vfs_bio.c revision 1.269
1/*	$NetBSD: vfs_bio.c,v 1.269 2017/01/20 09:45:13 skrll Exp $	*/
2
3/*-
4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 *    may be used to endorse or promote products derived from this software
51 *    without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
66 */
67
68/*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 *    notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 *    notice, this list of conditions and the following disclaimer in the
78 *    documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 *    must display the following acknowledgement:
81 *	This product includes software developed by the University of
82 *	California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 *    may be used to endorse or promote products derived from this software
85 *    without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
100 */
101
102/*
103 * The buffer cache subsystem.
104 *
105 * Some references:
106 *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 *	Leffler, et al.: The Design and Implementation of the 4.3BSD
108 *		UNIX Operating System (Addison Welley, 1989)
109 *
110 * Locking
111 *
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 *
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
119 *
120 * Lock order:
121 *	bufcache_lock ->
122 *		buf_t::b_objlock
123 */
124
125#include <sys/cdefs.h>
126__KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.269 2017/01/20 09:45:13 skrll Exp $");
127
128#ifdef _KERNEL_OPT
129#include "opt_bufcache.h"
130#include "opt_dtrace.h"
131#include "opt_biohist.h"
132#endif
133
134#include <sys/param.h>
135#include <sys/systm.h>
136#include <sys/kernel.h>
137#include <sys/proc.h>
138#include <sys/buf.h>
139#include <sys/vnode.h>
140#include <sys/mount.h>
141#include <sys/resourcevar.h>
142#include <sys/sysctl.h>
143#include <sys/conf.h>
144#include <sys/kauth.h>
145#include <sys/fstrans.h>
146#include <sys/intr.h>
147#include <sys/cpu.h>
148#include <sys/wapbl.h>
149#include <sys/bitops.h>
150#include <sys/cprng.h>
151#include <sys/sdt.h>
152
153#include <uvm/uvm.h>	/* extern struct uvm uvm */
154
155#include <miscfs/specfs/specdev.h>
156
157#ifndef	BUFPAGES
158# define BUFPAGES 0
159#endif
160
161#ifdef BUFCACHE
162# if (BUFCACHE < 5) || (BUFCACHE > 95)
163#  error BUFCACHE is not between 5 and 95
164# endif
165#else
166# define BUFCACHE 15
167#endif
168
169u_int	nbuf;			/* desired number of buffer headers */
170u_int	bufpages = BUFPAGES;	/* optional hardwired count */
171u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
172
173/* Function prototypes */
174struct bqueue;
175
176static void buf_setwm(void);
177static int buf_trim(void);
178static void *bufpool_page_alloc(struct pool *, int);
179static void bufpool_page_free(struct pool *, void *);
180static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
181static buf_t *getnewbuf(int, int, int);
182static int buf_lotsfree(void);
183static int buf_canrelease(void);
184static u_long buf_mempoolidx(u_long);
185static u_long buf_roundsize(u_long);
186static void *buf_alloc(size_t);
187static void buf_mrelease(void *, size_t);
188static void binsheadfree(buf_t *, struct bqueue *);
189static void binstailfree(buf_t *, struct bqueue *);
190#ifdef DEBUG
191static int checkfreelist(buf_t *, struct bqueue *, int);
192#endif
193static void biointr(void *);
194static void biodone2(buf_t *);
195static void bref(buf_t *);
196static void brele(buf_t *);
197static void sysctl_kern_buf_setup(void);
198static void sysctl_vm_buf_setup(void);
199
200/* Initialization for biohist */
201
202#include <sys/biohist.h>
203
204BIOHIST_DEFINE(biohist);
205
206void
207biohist_init(void)
208{
209
210	BIOHIST_INIT(biohist, BIOHIST_SIZE);
211}
212
213/*
214 * Definitions for the buffer hash lists.
215 */
216#define	BUFHASH(dvp, lbn)	\
217	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
218LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
219u_long	bufhash;
220struct bqueue bufqueues[BQUEUES];
221
222static kcondvar_t needbuffer_cv;
223
224/*
225 * Buffer queue lock.
226 */
227kmutex_t bufcache_lock;
228kmutex_t buffer_lock;
229
230/* Software ISR for completed transfers. */
231static void *biodone_sih;
232
233/* Buffer pool for I/O buffers. */
234static pool_cache_t buf_cache;
235static pool_cache_t bufio_cache;
236
237#define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE))	/* smallest pool is 512 bytes */
238#define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
239__CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
240
241/* Buffer memory pools */
242static struct pool bmempools[NMEMPOOLS];
243
244static struct vm_map *buf_map;
245
246/*
247 * Buffer memory pool allocator.
248 */
249static void *
250bufpool_page_alloc(struct pool *pp, int flags)
251{
252
253	return (void *)uvm_km_alloc(buf_map,
254	    MAXBSIZE, MAXBSIZE,
255	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
256	    | UVM_KMF_WIRED);
257}
258
259static void
260bufpool_page_free(struct pool *pp, void *v)
261{
262
263	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
264}
265
266static struct pool_allocator bufmempool_allocator = {
267	.pa_alloc = bufpool_page_alloc,
268	.pa_free = bufpool_page_free,
269	.pa_pagesz = MAXBSIZE,
270};
271
272/* Buffer memory management variables */
273u_long bufmem_valimit;
274u_long bufmem_hiwater;
275u_long bufmem_lowater;
276u_long bufmem;
277
278/*
279 * MD code can call this to set a hard limit on the amount
280 * of virtual memory used by the buffer cache.
