1/*	$NetBSD: pktqueue.c,v 1.22 2023/05/28 08:09:34 andvar Exp $	*/
2
3/*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * The packet queue (pktqueue) interface is a lockless IP input queue
34 * which also abstracts and handles network ISR scheduling.  It provides
35 * a mechanism to enable receiver-side packet steering (RPS).
36 */
37
38#include <sys/cdefs.h>
39__KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.22 2023/05/28 08:09:34 andvar Exp $");
40
41#ifdef _KERNEL_OPT
42#include "opt_net_mpsafe.h"
43#endif
44
45#include <sys/param.h>
46#include <sys/types.h>
47
48#include <sys/atomic.h>
49#include <sys/cpu.h>
50#include <sys/pcq.h>
51#include <sys/intr.h>
52#include <sys/mbuf.h>
53#include <sys/proc.h>
54#include <sys/percpu.h>
55#include <sys/xcall.h>
56#include <sys/once.h>
57#include <sys/queue.h>
58#include <sys/rwlock.h>
59
60#include <net/pktqueue.h>
61#include <net/rss_config.h>
62
63#include <netinet/in.h>
64#include <netinet/ip.h>
65#include <netinet/ip6.h>
66
67struct pktqueue {
68	/*
69	 * The lock used for a barrier mechanism.  The barrier counter,
70	 * as well as the drop counter, are managed atomically though.
71	 * Ensure this group is in a separate cache line.
72	 */
73	union {
74		struct {
75			kmutex_t	pq_lock;
76			volatile u_int	pq_barrier;
77		};
78		uint8_t	 _pad[COHERENCY_UNIT];
79	};
80
81	/* The size of the queue, counters and the interrupt handler. */
82	u_int		pq_maxlen;
83	percpu_t *	pq_counters;
84	void *		pq_sih;
85
86	/* The per-CPU queues. */
87	struct percpu *	pq_pcq;	/* struct pcq * */
88
89	/* The linkage on the list of all pktqueues. */
90	LIST_ENTRY(pktqueue) pq_list;
91};
92
93/* The counters of the packet queue. */
94#define	PQCNT_ENQUEUE	0
95#define	PQCNT_DEQUEUE	1
96#define	PQCNT_DROP	2
97#define	PQCNT_NCOUNTERS	3
98
99typedef struct {
100	uint64_t	count[PQCNT_NCOUNTERS];
101} pktq_counters_t;
102
103/* Special marker value used by pktq_barrier() mechanism. */
104#define	PKTQ_MARKER	((void *)(~0ULL))
105
106/*
107 * This is a list of all pktqueues.  This list is used by
108 * pktq_ifdetach() to issue a barrier on every pktqueue.
109 *
110 * The r/w lock is acquired for writing in pktq_create() and
111 * pktq_destroy(), and for reading in pktq_ifdetach().
112 *
113 * This list is not performance critical, and will seldom be
114 * accessed.
115 */
116static LIST_HEAD(, pktqueue) pktqueue_list	__read_mostly;
117static krwlock_t pktqueue_list_lock		__read_mostly;
118static once_t pktqueue_list_init_once		__read_mostly;
119
120static int
121pktqueue_list_init(void)
122{
123	LIST_INIT(&pktqueue_list);
124	rw_init(&pktqueue_list_lock);
125	return 0;
126}
127
128static void
129pktq_init_cpu(void *vqp, void *vpq, struct cpu_info *ci)
130{
131	struct pcq **qp = vqp;
132	struct pktqueue *pq = vpq;
133
134	*qp = pcq_create(pq->pq_maxlen, KM_SLEEP);
135}
136
137static void
138pktq_fini_cpu(void *vqp, void *vpq, struct cpu_info *ci)
139{
140	struct pcq **qp = vqp, *q = *qp;
141
142	KASSERT(pcq_peek(q) == NULL);
143	pcq_destroy(q);
144	*qp = NULL;		/* paranoia */
145}
146
147static struct pcq *
148pktq_pcq(struct pktqueue *pq, struct cpu_info *ci)
149{
150	struct pcq **qp, *q;
151
152	/*
153	 * As long as preemption is disabled, the xcall to swap percpu
154	 * buffers can't complete, so it is safe to read the pointer.
