; (test >>= 1) > 0;)
274		b--;
275	matched_off = cp - v;
276	b += matched_off << 3;
277	rn_b = -1 - b;
278	/*
279	 * If there is a host route in a duped-key chain, it will be first.
280	 */
281	if ((saved_t = t)->rn_mask == 0)
282		t = t->rn_dupedkey;
283	for (; t; t = t->rn_dupedkey)
284		/*
285		 * Even if we don't match exactly as a host,
286		 * we may match if the leaf we wound up at is
287		 * a route to a net.
288		 */
289		if (t->rn_flags & RNF_NORMAL) {
290			if (rn_b <= t->rn_b)
291				return t;
292		} else if (rn_satisfies_leaf(v, t, matched_off))
293				return t;
294	t = saved_t;
295	/* start searching up the tree */
296	do {
297		struct radix_mask *m;
298		t = t->rn_p;
299		m = t->rn_mklist;
300		if (m) {
301			/*
302			 * If non-contiguous masks ever become important
303			 * we can restore the masking and open coding of
304			 * the search and satisfaction test and put the
305			 * calculation of "off" back before the "do".
306			 */
307			do {
308				if (m->rm_flags & RNF_NORMAL) {
309					if (rn_b <= m->rm_b)
310						return (m->rm_leaf);
311				} else {
312					off = min(t->rn_off, matched_off);
313					x = rn_search_m(v, t, m->rm_mask);
314					while (x && x->rn_mask != m->rm_mask)
315						x = x->rn_dupedkey;
316					if (x && rn_satisfies_leaf(v, x, off))
317						return x;
318				}
319				m = m->rm_mklist;
320			} while (m);
321		}
322	} while (t != top);
323	return 0;
324}
325
326#ifdef RN_DEBUG
327int	rn_nodenum;
328struct	radix_node *rn_clist;
329int	rn_saveinfo;
330int	rn_debug =  1;
331#endif
332
333struct radix_node *
334rn_newpair(
335	const void *v,
336	int b,
337	struct radix_node nodes[2])
338{
339	struct radix_node *tt = nodes;
340	struct radix_node *t = tt + 1;
341	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
342	t->rn_l = tt; t->rn_off = b >> 3;
343	tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
344	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
345#ifdef RN_DEBUG
346	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
347	tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
348#endif
349	return t;
350}
351
352struct radix_node *
353rn_insert(
354	const void *v_arg,
355	struct radix_node_head *head,
356	int *dupentry,
357	struct radix_node nodes[2])
358{
359	struct radix_node *top = head->rnh_treetop;
360	struct radix_node *t = rn_search(v_arg, top);
361	struct radix_node *tt;
362	const char *v = v_arg;
363	int head_off = top->rn_off;
364	int vlen = *((u_char *)v);
365	const char *cp = v + head_off;
366	int b;
367    	/*
368	 * Find first bit at which v and t->rn_key differ
369	 */
370    {
371	const char *cp2 = t->rn_key + head_off;
372	const char *cplim = v + vlen;
373	int cmp_res;
374
375	while (cp < cplim)
376		if (*cp2++ != *cp++)
377			goto on1;
378	*dupentry = 1;
379	return t;
380on1:
381	*dupentry = 0;
382	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
383	for (b = (cp - v) << 3; cmp_res; b--)
384		cmp_res >>= 1;
385    }
386    {
387	struct radix_node *p, *x = top;
388	cp = v;
389	do {
390		p = x;
391		if (cp[x->rn_off] & x->rn_bmask)
392			x = x->rn_r;
393		else x = x->rn_l;
394	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
395#ifdef RN_DEBUG
396	if (rn_debug)
397		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
398#endif
399	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
400	if ((cp[p->rn_off] & p->rn_bmask) == 0)
401		p->rn_l = t;
402	else
403		p->rn_r = t;
404	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
405	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
406		t->rn_r = x;
407	} else {
408		t->rn_r = tt; t->rn_l = x;
409	}
410#ifdef RN_DEBUG
411	if (rn_debug)
412		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
413#endif
414    }
415	return (tt);
416}
417
418struct radix_node *
419rn_addmask(
420	const void *n_arg,
421	int search,
422	int skip)
423{
424	const char *netmask = n_arg;
425	const char *cp;
426	const char *cplim;
427	struct radix_node *x;
428	struct radix_node *saved_x;
429	int b = 0, mlen, j;
430	int maskduplicated, m0, isnormal;
431	static int last_zeroed = 0;
432
433	if ((mlen = *(u_char *)netmask) > max_keylen)
434		mlen = max_keylen;
435	if (skip == 0)
436		skip = 1;
437	if (mlen <= skip)
438		return (mask_rnhead->rnh_nodes);
439	if (skip > 1)
440		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
441	if ((m0 = mlen) > skip)
442		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
443	/*
444	 * Trim trailing zeroes.