281 */
282int
283buf_setvalimit(vsize_t sz)
284{
285
286	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
287	if (sz < NMEMPOOLS * MAXBSIZE)
288		return EINVAL;
289
290	bufmem_valimit = sz;
291	return 0;
292}
293
294static void
295buf_setwm(void)
296{
297
298	bufmem_hiwater = buf_memcalc();
299	/* lowater is approx. 2% of memory (with bufcache = 15) */
300#define	BUFMEM_WMSHIFT	3
301#define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
302	if (bufmem_hiwater < BUFMEM_HIWMMIN)
303		/* Ensure a reasonable minimum value */
304		bufmem_hiwater = BUFMEM_HIWMMIN;
305	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
306}
307
308#ifdef DEBUG
309int debug_verify_freelist = 0;
310static int
311checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
312{
313	buf_t *b;
314
315	if (!debug_verify_freelist)
316		return 1;
317
318	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
319		if (b == bp)
320			return ison ? 1 : 0;
321	}
322
323	return ison ? 0 : 1;
324}
325#endif
326
327/*
328 * Insq/Remq for the buffer hash lists.
329 * Call with buffer queue locked.
330 */
331static void
332binsheadfree(buf_t *bp, struct bqueue *dp)
333{
334
335	KASSERT(mutex_owned(&bufcache_lock));
336	KASSERT(bp->b_freelistindex == -1);
337	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
338	dp->bq_bytes += bp->b_bufsize;
339	bp->b_freelistindex = dp - bufqueues;
340}
341
342static void
343binstailfree(buf_t *bp, struct bqueue *dp)
344{
345
346	KASSERT(mutex_owned(&bufcache_lock));
347	KASSERTMSG(bp->b_freelistindex == -1, "double free of buffer? "
348	    "bp=%p, b_freelistindex=%d\n", bp, bp->b_freelistindex);
349	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
350	dp->bq_bytes += bp->b_bufsize;
351	bp->b_freelistindex = dp - bufqueues;
352}
353
354void
355bremfree(buf_t *bp)
356{
357	struct bqueue *dp;
358	int bqidx = bp->b_freelistindex;
359
360	KASSERT(mutex_owned(&bufcache_lock));
361
362	KASSERT(bqidx != -1);
363	dp = &bufqueues[bqidx];
364	KDASSERT(checkfreelist(bp, dp, 1));
365	KASSERT(dp->bq_bytes >= bp->b_bufsize);
366	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
367	dp->bq_bytes -= bp->b_bufsize;
368
369	/* For the sysctl helper. */
370	if (bp == dp->bq_marker)
371		dp->bq_marker = NULL;
372
373#if defined(DIAGNOSTIC)
374	bp->b_freelistindex = -1;
375#endif /* defined(DIAGNOSTIC) */
376}
377
378/*
379 * Add a reference to an buffer structure that came from buf_cache.
380 */
381static inline void
382bref(buf_t *bp)
383{
384
385	KASSERT(mutex_owned(&bufcache_lock));
386	KASSERT(bp->b_refcnt > 0);
387
388	bp->b_refcnt++;
389}
390
391/*
392 * Free an unused buffer structure that came from buf_cache.
393 */
394static inline void
395brele(buf_t *bp)
396{
397
398	KASSERT(mutex_owned(&bufcache_lock));
399	KASSERT(bp->b_refcnt > 0);
400
401	if (bp->b_refcnt-- == 1) {
402		buf_destroy(bp);
403#ifdef DEBUG
404		memset((char *)bp, 0, sizeof(*bp));
405#endif
406		pool_cache_put(buf_cache, bp);
407	}
408}
409
410/*
411 * note that for some ports this is used by pmap bootstrap code to
412 * determine kva size.
413 */
414u_long
415buf_memcalc(void)
416{
417	u_long n;
418	vsize_t mapsz = 0;
419
420	/*
421	 * Determine the upper bound of memory to use for buffers.
422	 *
423	 *	- If bufpages is specified, use that as the number
424	 *	  pages.
425	 *
426	 *	- Otherwise, use bufcache as the percentage of
427	 *	  physical memory.
428	 */
429	if (bufpages != 0) {
430		n = bufpages;
431	} else {
432		if (bufcache < 5) {
433			printf("forcing bufcache %d -> 5", bufcache);
434			bufcache = 5;
435		}
436		if (bufcache > 95) {
437			printf("forcing bufcache %d -> 95", bufcache);
438			bufcache = 95;
439		}
440		if (buf_map != NULL)
441			mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
442		n = calc_cache_size(mapsz, bufcache,
443		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
444		    / PAGE_SIZE;
445	}
446
447	n <<= PAGE_SHIFT;
448	if (bufmem_valimit != 0 && n > bufmem_valimit)
449		n = bufmem_valimit;
450
451	return (n);
452}
453
454/*
455 * Initialize buffers and hash links for buffers.
456 */
457void
458bufinit(void)
459{
460	struct bqueue *dp;
461	int use_std;
462	u_int i;
463
464	biodone_vfs = biodone;
465
466	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
467	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
468	cv_init(&needbuffer_cv, "needbuf");
469
470	if (bufmem_valimit != 0) {
471		vaddr_t minaddr = 0, maxaddr;
472		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
473					  bufmem_valimit, 0, false, 0);
474		if (buf_map == NULL)
475			panic("bufinit: cannot allocate submap");
476	} else
477		buf_map = kernel_map;
478
479	/*
480	 * Initialize buffer cache memory parameters.
481	 */
482	bufmem = 0;
483	buf_setwm();
484
485	/* On "small" machines use small pool page sizes where possible */
486	use_std = (physmem < atop(16*1024*1024));
487
488	/*
489	 * Also use them on systems that can map the pool pages using
490	 * a direct-mapped segment.
491	 */
492#ifdef PMAP_MAP_POOLPAGE
493	use_std = 1;
494#endif
495
496	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
497	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
498	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
499	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
500
501	for (i = 0; i < NMEMPOOLS; i++) {
502		struct pool_allocator *pa;
503		struct pool *pp = &bmempools[i];
504		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
505		char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
506		if (__predict_false(size >= 1048576))
507			(void)snprintf(name, 8, "buf%um", size / 1048576);
508		else if (__predict_true(size >= 1024))
509			(void)snprintf(name, 8, "buf%uk", size / 1024);
510		else
511			(void)snprintf(name, 8, "buf%ub", size);
512		pa = (size <= PAGE_SIZE && use_std)
513			? &pool_allocator_nointr
514			: &bufmempool_allocator;
515		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
516		pool_setlowat(pp, 1);
517		pool_sethiwat(pp, 1);
518	}
519
520	/* Initialize the buffer queues */
521	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
522		TAILQ_INIT(&dp->bq_queue);
523		dp->bq_bytes = 0;
524	}
525
526	/*
527	 * Estimate hash table size based on the amount of memory we
528	 * intend to use for the buffer cache. The average buffer
529	 * size is dependent on our clients (i.e. filesystems).