155	 */
156	KASSERT(kpreempt_disabled());
157
158	qp = percpu_getptr_remote(pq->pq_pcq, ci);
159	q = *qp;
160
161	return q;
162}
163
164pktqueue_t *
165pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
166{
167	const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
168	pktqueue_t *pq;
169	percpu_t *pc;
170	void *sih;
171
172	RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init);
173
174	pc = percpu_alloc(sizeof(pktq_counters_t));
175	if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
176		percpu_free(pc, sizeof(pktq_counters_t));
177		return NULL;
178	}
179
180	pq = kmem_zalloc(sizeof(*pq), KM_SLEEP);
181	mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
182	pq->pq_maxlen = maxlen;
183	pq->pq_counters = pc;
184	pq->pq_sih = sih;
185	pq->pq_pcq = percpu_create(sizeof(struct pcq *),
186	    pktq_init_cpu, pktq_fini_cpu, pq);
187
188	rw_enter(&pktqueue_list_lock, RW_WRITER);
189	LIST_INSERT_HEAD(&pktqueue_list, pq, pq_list);
190	rw_exit(&pktqueue_list_lock);
191
192	return pq;
193}
194
195void
196pktq_destroy(pktqueue_t *pq)
197{
198
199	KASSERT(pktqueue_list_init_once.o_status == ONCE_DONE);
200
201	rw_enter(&pktqueue_list_lock, RW_WRITER);
202	LIST_REMOVE(pq, pq_list);
203	rw_exit(&pktqueue_list_lock);
204
205	percpu_free(pq->pq_pcq, sizeof(struct pcq *));
206	percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
207	softint_disestablish(pq->pq_sih);
208	mutex_destroy(&pq->pq_lock);
209	kmem_free(pq, sizeof(*pq));
210}
211
212/*
213 * - pktq_inc_counter: increment the counter given an ID.
214 * - pktq_collect_counts: handler to sum up the counts from each CPU.
215 * - pktq_getcount: return the effective count given an ID.
216 */
217
218static inline void
219pktq_inc_count(pktqueue_t *pq, u_int i)
220{
221	percpu_t *pc = pq->pq_counters;
222	pktq_counters_t *c;
223
224	c = percpu_getref(pc);
225	c->count[i]++;
226	percpu_putref(pc);
227}
228
229static void
230pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
231{
232	const pktq_counters_t *c = mem;
233	pktq_counters_t *sum = arg;
234
235	int s = splnet();
236
237	for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
238		sum->count[i] += c->count[i];
239	}
240
241	splx(s);
242}
243
244static uint64_t
245pktq_get_count(pktqueue_t *pq, pktq_count_t c)
246{
247	pktq_counters_t sum;
248
249	if (c != PKTQ_MAXLEN) {
250		memset(&sum, 0, sizeof(sum));
251		percpu_foreach_xcall(pq->pq_counters,
252		    XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum);
253	}
254	switch (c) {
255	case PKTQ_NITEMS:
256		return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
257	case PKTQ_DROPS:
258		return sum.count[PQCNT_DROP];
259	case PKTQ_MAXLEN:
260		return pq->pq_maxlen;
261	}
262	return 0;
263}
264
265uint32_t
266pktq_rps_hash(const pktq_rps_hash_func_t *funcp, const struct mbuf *m)
267{
268	pktq_rps_hash_func_t func = atomic_load_relaxed(funcp);
269
270	KASSERT(func != NULL);
271
272	return (*func)(m);
273}
274
275static uint32_t
276pktq_rps_hash_zero(const struct mbuf *m __unused)
277{
278
279	return 0;
280}
281
282static uint32_t
283pktq_rps_hash_curcpu(const struct mbuf *m __unused)
284{
285
286	return cpu_index(curcpu());
287}
288
289static uint32_t
290pktq_rps_hash_toeplitz(const struct mbuf *m)
291{
292	struct ip *ip;
293	/*
294	 * Disable UDP port - IP fragments aren't currently being handled
295	 * and so we end up with a mix of 2-tuple and 4-tuple
296	 * traffic.