445	 */
446	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
447		cp--;
448	mlen = cp - addmask_key;
449	if (mlen <= skip) {
450		if (m0 >= last_zeroed)
451			last_zeroed = mlen;
452		return (mask_rnhead->rnh_nodes);
453	}
454	if (m0 < last_zeroed)
455		Bzero(addmask_key + m0, last_zeroed - m0);
456	*addmask_key = last_zeroed = mlen;
457	x = rn_search(addmask_key, rn_masktop);
458	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
459		x = 0;
460	if (x || search)
461		return (x);
462	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
463	if ((saved_x = x) == 0)
464		return (0);
465	Bzero(x, max_keylen + 2 * sizeof (*x));
466	cp = netmask = (caddr_t)(x + 2);
467	Bcopy(addmask_key, (caddr_t)(x + 2), mlen);
468	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
469	if (maskduplicated) {
470		log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
471		Free(saved_x);
472		return (x);
473	}
474	/*
475	 * Calculate index of mask, and check for normalcy.
476	 */
477	cplim = netmask + mlen; isnormal = 1;
478	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
479		cp++;
480	if (cp != cplim) {
481		for (j = 0x80; (j & *cp) != 0; j >>= 1)
482			b++;
483		if (*cp != normal_chars[b] || cp != (cplim - 1))
484			isnormal = 0;
485	}
486	b += (cp - netmask) << 3;
487	x->rn_b = -1 - b;
488	if (isnormal)
489		x->rn_flags |= RNF_NORMAL;
490	return (x);
491}
492
493static int	/* XXX: arbitrary ordering for non-contiguous masks */
494rn_lexobetter(
495	const void *m_arg,
496	const void *n_arg)
497{
498	const u_char *mp = m_arg;
499	const u_char *np = n_arg;
500	const u_char *lim;
501
502	if (*mp > *np)
503		return 1;  /* not really, but need to check longer one first */
504	if (*mp == *np)
505		for (lim = mp + *mp; mp < lim;)
506			if (*mp++ > *np++)
507				return 1;
508	return 0;
509}
510
511static struct radix_mask *
512rn_new_radix_mask(
513	struct radix_node *tt,
514	struct radix_mask *next)
515{
516	struct radix_mask *m;
517
518	MKGet(m);
519	if (m == 0) {
520		log(LOG_ERR, "Mask for route not entered\n");
521		return (0);
522	}
523	Bzero(m, sizeof *m);
524	m->rm_b = tt->rn_b;
525	m->rm_flags = tt->rn_flags;
526	if (tt->rn_flags & RNF_NORMAL)
527		m->rm_leaf = tt;
528	else
529		m->rm_mask = tt->rn_mask;
530	m->rm_mklist = next;
531	tt->rn_mklist = m;
532	return m;
533}
534
535struct radix_node *
536rn_addroute(
537	const void *v_arg,
538	const void *n_arg,
539	struct radix_node_head *head,
540	struct radix_node treenodes[2])
541{
542	const char *v = v_arg;
543	const char *netmask = n_arg;
544	struct radix_node *t;
545	struct radix_node *x = 0;
546	struct radix_node *tt;
547	struct radix_node *saved_tt;
548	struct radix_node *top = head->rnh_treetop;
549	short b = 0, b_leaf = 0;
550	int keyduplicated;
551	const char *mmask;
552	struct radix_mask *m, **mp;
553
554	/*
555	 * In dealing with non-contiguous masks, there may be
556	 * many different routes which have the same mask.