530	 *
531	 * For now, use an empirical 3K per buffer.
532	 */
533	nbuf = (bufmem_hiwater / 1024) / 3;
534	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
535
536	sysctl_kern_buf_setup();
537	sysctl_vm_buf_setup();
538}
539
540void
541bufinit2(void)
542{
543
544	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
545	    NULL);
546	if (biodone_sih == NULL)
547		panic("bufinit2: can't establish soft interrupt");
548}
549
550static int
551buf_lotsfree(void)
552{
553	u_long guess;
554
555	/* Always allocate if less than the low water mark. */
556	if (bufmem < bufmem_lowater)
557		return 1;
558
559	/* Never allocate if greater than the high water mark. */
560	if (bufmem > bufmem_hiwater)
561		return 0;
562
563	/* If there's anything on the AGE list, it should be eaten. */
564	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
565		return 0;
566
567	/*
568	 * The probabily of getting a new allocation is inversely
569	 * proportional  to the current size of the cache above
570	 * the low water mark.  Divide the total first to avoid overflows
571	 * in the product.
572	 */
573	guess = cprng_fast32() % 16;
574
575	if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
576	    (bufmem - bufmem_lowater))
577		return 1;
578
579	/* Otherwise don't allocate. */
580	return 0;
581}
582
583/*
584 * Return estimate of bytes we think need to be
585 * released to help resolve low memory conditions.
586 *
587 * => called with bufcache_lock held.
588 */
589static int
590buf_canrelease(void)
591{
592	int pagedemand, ninvalid = 0;
593
594	KASSERT(mutex_owned(&bufcache_lock));
595
596	if (bufmem < bufmem_lowater)
597		return 0;
598
599	if (bufmem > bufmem_hiwater)
600		return bufmem - bufmem_hiwater;
601
602	ninvalid += bufqueues[BQ_AGE].bq_bytes;
603
604	pagedemand = uvmexp.freetarg - uvmexp.free;
605	if (pagedemand < 0)
606		return ninvalid;
607	return MAX(ninvalid, MIN(2 * MAXBSIZE,
608	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
609}
610
611/*
612 * Buffer memory allocation helper functions
613 */
614static u_long
615buf_mempoolidx(u_long size)
616{
617	u_int n = 0;
618
619	size -= 1;
620	size >>= MEMPOOL_INDEX_OFFSET;
621	while (size) {
622		size >>= 1;
623		n += 1;
624	}
625	if (n >= NMEMPOOLS)
626		panic("buf mem pool index %d", n);
627	return n;
628}
629
630static u_long
631buf_roundsize(u_long size)
632{
633	/* Round up to nearest power of 2 */
634	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
635}
636
637static void *
638buf_alloc(size_t size)
639{
640	u_int n = buf_mempoolidx(size);
641	void *addr;
642
643	while (1) {
644		addr = pool_get(&bmempools[n], PR_NOWAIT);
645		if (addr != NULL)
646			break;
647
648		/* No memory, see if we can free some. If so, try again */
649		mutex_enter(&bufcache_lock);
650		if (buf_drain(1) > 0) {
651			mutex_exit(&bufcache_lock);
652			continue;
653		}
654
655		if (curlwp == uvm.pagedaemon_lwp) {
656			mutex_exit(&bufcache_lock);
657			return NULL;
658		}
659
660		/* Wait for buffers to arrive on the LRU queue */
661		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
662		mutex_exit(&bufcache_lock);
663	}
664
665	return addr;
666}
667
668static void
669buf_mrelease(void *addr, size_t size)
670{
671
672	pool_put(&bmempools[buf_mempoolidx(size)], addr);
673}
674
675/*
676 * bread()/breadn() helper.
677 */
678static buf_t *
679bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
680{
681	buf_t *bp;
682	struct mount *mp;
683
684	bp = getblk(vp, blkno, size, 0, 0);
685
686	/*
687	 * getblk() may return NULL if we are the pagedaemon.
688	 */
689	if (bp == NULL) {
690		KASSERT(curlwp == uvm.pagedaemon_lwp);
691		return NULL;
692	}
693
694	/*
695	 * If buffer does not have data valid, start a read.
696	 * Note that if buffer is BC_INVAL, getblk() won't return it.
697	 * Therefore, it's valid if its I/O has completed or been delayed.
698	 */
699	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
700		/* Start I/O for the buffer. */
701		SET(bp->b_flags, B_READ | async);
702		if (async)
703			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
704		else
705			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
706		VOP_STRATEGY(vp, bp);
707
708		/* Pay for the read. */
709		curlwp->l_ru.ru_inblock++;
710	} else if (async)
711		brelse(bp, 0);
712
713	if (vp->v_type == VBLK)
714		mp = spec_node_getmountedfs(vp);
715	else
716		mp = vp->v_mount;
717
718	/*
719	 * Collect statistics on synchronous and asynchronous reads.
720	 * Reads from block devices are charged to their associated
721	 * filesystem (if any).
722	 */
723	if (mp != NULL) {
724		if (async == 0)
725			mp->mnt_stat.f_syncreads++;
726		else
727			mp->mnt_stat.f_asyncreads++;
728	}
729
730	return (bp);
731}
732
733/*
734 * Read a disk block.
735 * This algorithm described in Bach (p.54).