297	 */
298	const u_int flag = RSS_TOEPLITZ_USE_TCP_PORT;
299
300	/* glance IP version */
301	if ((m->m_flags & M_PKTHDR) == 0)
302		return 0;
303
304	ip = mtod(m, struct ip *);
305	if (ip->ip_v == IPVERSION) {
306		if (__predict_false(m->m_len < sizeof(struct ip)))
307			return 0;
308		return rss_toeplitz_hash_from_mbuf_ipv4(m, flag);
309	} else if (ip->ip_v == 6) {
310		if (__predict_false(m->m_len < sizeof(struct ip6_hdr)))
311			return 0;
312		return rss_toeplitz_hash_from_mbuf_ipv6(m, flag);
313	}
314
315	return 0;
316}
317
318/*
319 * toeplitz without curcpu.
320 * Generally, this has better performance than toeplitz.
321 */
322static uint32_t
323pktq_rps_hash_toeplitz_othercpus(const struct mbuf *m)
324{
325	uint32_t hash;
326
327	if (ncpu == 1)
328		return 0;
329
330	hash = pktq_rps_hash_toeplitz(m);
331	hash %= ncpu - 1;
332	if (hash >= cpu_index(curcpu()))
333		return hash + 1;
334	else
335		return hash;
336}
337
338static struct pktq_rps_hash_table {
339	const char* prh_type;
340	pktq_rps_hash_func_t prh_func;
341} const pktq_rps_hash_tab[] = {
342	{ "zero", pktq_rps_hash_zero },
343	{ "curcpu", pktq_rps_hash_curcpu },
344	{ "toeplitz", pktq_rps_hash_toeplitz },
345	{ "toeplitz-othercpus", pktq_rps_hash_toeplitz_othercpus },
346};
347const pktq_rps_hash_func_t pktq_rps_hash_default =
348#ifdef NET_MPSAFE
349	pktq_rps_hash_curcpu;
350#else
351	pktq_rps_hash_zero;
352#endif
353
354static const char *
355pktq_get_rps_hash_type(pktq_rps_hash_func_t func)
356{
357
358	for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) {
359		if (func == pktq_rps_hash_tab[i].prh_func) {
360			return pktq_rps_hash_tab[i].prh_type;
361		}
362	}
363
364	return NULL;
365}
366
367static int
368pktq_set_rps_hash_type(pktq_rps_hash_func_t *func, const char *type)
369{
370
371	if (strcmp(type, pktq_get_rps_hash_type(*func)) == 0)
372		return 0;
373
374	for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) {
375		if (strcmp(type, pktq_rps_hash_tab[i].prh_type) == 0) {
376			atomic_store_relaxed(func, pktq_rps_hash_tab[i].prh_func);
377			return 0;
378		}
379	}
380
381	return ENOENT;
382}
383
384int
385sysctl_pktq_rps_hash_handler(SYSCTLFN_ARGS)
386{
387	struct sysctlnode node;
388	pktq_rps_hash_func_t *func;
389	int error;
390	char type[PKTQ_RPS_HASH_NAME_LEN];
391
392	node = *rnode;
393	func = node.sysctl_data;
394
395	strlcpy(type, pktq_get_rps_hash_type(*func), PKTQ_RPS_HASH_NAME_LEN);
396
397	node.sysctl_data = &type;
398	node.sysctl_size = sizeof(type);
399	error = sysctl_lookup(SYSCTLFN_CALL(&node));
400	if (error || newp == NULL)
401		return error;
402
403	error = pktq_set_rps_hash_type(func, type);
404
405	return error;
406 }
407
408/*
409 * pktq_enqueue: inject the packet into the end of the queue.