557	 * We will find it useful to have a unique pointer to
558	 * the mask to speed avoiding duplicate references at
559	 * nodes and possibly save time in calculating indices.
560	 */
561	if (netmask)  {
562		if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
563			return (0);
564		b_leaf = x->rn_b;
565		b = -1 - x->rn_b;
566		netmask = x->rn_key;
567	}
568	/*
569	 * Deal with duplicated keys: attach node to previous instance
570	 */
571	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
572	if (keyduplicated) {
573		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
574			if (tt->rn_mask == netmask)
575				return (0);
576			if (netmask == 0 ||
577			    (tt->rn_mask &&
578			     ((b_leaf < tt->rn_b) || /* index(netmask) > node */
579			       rn_refines(netmask, tt->rn_mask) ||
580			       rn_lexobetter(netmask, tt->rn_mask))))
581				break;
582		}
583		/*
584		 * If the mask is not duplicated, we wouldn't
585		 * find it among possible duplicate key entries
586		 * anyway, so the above test doesn't hurt.
587		 *
588		 * We sort the masks for a duplicated key the same way as
589		 * in a masklist -- most specific to least specific.
590		 * This may require the unfortunate nuisance of relocating
591		 * the head of the list.
592		 *
593		 * We also reverse, or doubly link the list through the
594		 * parent pointer.
595		 */
596		if (tt == saved_tt) {
597			struct	radix_node *xx = x;
598			/* link in at head of list */
599			(tt = treenodes)->rn_dupedkey = t;
600			tt->rn_flags = t->rn_flags;
601			tt->rn_p = x = t->rn_p;
602			t->rn_p = tt;
603			if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
604			saved_tt = tt; x = xx;
605		} else {
606			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
607			t->rn_dupedkey = tt;
608			tt->rn_p = t;
609			if (tt->rn_dupedkey)
610				tt->rn_dupedkey->rn_p = tt;
611		}
612#ifdef RN_DEBUG
613		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
614		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
615#endif
616		tt->rn_key = (caddr_t) v;
617		tt->rn_b = -1;
618		tt->rn_flags = RNF_ACTIVE;
619	}
620	/*
621	 * Put mask in tree.
622	 */
623	if (netmask) {
624		tt->rn_mask = netmask;
625		tt->rn_b = x->rn_b;
626		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
627	}
628	t = saved_tt->rn_p;
629	if (keyduplicated)
630		goto on2;
631	b_leaf = -1 - t->rn_b;
632	if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
633	/* Promote general routes from below */
634	if (x->rn_b < 0) {
635	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
636		if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
637			*mp = m = rn_new_radix_mask(x, 0);
638			if (m)
639				mp = &m->rm_mklist;
640		}
641	} else if (x->rn_mklist) {
642		/*
643		 * Skip over masks whose index is > that of new node
644		 */
645		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
646			if (m->rm_b >= b_leaf)
647				break;
648		t->rn_mklist = m; *mp = 0;
649	}
650on2:
651	/* Add new route to highest possible ancestor's list */
652	if ((netmask == 0) || (b > t->rn_b ))
653		return tt; /* can't lift at all */
654	b_leaf = tt->rn_b;
655	do {
656		x = t;
657		t = t->rn_p;
658	} while (b <= t->rn_b && x != top);
659	/*
660	 * Search through routes associated with node to
661	 * insert new route according to index.
662	 * Need same criteria as when sorting dupedkeys to avoid
663	 * double loop on deletion.