736 */
737int
738bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
739{
740	buf_t *bp;
741	int error;
742
743	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
744
745	/* Get buffer for block. */
746	bp = *bpp = bio_doread(vp, blkno, size, 0);
747	if (bp == NULL)
748		return ENOMEM;
749
750	/* Wait for the read to complete, and return result. */
751	error = biowait(bp);
752	if (error == 0 && (flags & B_MODIFY) != 0)
753		error = fscow_run(bp, true);
754	if (error) {
755		brelse(bp, 0);
756		*bpp = NULL;
757	}
758
759	return error;
760}
761
762/*
763 * Read-ahead multiple disk blocks. The first is sync, the rest async.
764 * Trivial modification to the breada algorithm presented in Bach (p.55).
765 */
766int
767breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
768    int *rasizes, int nrablks, int flags, buf_t **bpp)
769{
770	buf_t *bp;
771	int error, i;
772
773	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
774
775	bp = *bpp = bio_doread(vp, blkno, size, 0);
776	if (bp == NULL)
777		return ENOMEM;
778
779	/*
780	 * For each of the read-ahead blocks, start a read, if necessary.
781	 */
782	mutex_enter(&bufcache_lock);
783	for (i = 0; i < nrablks; i++) {
784		/* If it's in the cache, just go on to next one. */
785		if (incore(vp, rablks[i]))
786			continue;
787
788		/* Get a buffer for the read-ahead block */
789		mutex_exit(&bufcache_lock);
790		(void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
791		mutex_enter(&bufcache_lock);
792	}
793	mutex_exit(&bufcache_lock);
794
795	/* Otherwise, we had to start a read for it; wait until it's valid. */
796	error = biowait(bp);
797	if (error == 0 && (flags & B_MODIFY) != 0)
798		error = fscow_run(bp, true);
799	if (error) {
800		brelse(bp, 0);
801		*bpp = NULL;
802	}
803
804	return error;
805}
806
807/*
808 * Block write.  Described in Bach (p.56)
809 */
810int
811bwrite(buf_t *bp)
812{
813	int rv, sync, wasdelayed;
814	struct vnode *vp;
815	struct mount *mp;
816
817	BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%p",
818	    bp, 0, 0, 0);
819
820	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
821	KASSERT(!cv_has_waiters(&bp->b_done));
822
823	vp = bp->b_vp;
824
825	/*
826	 * dholland 20160728 AFAICT vp==NULL must be impossible as it
827	 * will crash upon reaching VOP_STRATEGY below... see further
828	 * analysis on tech-kern.
829	 */
830	KASSERTMSG(vp != NULL, "bwrite given buffer with null vnode");
831
832	if (vp != NULL) {
833		KASSERT(bp->b_objlock == vp->v_interlock);
834		if (vp->v_type == VBLK)
835			mp = spec_node_getmountedfs(vp);
836		else
837			mp = vp->v_mount;
838	} else {
839		mp = NULL;
840	}
841
842	if (mp && mp->mnt_wapbl) {
843		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
844			bdwrite(bp);
845			return 0;
846		}
847	}
848
849	/*
850	 * Remember buffer type, to switch on it later.  If the write was
851	 * synchronous, but the file system was mounted with MNT_ASYNC,
852	 * convert it to a delayed write.
853	 * XXX note that this relies on delayed tape writes being converted
854	 * to async, not sync writes (which is safe, but ugly).
855	 */
856	sync = !ISSET(bp->b_flags, B_ASYNC);
857	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
858		bdwrite(bp);
859		return (0);
860	}
861
862	/*
863	 * Collect statistics on synchronous and asynchronous writes.
864	 * Writes to block devices are charged to their associated
865	 * filesystem (if any).
866	 */
867	if (mp != NULL) {
868		if (sync)
869			mp->mnt_stat.f_syncwrites++;
870		else
871			mp->mnt_stat.f_asyncwrites++;
872	}
873
874	/*
875	 * Pay for the I/O operation and make sure the buf is on the correct
876	 * vnode queue.
877	 */
878	bp->b_error = 0;
879	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
880	CLR(bp->b_flags, B_READ);
881	if (wasdelayed) {
882		mutex_enter(&bufcache_lock);
883		mutex_enter(bp->b_objlock);
884		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
885		reassignbuf(bp, bp->b_vp);
886		mutex_exit(&bufcache_lock);
887	} else {
888		curlwp->l_ru.ru_oublock++;
889		mutex_enter(bp->b_objlock);
890		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
891	}
892	if (vp != NULL)
893		vp->v_numoutput++;
894	mutex_exit(bp->b_objlock);
895
896	/* Initiate disk write. */
897	if (sync)
898		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
899	else
900		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
901
902	VOP_STRATEGY(vp, bp);
903
904	if (sync) {
905		/* If I/O was synchronous, wait for it to complete. */
906		rv = biowait(bp);
907
908		/* Release the buffer. */
909		brelse(bp, 0);
910
911		return (rv);
912	} else {
913		return (0);
914	}
915}
916
917int
918vn_bwrite(void *v)
919{
920	struct vop_bwrite_args *ap = v;
921
922	return (bwrite(ap->a_bp));
923}
924
925/*
926 * Delayed write.
927 *
928 * The buffer is marked dirty, but is not queued for I/O.
929 * This routine should be used when the buffer is expected
930 * to be modified again soon, typically a small write that
931 * partially fills a buffer.
932 *
933 * NB: magnetic tapes cannot be delayed; they must be
934 * written in the order that the writes are requested.
935 *
936 * Described in Leffler, et al. (pp. 208-213).
937 */
938void
939bdwrite(buf_t *bp)
940{
941
942	BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%p",
943	    bp, 0, 0, 0);
944
945	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
946	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
947	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
948	KASSERT(!cv_has_waiters(&bp->b_done));
949
950	/* If this is a tape block, write the block now. */
951	if (bdev_type(bp->b_dev) == D_TAPE) {
952		bawrite(bp);
953		return;
954	}
955
956	if (wapbl_vphaswapbl(bp->b_vp)) {
957		struct mount *mp = wapbl_vptomp(bp->b_vp);
958
959		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
960			WAPBL_ADD_BUF(mp, bp);
961		}
962	}
963
964	/*
965	 * If the block hasn't been seen before:
966	 *	(1) Mark it as having been seen,
967	 *	(2) Charge for the write,
968	 *	(3) Make sure it's on its vnode's correct block list.