410 *
411 * => Must be called from the interrupt or with the preemption disabled.
412 * => Consumes the packet and returns true on success.
413 * => Returns false on failure; caller is responsible to free the packet.
414 */
415bool
416pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
417{
418#if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI)
419	struct cpu_info *ci = curcpu();
420#else
421	struct cpu_info *ci = cpu_lookup(hash % ncpu);
422#endif
423
424	KASSERT(kpreempt_disabled());
425
426	if (__predict_false(!pcq_put(pktq_pcq(pq, ci), m))) {
427		pktq_inc_count(pq, PQCNT_DROP);
428		return false;
429	}
430	softint_schedule_cpu(pq->pq_sih, ci);
431	pktq_inc_count(pq, PQCNT_ENQUEUE);
432	return true;
433}
434
435/*
436 * pktq_dequeue: take a packet from the queue.
437 *
438 * => Must be called with preemption disabled.
439 * => Must ensure there are not concurrent dequeue calls.
440 */
441struct mbuf *
442pktq_dequeue(pktqueue_t *pq)
443{
444	struct cpu_info *ci = curcpu();
445	struct mbuf *m;
446
447	KASSERT(kpreempt_disabled());
448
449	m = pcq_get(pktq_pcq(pq, ci));
450	if (__predict_false(m == PKTQ_MARKER)) {
451		/* Note the marker entry. */
452		atomic_inc_uint(&pq->pq_barrier);
453
454		/* Get the next queue entry. */
455		m = pcq_get(pktq_pcq(pq, ci));
456
457		/*
458		 * There can only be one barrier operation pending
459		 * on a pktqueue at any given time, so we can assert
460		 * that the next item is not a marker.
461		 */
462		KASSERT(m != PKTQ_MARKER);
463	}
464	if (__predict_true(m != NULL)) {
465		pktq_inc_count(pq, PQCNT_DEQUEUE);
466	}
467	return m;
468}
469
470/*
471 * pktq_barrier: waits for a grace period when all packets enqueued at
472 * the moment of calling this routine will be processed.  This is used
473 * to ensure that e.g. packets referencing some interface were drained.
474 */
475void
476pktq_barrier(pktqueue_t *pq)
477{
478	CPU_INFO_ITERATOR cii;
479	struct cpu_info *ci;
480	u_int pending = 0;
481
482	mutex_enter(&pq->pq_lock);
483	KASSERT(pq->pq_barrier == 0);
484
485	for (CPU_INFO_FOREACH(cii, ci)) {
486		struct pcq *q;
487
488		kpreempt_disable();
489		q = pktq_pcq(pq, ci);
490		kpreempt_enable();
491
492		/* If the queue is empty - nothing to do. */
493		if (pcq_peek(q) == NULL) {
494			continue;
495		}
496		/* Otherwise, put the marker and entry. */
497		while (!pcq_put(q, PKTQ_MARKER)) {
498			kpause("pktqsync", false, 1, NULL);
499		}
500		kpreempt_disable();
501		softint_schedule_cpu(pq->pq_sih, ci);
502		kpreempt_enable();
503		pending++;
504	}
505
506	/* Wait for each queue to process the markers. */
507	while (pq->pq_barrier != pending) {
508		kpause("pktqsync", false, 1, NULL);
509	}
510	pq->pq_barrier = 0;
511	mutex_exit(&pq->pq_lock);
512}
513
514/*
515 * pktq_ifdetach: issue a barrier on all pktqueues when a network
516 * interface is detached.
517 */
518void
519pktq_ifdetach(void)
520{
521	pktqueue_t *pq;
522
523	/* Just in case no pktqueues have been created yet... */
524	RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init);
525
526	rw_enter(&pktqueue_list_lock, RW_READER);
527	LIST_FOREACH(pq, &pktqueue_list, pq_list) {
528		pktq_barrier(pq);
529	}
530	rw_exit(&pktqueue_list_lock);
531}
532
533/*
534 * pktq_flush: free mbufs in all queues.