664	 */
665	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
666		if (m->rm_b < b_leaf)
667			continue;
668		if (m->rm_b > b_leaf)
669			break;
670		if (m->rm_flags & RNF_NORMAL) {
671			mmask = m->rm_leaf->rn_mask;
672			if (tt->rn_flags & RNF_NORMAL) {
673				log(LOG_ERR, "Non-unique normal route,"
674				    " mask not entered\n");
675				return tt;
676			}
677		} else
678			mmask = m->rm_mask;
679		if (mmask == netmask) {
680			m->rm_refs++;
681			tt->rn_mklist = m;
682			return tt;
683		}
684		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
685			break;
686	}
687	*mp = rn_new_radix_mask(tt, *mp);
688	return tt;
689}
690
691struct radix_node *
692rn_delete(
693	const void *v_arg,
694	const void *netmask_arg,
695	struct radix_node_head *head)
696{
697	struct radix_node *t;
698	struct radix_node *p;
699	struct radix_node *x;
700	struct radix_node *tt;
701	struct radix_node *dupedkey;
702	struct radix_node *saved_tt;
703	struct radix_node *top;
704	struct radix_mask *m;
705	struct radix_mask *saved_m;
706	struct radix_mask **mp;
707	const char *v = v_arg;
708	const char *netmask = netmask_arg;
709	int b, head_off, vlen;
710
711	x = head->rnh_treetop;
712	tt = rn_search(v, x);
713	head_off = x->rn_off;
714	vlen =  *(u_char *)v;
715	saved_tt = tt;
716	top = x;
717	if (tt == 0 ||
718	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
719		return (0);
720	/*
721	 * Delete our route from mask lists.
722	 */
723	if (netmask) {
724		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
725			return (0);
726		netmask = x->rn_key;
727		while (tt->rn_mask != netmask)
728			if ((tt = tt->rn_dupedkey) == 0)
729				return (0);
730	}
731	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
732		goto on1;
733	if (tt->rn_flags & RNF_NORMAL) {
734		if (m->rm_leaf != tt || m->rm_refs > 0) {
735			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
736			return 0;  /* dangling ref could cause disaster */
737		}
738	} else {
739		if (m->rm_mask != tt->rn_mask) {
740			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
741			goto on1;
742		}
743		if (--m->rm_refs >= 0)
744			goto on1;
745	}
746	b = -1 - tt->rn_b;
747	t = saved_tt->rn_p;
748	if (b > t->rn_b)
749		goto on1; /* Wasn't lifted at all */
750	do {
751		x = t;
752		t = t->rn_p;
753	} while (b <= t->rn_b && x != top);
754	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
755		if (m == saved_m) {
756			*mp = m->rm_mklist;
757			MKFree(m);
758			break;
759		}
760	if (m == 0) {
761		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
762		if (tt->rn_flags & RNF_NORMAL)
763			return (0); /* Dangling ref to us */
764	}
765on1:
766	/*
767	 * Eliminate us from tree
768	 */
769	if (tt->rn_flags & RNF_ROOT)
770		return (0);
771#ifdef RN_DEBUG
772	/* Get us out of the creation list */
773	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
774	if (t) t->rn_ybro = tt->rn_ybro;
775#endif
776	t = tt->rn_p;
777	dupedkey = saved_tt->rn_dupedkey;
778	if (dupedkey) {
779		/*
780		 * Here, tt is the deletion target, and
781		 * saved_tt is the head of the dupedkey chain.
782		 */
783		if (tt == saved_tt) {
784			x = dupedkey; x->rn_p = t;
785			if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
786		} else {
787			/* find node in front of tt on the chain */
788			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
789				p = p->rn_dupedkey;
790			if (p) {
791				p->rn_dupedkey = tt->rn_dupedkey;
792				if (tt->rn_dupedkey)
793					tt->rn_dupedkey->rn_p = p;
794			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
795		}
796		t = tt + 1;
797		if  (t->rn_flags & RNF_ACTIVE) {
798#ifndef RN_DEBUG
799			*++x = *t; p = t->rn_p;
800#else
801			b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
802#endif
803			if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
804			x->rn_l->rn_p = x; x->rn_r->rn_p = x;
805		}
806		goto out;
807	}
808	if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
809	p = t->rn_p;
810	if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
811	x->rn_p = p;
812	/*
813	 * Demote routes attached to us.
814	 */
815	if (t->rn_mklist) {
816		if (x->rn_b >= 0) {
817			for (mp = &x->rn_mklist; (m = *mp);)
818				mp = &m->rm_mklist;
819			*mp = t->rn_mklist;
820		} else {
821			/* If there are any key,mask pairs in a sibling
822			   duped-key chain, some subset will appear sorted
823			   in the same order attached to our mklist */
824			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
825				if (m == x->rn_mklist) {
826					struct radix_mask *mm = m->rm_mklist;
827					x->rn_mklist = 0;
828					if (--(m->rm_refs) < 0)
829						MKFree(m);
830					m = mm;
831				}
832			if (m)
833				log(LOG_ERR, "%s %p at %p\n",
834				    "rn_delete: Orphaned Mask", m, x);
835		}
836	}
837	/*
838	 * We may be holding an active internal node in the tree.