969	 */
970	KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
971
972	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
973		mutex_enter(&bufcache_lock);
974		mutex_enter(bp->b_objlock);
975		SET(bp->b_oflags, BO_DELWRI);
976		curlwp->l_ru.ru_oublock++;
977		reassignbuf(bp, bp->b_vp);
978		mutex_exit(&bufcache_lock);
979	} else {
980		mutex_enter(bp->b_objlock);
981	}
982	/* Otherwise, the "write" is done, so mark and release the buffer. */
983	CLR(bp->b_oflags, BO_DONE);
984	mutex_exit(bp->b_objlock);
985
986	brelse(bp, 0);
987}
988
989/*
990 * Asynchronous block write; just an asynchronous bwrite().
991 */
992void
993bawrite(buf_t *bp)
994{
995
996	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
997	KASSERT(bp->b_vp != NULL);
998
999	SET(bp->b_flags, B_ASYNC);
1000	VOP_BWRITE(bp->b_vp, bp);
1001}
1002
1003/*
1004 * Release a buffer on to the free lists.
1005 * Described in Bach (p. 46).
1006 */
1007void
1008brelsel(buf_t *bp, int set)
1009{
1010	struct bqueue *bufq;
1011	struct vnode *vp;
1012
1013	KASSERT(bp != NULL);
1014	KASSERT(mutex_owned(&bufcache_lock));
1015	KASSERT(!cv_has_waiters(&bp->b_done));
1016	KASSERT(bp->b_refcnt > 0);
1017
1018	SET(bp->b_cflags, set);
1019
1020	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1021	KASSERT(bp->b_iodone == NULL);
1022
1023	/* Wake up any processes waiting for any buffer to become free. */
1024	cv_signal(&needbuffer_cv);
1025
1026	/* Wake up any proceeses waiting for _this_ buffer to become free */
1027	if (ISSET(bp->b_cflags, BC_WANTED))
1028		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
1029
1030	/* If it's clean clear the copy-on-write flag. */
1031	if (ISSET(bp->b_flags, B_COWDONE)) {
1032		mutex_enter(bp->b_objlock);
1033		if (!ISSET(bp->b_oflags, BO_DELWRI))
1034			CLR(bp->b_flags, B_COWDONE);
1035		mutex_exit(bp->b_objlock);
1036	}
1037
1038	/*
1039	 * Determine which queue the buffer should be on, then put it there.
1040	 */
1041
1042	/* If it's locked, don't report an error; try again later. */
1043	if (ISSET(bp->b_flags, B_LOCKED))
1044		bp->b_error = 0;
1045
1046	/* If it's not cacheable, or an error, mark it invalid. */
1047	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1048		SET(bp->b_cflags, BC_INVAL);
1049
1050	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1051		/*
1052		 * This is a delayed write buffer that was just flushed to
1053		 * disk.  It is still on the LRU queue.  If it's become
1054		 * invalid, then we need to move it to a different queue;
1055		 * otherwise leave it in its current position.
1056		 */
1057		CLR(bp->b_cflags, BC_VFLUSH);
1058		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1059		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1060			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1061			goto already_queued;
1062		} else {
1063			bremfree(bp);
1064		}
1065	}
1066
1067	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1068	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1069	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1070
1071	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1072		/*
1073		 * If it's invalid or empty, dissociate it from its vnode
1074		 * and put on the head of the appropriate queue.
1075		 */
1076		if (ISSET(bp->b_flags, B_LOCKED)) {
1077			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1078				struct mount *mp = wapbl_vptomp(vp);
1079
1080				KASSERT(bp->b_iodone
1081				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
1082				WAPBL_REMOVE_BUF(mp, bp);
1083			}
1084		}
1085
1086		mutex_enter(bp->b_objlock);
1087		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1088		if ((vp = bp->b_vp) != NULL) {
1089			KASSERT(bp->b_objlock == vp->v_interlock);
1090			reassignbuf(bp, bp->b_vp);
1091			brelvp(bp);
1092			mutex_exit(vp->v_interlock);
1093		} else {
1094			KASSERT(bp->b_objlock == &buffer_lock);
1095			mutex_exit(bp->b_objlock);
1096		}
1097
1098		if (bp->b_bufsize <= 0)
1099			/* no data */
1100			goto already_queued;
1101		else
1102			/* invalid data */
1103			bufq = &bufqueues[BQ_AGE];
1104		binsheadfree(bp, bufq);
1105	} else  {
1106		/*
1107		 * It has valid data.  Put it on the end of the appropriate
1108		 * queue, so that it'll stick around for as long as possible.
1109		 * If buf is AGE, but has dependencies, must put it on last
1110		 * bufqueue to be scanned, ie LRU. This protects against the
1111		 * livelock where BQ_AGE only has buffers with dependencies,
1112		 * and we thus never get to the dependent buffers in BQ_LRU.
1113		 */
1114		if (ISSET(bp->b_flags, B_LOCKED)) {
1115			/* locked in core */
1116			bufq = &bufqueues[BQ_LOCKED];
1117		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
1118			/* valid data */
1119			bufq = &bufqueues[BQ_LRU];
1120		} else {
1121			/* stale but valid data */
1122			bufq = &bufqueues[BQ_AGE];
1123		}
1124		binstailfree(bp, bufq);
1125	}
1126already_queued:
1127	/* Unlock the buffer. */
1128	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1129	CLR(bp->b_flags, B_ASYNC);
1130	cv_broadcast(&bp->b_busy);
1131
1132	if (bp->b_bufsize <= 0)
1133		brele(bp);
1134}
1135
1136void
1137brelse(buf_t *bp, int set)
1138{
1139
1140	mutex_enter(&bufcache_lock);
1141	brelsel(bp, set);
1142	mutex_exit(&bufcache_lock);
1143}
1144
1145/*
1146 * Determine if a block is in the cache.