535 *
536 * => The caller must ensure there are no concurrent writers or flush calls.
537 */
538void
539pktq_flush(pktqueue_t *pq)
540{
541	CPU_INFO_ITERATOR cii;
542	struct cpu_info *ci;
543	struct mbuf *m, *m0 = NULL;
544
545	ASSERT_SLEEPABLE();
546
547	/*
548	 * Run a dummy softint at IPL_SOFTNET on all CPUs to ensure that any
549	 * already running handler for this pktqueue is no longer running.
550	 */
551	xc_barrier(XC_HIGHPRI_IPL(IPL_SOFTNET));
552
553	/*
554	 * Acquire the barrier lock.  While the caller ensures that
555	 * no explicit pktq_barrier() calls will be issued, this holds
556	 * off any implicit pktq_barrier() calls that would happen
557	 * as the result of pktq_ifdetach().
558	 */
559	mutex_enter(&pq->pq_lock);
560
561	for (CPU_INFO_FOREACH(cii, ci)) {
562		struct pcq *q;
563
564		kpreempt_disable();
565		q = pktq_pcq(pq, ci);
566		kpreempt_enable();
567
568		/*
569		 * Pull the packets off the pcq and chain them into
570		 * a list to be freed later.
571		 */
572		while ((m = pcq_get(q)) != NULL) {
573			pktq_inc_count(pq, PQCNT_DEQUEUE);
574			m->m_nextpkt = m0;
575			m0 = m;
576		}
577	}
578
579	mutex_exit(&pq->pq_lock);
580
581	/* Free the packets now that the critical section is over. */
582	while ((m = m0) != NULL) {
583		m0 = m->m_nextpkt;
584		m_freem(m);
585	}
586}
587
588static void
589pktq_set_maxlen_cpu(void *vpq, void *vqs)
590{
591	struct pktqueue *pq = vpq;
592	struct pcq **qp, *q, **qs = vqs;
593	unsigned i = cpu_index(curcpu());
594	int s;
595
596	s = splnet();
597	qp = percpu_getref(pq->pq_pcq);
598	q = *qp;
599	*qp = qs[i];
600	qs[i] = q;
601	percpu_putref(pq->pq_pcq);
602	splx(s);
603}
604
605/*
606 * pktq_set_maxlen: create per-CPU queues using a new size and replace
607 * the existing queues without losing any packets.
608 *
609 * XXX ncpu must remain stable throughout.
610 */
611int
612pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
613{
614	const u_int slotbytes = ncpu * sizeof(pcq_t *);
615	pcq_t **qs;
616
617	if (!maxlen || maxlen > PCQ_MAXLEN)
618		return EINVAL;
619	if (pq->pq_maxlen == maxlen)
620		return 0;
621
622	/* First, allocate the new queues. */
623	qs = kmem_zalloc(slotbytes, KM_SLEEP);
624	for (u_int i = 0; i < ncpu; i++) {
625		qs[i] = pcq_create(maxlen, KM_SLEEP);
626	}
627
628	/*
629	 * Issue an xcall to replace the queue pointers on each CPU.
630	 * This implies all the necessary memory barriers.
631	 */
632	mutex_enter(&pq->pq_lock);
633	xc_wait(xc_broadcast(XC_HIGHPRI, pktq_set_maxlen_cpu, pq, qs));
634	pq->pq_maxlen = maxlen;
635	mutex_exit(&pq->pq_lock);
636
637	/*
638	 * At this point, the new packets are flowing into the new
639	 * queues.  However, the old queues may have some packets
640	 * present which are no longer being processed.  We are going
641	 * to re-enqueue them.  This may change the order of packet
642	 * arrival, but it is not considered an issue.
643	 *
644	 * There may be in-flight interrupts calling pktq_dequeue()
645	 * which reference the old queues.  Issue a barrier to ensure
646	 * that we are going to be the only pcq_get() callers on the
647	 * old queues.