839	 */
840	x = tt + 1;
841	if (t != x) {
842#ifndef RN_DEBUG
843		*t = *x;
844#else
845		b = t->rn_info; *t = *x; t->rn_info = b;
846#endif
847		t->rn_l->rn_p = t; t->rn_r->rn_p = t;
848		p = x->rn_p;
849		if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
850	}
851out:
852	tt->rn_flags &= ~RNF_ACTIVE;
853	tt[1].rn_flags &= ~RNF_ACTIVE;
854	return (tt);
855}
856
857int
858rn_walktree(
859	struct radix_node_head *h,
860	int (*f)(struct radix_node *, void *),
861	void *w)
862{
863	int error;
864	struct radix_node *base;
865	struct radix_node *next;
866	struct radix_node *rn = h->rnh_treetop;
867	/*
868	 * This gets complicated because we may delete the node
869	 * while applying the function f to it, so we need to calculate
870	 * the successor node in advance.
871	 */
872	/* First time through node, go left */
873	while (rn->rn_b >= 0)
874		rn = rn->rn_l;
875	for (;;) {
876		base = rn;
877		/* If at right child go back up, otherwise, go right */
878		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
879			rn = rn->rn_p;
880		/* Find the next *leaf* since next node might vanish, too */
881		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
882			rn = rn->rn_l;
883		next = rn;
884		/* Process leaves */
885		while ((rn = base) != NULL) {
886			base = rn->rn_dupedkey;
887			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
888				return (error);
889		}
890		rn = next;
891		if (rn->rn_flags & RNF_ROOT)
892			return (0);
893	}
894	/* NOTREACHED */
895}
896
897int
898rn_inithead(head, off)
899	void **head;
900	int off;
901{
902	struct radix_node_head *rnh;
903
904	if (*head)
905		return (1);
906	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
907	if (rnh == 0)
908		return (0);
909	*head = rnh;
910	return rn_inithead0(rnh, off);
911}
912
913int
914rn_inithead0(rnh, off)
915	struct radix_node_head *rnh;
916	int off;
917{
918	struct radix_node *t;
919	struct radix_node *tt;
920	struct radix_node *ttt;
921
922	Bzero(rnh, sizeof (*rnh));
923	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
924	ttt = rnh->rnh_nodes + 2;
925	t->rn_r = ttt;
926	t->rn_p = t;
927	tt = t->rn_l;
928	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
929	tt->rn_b = -1 - off;
930	*ttt = *tt;
931	ttt->rn_key = rn_ones;
932	rnh->rnh_addaddr = rn_addroute;
933	rnh->rnh_deladdr = rn_delete;
934	rnh->rnh_matchaddr = rn_match;
935	rnh->rnh_lookup = rn_lookup;
936	rnh->rnh_walktree = rn_walktree;
937	rnh->rnh_treetop = t;
938	return (1);
939}
940
941void
942rn_init()
943{
944	char *cp, *cplim;
945#ifdef _KERNEL
946	struct domain *dom;
947
948	for (dom = domains; dom; dom = dom->dom_next)
949		if (dom->dom_maxrtkey > max_keylen)
950			max_keylen = dom->dom_maxrtkey;
951	encap_setkeylen();
952#endif
953	if (max_keylen == 0) {
954		log(LOG_ERR,
955		    "rn_init: radix functions require max_keylen be set\n");
956		return;
957	}
958	R_Malloc(rn_zeros, char *, 3 * max_keylen);
959	if (rn_zeros == NULL)
960		panic("rn_init");
961	Bzero(rn_zeros, 3 * max_keylen);
962	rn_ones = cp = rn_zeros + max_keylen;
963	addmask_key = cplim = rn_ones + max_keylen;
964	while (cp < cplim)
965		*cp++ = -1;
966	if (rn_inithead((void *)&mask_rnhead, 0) == 0)
967		panic("rn_init 2");
968}
969