1147 * Just look on what would be its hash chain.  If it's there, return
1148 * a pointer to it, unless it's marked invalid.  If it's marked invalid,
1149 * we normally don't return the buffer, unless the caller explicitly
1150 * wants us to.
1151 */
1152buf_t *
1153incore(struct vnode *vp, daddr_t blkno)
1154{
1155	buf_t *bp;
1156
1157	KASSERT(mutex_owned(&bufcache_lock));
1158
1159	/* Search hash chain */
1160	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1161		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1162		    !ISSET(bp->b_cflags, BC_INVAL)) {
1163		    	KASSERT(bp->b_objlock == vp->v_interlock);
1164		    	return (bp);
1165		}
1166	}
1167
1168	return (NULL);
1169}
1170
1171/*
1172 * Get a block of requested size that is associated with
1173 * a given vnode and block offset. If it is found in the
1174 * block cache, mark it as having been found, make it busy
1175 * and return it. Otherwise, return an empty block of the
1176 * correct size. It is up to the caller to insure that the
1177 * cached blocks be of the correct size.
1178 */
1179buf_t *
1180getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1181{
1182	int err, preserve;
1183	buf_t *bp;
1184
1185	mutex_enter(&bufcache_lock);
1186 loop:
1187	bp = incore(vp, blkno);
1188	if (bp != NULL) {
1189		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1190		if (err != 0) {
1191			if (err == EPASSTHROUGH)
1192				goto loop;
1193			mutex_exit(&bufcache_lock);
1194			return (NULL);
1195		}
1196		KASSERT(!cv_has_waiters(&bp->b_done));
1197#ifdef DIAGNOSTIC
1198		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1199		    bp->b_bcount < size && vp->v_type != VBLK)
1200			panic("getblk: block size invariant failed");
1201#endif
1202		bremfree(bp);
1203		preserve = 1;
1204	} else {
1205		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1206			goto loop;
1207
1208		if (incore(vp, blkno) != NULL) {
1209			/* The block has come into memory in the meantime. */
1210			brelsel(bp, 0);
1211			goto loop;
1212		}
1213
1214		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1215		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1216		mutex_enter(vp->v_interlock);
1217		bgetvp(vp, bp);
1218		mutex_exit(vp->v_interlock);
1219		preserve = 0;
1220	}
1221	mutex_exit(&bufcache_lock);
1222
1223	/*
1224	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1225	 * if we re-size buffers here.
1226	 */
1227	if (ISSET(bp->b_flags, B_LOCKED)) {
1228		KASSERT(bp->b_bufsize >= size);
1229	} else {
1230		if (allocbuf(bp, size, preserve)) {
1231			mutex_enter(&bufcache_lock);
1232			LIST_REMOVE(bp, b_hash);
1233			mutex_exit(&bufcache_lock);
1234			brelse(bp, BC_INVAL);
1235			return NULL;
1236		}
1237	}
1238	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1239	return (bp);
1240}
1241
1242/*
1243 * Get an empty, disassociated buffer of given size.
1244 */
1245buf_t *
1246geteblk(int size)
1247{
1248	buf_t *bp;
1249	int error __diagused;
1250
1251	mutex_enter(&bufcache_lock);
1252	while ((bp = getnewbuf(0, 0, 0)) == NULL)
1253		;
1254
1255	SET(bp->b_cflags, BC_INVAL);
1256	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1257	mutex_exit(&bufcache_lock);
1258	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1259	error = allocbuf(bp, size, 0);
1260	KASSERT(error == 0);
1261	return (bp);
1262}
1263
1264/*
1265 * Expand or contract the actual memory allocated to a buffer.
1266 *
1267 * If the buffer shrinks, data is lost, so it's up to the
1268 * caller to have written it out *first*; this routine will not
1269 * start a write.  If the buffer grows, it's the callers
1270 * responsibility to fill out the buffer's additional contents.
1271 */
1272int
1273allocbuf(buf_t *bp, int size, int preserve)
1274{
1275	void *addr;
1276	vsize_t oldsize, desired_size;
1277	int oldcount;
1278	int delta;
1279
1280	desired_size = buf_roundsize(size);
1281	if (desired_size > MAXBSIZE)
1282		printf("allocbuf: buffer larger than MAXBSIZE requested");
1283
1284	oldcount = bp->b_bcount;
1285
1286	bp->b_bcount = size;
1287
1288	oldsize = bp->b_bufsize;
1289	if (oldsize == desired_size) {
1290		/*
1291		 * Do not short cut the WAPBL resize, as the buffer length
1292		 * could still have changed and this would corrupt the
1293		 * tracking of the transaction length.
1294		 */
1295		goto out;
1296	}
1297
1298	/*
1299	 * If we want a buffer of a different size, re-allocate the
1300	 * buffer's memory; copy old content only if needed.
1301	 */
1302	addr = buf_alloc(desired_size);
1303	if (addr == NULL)
1304		return ENOMEM;
1305	if (preserve)
1306		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1307	if (bp->b_data != NULL)
1308		buf_mrelease(bp->b_data, oldsize);
1309	bp->b_data = addr;
1310	bp->b_bufsize = desired_size;
1311
1312	/*
1313	 * Update overall buffer memory counter (protected by bufcache_lock)
1314	 */
1315	delta = (long)desired_size - (long)oldsize;
1316
1317	mutex_enter(&bufcache_lock);
1318	if ((bufmem += delta) > bufmem_hiwater) {
1319		/*
1320		 * Need to trim overall memory usage.
1321		 */
1322		while (buf_canrelease()) {
1323			if (curcpu()->ci_schedstate.spc_flags &
1324			    SPCF_SHOULDYIELD) {
1325				mutex_exit(&bufcache_lock);
1326				preempt();
1327				mutex_enter(&bufcache_lock);
1328			}
1329			if (buf_trim() == 0)
1330				break;
1331		}
1332	}
1333	mutex_exit(&bufcache_lock);
1334
1335 out:
1336	if (wapbl_vphaswapbl(bp->b_vp))
1337		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1338
1339	return 0;
1340}
1341
1342/*
1343 * Find a buffer which is available for use.