648	 */
649	pktq_barrier(pq);
650
651	for (u_int i = 0; i < ncpu; i++) {
652		struct pcq *q;
653		struct mbuf *m;
654
655		kpreempt_disable();
656		q = pktq_pcq(pq, cpu_lookup(i));
657		kpreempt_enable();
658
659		while ((m = pcq_get(qs[i])) != NULL) {
660			while (!pcq_put(q, m)) {
661				kpause("pktqrenq", false, 1, NULL);
662			}
663		}
664		pcq_destroy(qs[i]);
665	}
666
667	/* Well, that was fun. */
668	kmem_free(qs, slotbytes);
669	return 0;
670}
671
672static int
673sysctl_pktq_maxlen(SYSCTLFN_ARGS)
674{
675	struct sysctlnode node = *rnode;
676	pktqueue_t * const pq = node.sysctl_data;
677	u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
678	int error;
679
680	node.sysctl_data = &nmaxlen;
681	error = sysctl_lookup(SYSCTLFN_CALL(&node));
682	if (error || newp == NULL)
683		return error;
684	return pktq_set_maxlen(pq, nmaxlen);
685}
686
687static int
688sysctl_pktq_count(SYSCTLFN_ARGS, u_int count_id)
689{
690	struct sysctlnode node = *rnode;
691	pktqueue_t * const pq = node.sysctl_data;
692	uint64_t count = pktq_get_count(pq, count_id);
693
694	node.sysctl_data = &count;
695	return sysctl_lookup(SYSCTLFN_CALL(&node));
696}
697
698static int
699sysctl_pktq_nitems(SYSCTLFN_ARGS)
700{
701	return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_NITEMS);
702}
703
704static int
705sysctl_pktq_drops(SYSCTLFN_ARGS)
706{
707	return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_DROPS);
708}
709
710/*
711 * pktqueue_sysctl_setup: set up the sysctl nodes for a pktqueue
712 * using standardized names at the specified parent node and
713 * node ID (or CTL_CREATE).
714 */
715void
716pktq_sysctl_setup(pktqueue_t * const pq, struct sysctllog ** const clog,
717		  const struct sysctlnode * const parent_node, const int qid)
718{
719	const struct sysctlnode *rnode = parent_node, *cnode;
720
721	KASSERT(pq != NULL);
722	KASSERT(parent_node != NULL);
723	KASSERT(qid == CTL_CREATE || qid >= 0);
724
725	/* Create the "ifq" node below the parent node. */
726	sysctl_createv(clog, 0, &rnode, &cnode,
727		       CTLFLAG_PERMANENT,
728		       CTLTYPE_NODE, "ifq",
729		       SYSCTL_DESCR("Protocol input queue controls"),
730		       NULL, 0, NULL, 0,
731		       qid, CTL_EOL);
732
733	/* Now create the standard child nodes below "ifq". */
734	rnode = cnode;
735
736	sysctl_createv(clog, 0, &rnode, &cnode,
737		       CTLFLAG_PERMANENT,
738		       CTLTYPE_QUAD, "len",
739		       SYSCTL_DESCR("Current input queue length"),
740		       sysctl_pktq_nitems, 0, (void *)pq, 0,
741		       IFQCTL_LEN, CTL_EOL);
742	sysctl_createv(clog, 0, &rnode, &cnode,
743		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
744		       CTLTYPE_INT, "maxlen",
745		       SYSCTL_DESCR("Maximum allowed input queue length"),
746		       sysctl_pktq_maxlen, 0, (void *)pq, 0,
747		       IFQCTL_MAXLEN, CTL_EOL);
748	sysctl_createv(clog, 0, &rnode, &cnode,
749		       CTLFLAG_PERMANENT,
750		       CTLTYPE_QUAD, "drops",
751		       SYSCTL_DESCR("Packets dropped due to full input queue"),
752		       sysctl_pktq_drops, 0, (void *)pq, 0,
753		       IFQCTL_DROPS, CTL_EOL);
754}
755