1344 * Select something from a free list.
1345 * Preference is to AGE list, then LRU list.
1346 *
1347 * Called with the buffer queues locked.
1348 * Return buffer locked.
1349 */
1350buf_t *
1351getnewbuf(int slpflag, int slptimeo, int from_bufq)
1352{
1353	buf_t *bp;
1354	struct vnode *vp;
1355
1356 start:
1357	KASSERT(mutex_owned(&bufcache_lock));
1358
1359	/*
1360	 * Get a new buffer from the pool.
1361	 */
1362	if (!from_bufq && buf_lotsfree()) {
1363		mutex_exit(&bufcache_lock);
1364		bp = pool_cache_get(buf_cache, PR_NOWAIT);
1365		if (bp != NULL) {
1366			memset((char *)bp, 0, sizeof(*bp));
1367			buf_init(bp);
1368			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
1369			mutex_enter(&bufcache_lock);
1370#if defined(DIAGNOSTIC)
1371			bp->b_freelistindex = -1;
1372#endif /* defined(DIAGNOSTIC) */
1373			return (bp);
1374		}
1375		mutex_enter(&bufcache_lock);
1376	}
1377
1378	KASSERT(mutex_owned(&bufcache_lock));
1379	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1380	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1381	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1382		bremfree(bp);
1383
1384		/* Buffer is no longer on free lists. */
1385		SET(bp->b_cflags, BC_BUSY);
1386	} else {
1387		/*
1388		 * XXX: !from_bufq should be removed.
1389		 */
1390		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1391			/* wait for a free buffer of any kind */
1392			if ((slpflag & PCATCH) != 0)
1393				(void)cv_timedwait_sig(&needbuffer_cv,
1394				    &bufcache_lock, slptimeo);
1395			else
1396				(void)cv_timedwait(&needbuffer_cv,
1397				    &bufcache_lock, slptimeo);
1398		}
1399		return (NULL);
1400	}
1401
1402#ifdef DIAGNOSTIC
1403	if (bp->b_bufsize <= 0)
1404		panic("buffer %p: on queue but empty", bp);
1405#endif
1406
1407	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1408		/*
1409		 * This is a delayed write buffer being flushed to disk.  Make
1410		 * sure it gets aged out of the queue when it's finished, and
1411		 * leave it off the LRU queue.
1412		 */
1413		CLR(bp->b_cflags, BC_VFLUSH);
1414		SET(bp->b_cflags, BC_AGE);
1415		goto start;
1416	}
1417
1418	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1419	KASSERT(bp->b_refcnt > 0);
1420    	KASSERT(!cv_has_waiters(&bp->b_done));
1421
1422	/*
1423	 * If buffer was a delayed write, start it and return NULL
1424	 * (since we might sleep while starting the write).
1425	 */
1426	if (ISSET(bp->b_oflags, BO_DELWRI)) {
1427		/*
1428		 * This buffer has gone through the LRU, so make sure it gets
1429		 * reused ASAP.
1430		 */
1431		SET(bp->b_cflags, BC_AGE);
1432		mutex_exit(&bufcache_lock);
1433		bawrite(bp);
1434		mutex_enter(&bufcache_lock);
1435		return (NULL);
1436	}
1437
1438	vp = bp->b_vp;
1439
1440	/* clear out various other fields */
1441	bp->b_cflags = BC_BUSY;
1442	bp->b_oflags = 0;
1443	bp->b_flags = 0;
1444	bp->b_dev = NODEV;
1445	bp->b_blkno = 0;
1446	bp->b_lblkno = 0;
1447	bp->b_rawblkno = 0;
1448	bp->b_iodone = 0;
1449	bp->b_error = 0;
1450	bp->b_resid = 0;
1451	bp->b_bcount = 0;
1452
1453	LIST_REMOVE(bp, b_hash);
1454
1455	/* Disassociate us from our vnode, if we had one... */
1456	if (vp != NULL) {
1457		mutex_enter(vp->v_interlock);
1458		brelvp(bp);
1459		mutex_exit(vp->v_interlock);
1460	}
1461
1462	return (bp);
1463}
1464
1465/*
1466 * Attempt to free an aged buffer off the queues.
1467 * Called with queue lock held.
1468 * Returns the amount of buffer memory freed.
1469 */
1470static int
1471buf_trim(void)
1472{
1473	buf_t *bp;
1474	long size;
1475
1476	KASSERT(mutex_owned(&bufcache_lock));
1477
1478	/* Instruct getnewbuf() to get buffers off the queues */
1479	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1480		return 0;
1481
1482	KASSERT((bp->b_cflags & BC_WANTED) == 0);
1483	size = bp->b_bufsize;
1484	bufmem -= size;
1485	if (size > 0) {
1486		buf_mrelease(bp->b_data, size);
1487		bp->b_bcount = bp->b_bufsize = 0;
1488	}
1489	/* brelse() will return the buffer to the global buffer pool */
1490	brelsel(bp, 0);
1491	return size;
1492}
1493
1494int
1495buf_drain(int n)
1496{
1497	int size = 0, sz;
1498
1499	KASSERT(mutex_owned(&bufcache_lock));
1500
1501	while (size < n && bufmem > bufmem_lowater) {
1502		sz = buf_trim();
1503		if (sz <= 0)
1504			break;
1505		size += sz;
1506	}
1507
1508	return size;
1509}
1510
1511SDT_PROVIDER_DEFINE(io);
1512
1513SDT_PROBE_DEFINE1(io, kernel, , wait__start, "struct buf *"/*bp*/);
1514SDT_PROBE_DEFINE1(io, kernel, , wait__done, "struct buf *"/*bp*/);
1515
1516/*
1517 * Wait for operations on the buffer to complete.
1518 * When they do, extract and return the I/O's error value.
1519 */
1520int
1521biowait(buf_t *bp)
1522{
1523
1524	BIOHIST_FUNC(__func__);
1525
1526	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1527	KASSERT(bp->b_refcnt > 0);
1528
1529	SDT_PROBE1(io, kernel, , wait__start, bp);
1530
1531	mutex_enter(bp->b_objlock);
1532
1533	BIOHIST_CALLARGS(biohist, "bp=%p, oflags=0x%x",
1534	    bp, bp->b_oflags, 0, 0);
1535
1536	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) {
1537		BIOHIST_LOG(biohist, "waiting bp=%p", bp, 0, 0, 0);
1538		cv_wait(&bp->b_done, bp->b_objlock);
1539	}
1540	mutex_exit(bp->b_objlock);
1541
1542	SDT_PROBE1(io, kernel, , wait__done, bp);
1543
1544	BIOHIST_LOG(biohist, "return %d", bp->b_error, 0, 0, 0);
1545
1546	return bp->b_error;
1547}
1548
1549/*
1550 * Mark I/O complete on a buffer.
1551 *
1552 * If a callback has been requested, e.g. the pageout
1553 * daemon, do so. Otherwise, awaken waiting processes.
1554 *
1555 * [ Leffler, et al., says on p.247:
1556 *	"This routine wakes up the blocked process, frees the buffer
1557 *	for an asynchronous write, or, for a request by the pagedaemon
1558 *	process, invokes a procedure specified in the buffer structure" ]
1559 *
1560 * In real life, the pagedaemon (or other system processes) wants
1561 * to do async stuff too, and doesn't want the buffer brelse()'d.
1562 * (for swap pager, that puts swap buffers on the free lists (!!!),
1563 * for the vn device, that puts allocated buffers on the free lists!)
1564 */
1565void
1566biodone(buf_t *bp)
1567{
1568	int s;
1569
1570	BIOHIST_FUNC(__func__);
1571
1572	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1573
1574	if (cpu_intr_p()) {
1575		/* From interrupt mode: defer to a soft interrupt. */
1576		s = splvm();
1577		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1578
1579		BIOHIST_CALLARGS(biohist, "bp=%p, softint scheduled",
1580		    bp, 0, 0, 0);
1581		softint_schedule(biodone_sih);
1582		splx(s);
1583	} else {
1584		/* Process now - the buffer may be freed soon. */
1585		biodone2(bp);
1586	}
1587}
1588
1589SDT_PROBE_DEFINE1(io, kernel, , done, "struct buf *"/*bp*/);
1590
1591static void
1592biodone2(buf_t *bp)
1593{
1594	void (*callout)(buf_t *);
1595
1596	SDT_PROBE1(io, kernel, ,done, bp);
1597
1598	BIOHIST_FUNC(__func__);
1599	BIOHIST_CALLARGS(biohist, "bp=%p", bp, 0, 0, 0);
1600
1601	mutex_enter(bp->b_objlock);
1602	/* Note that the transfer is done. */
1603	if (ISSET(bp->b_oflags, BO_DONE))
1604		panic("biodone2 already");
1605	CLR(bp->b_flags, B_COWDONE);
1606	SET(bp->b_oflags, BO_DONE);
1607	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1608
1609	/* Wake up waiting writers. */
1610	if (!ISSET(bp->b_flags, B_READ))
1611		vwakeup(bp);
1612
1613	if ((callout = bp->b_iodone) != NULL) {
1614		BIOHIST_LOG(biohist, "callout %p", callout, 0, 0, 0);
1615
1616		/* Note callout done, then call out. */
1617		KASSERT(!cv_has_waiters(&bp->b_done));
1618		KERNEL_LOCK(1, NULL);		/* XXXSMP */
1619		bp->b_iodone = NULL;
1620		mutex_exit(bp->b_objlock);
1621		(*callout)(bp);
1622		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1623	} else if (ISSET(bp->b_flags, B_ASYNC)) {
1624		/* If async, release. */
1625		BIOHIST_LOG(biohist, "async", 0, 0, 0, 0);
1626		KASSERT(!cv_has_waiters(&bp->b_done));
1627		mutex_exit(bp->b_objlock);
1628		brelse(bp, 0);
1629	} else {
1630		/* Otherwise just wake up waiters in biowait(). */
1631		BIOHIST_LOG(biohist, "wake-up", 0, 0, 0, 0);
1632		cv_broadcast(&bp->b_done);
1633		mutex_exit(bp->b_objlock);
1634	}
1635}
1636
1637static void
1638biointr(void *cookie)
1639{
1640	struct cpu_info *ci;
1641	buf_t *bp;
1642	int s;
1643
1644	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
1645
1646	ci = curcpu();
1647
1648	s = splvm();
1649	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1650		KASSERT(curcpu() == ci);
1651
1652		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1653		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1654		splx(s);
1655
1656		BIOHIST_LOG(biohist, "bp=%p", bp, 0, 0, 0);
1657		biodone2(bp);
1658
1659		s = splvm();
1660	}
1661	splx(s);
1662}
1663
1664/*
1665 * Wait for all buffers to complete I/O
1666 * Return the number of "stuck" buffers.
1667 */
1668int
1669buf_syncwait(void)
1670{
1671	buf_t *bp;
1672	int iter, nbusy, nbusy_prev = 0, ihash;
1673
1674	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
1675
1676	for (iter = 0; iter < 20;) {
1677		mutex_enter(&bufcache_lock);
1678		nbusy = 0;
1679		for (ihash = 0; ihash < bufhash+1; ihash++) {
1680		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1681			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1682				nbusy += ((bp->b_flags & B_READ) == 0);
1683		    }
1684		}
1685		mutex_exit(&bufcache_lock);
1686
1687		if (nbusy == 0)
1688			break;
1689		if (nbusy_prev == 0)
1690			nbusy_prev = nbusy;
1691		printf("%d ", nbusy);
1692		kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1693		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1694			iter++;
1695		else
1696			nbusy_prev = nbusy;
1697	}
1698
1699	if (nbusy) {
1700#if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1701		printf("giving up\nPrinting vnodes for busy buffers\n");
1702		for (ihash = 0; ihash < bufhash+1; ihash++) {
1703		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1704			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1705			    (bp->b_flags & B_READ) == 0)
1706				vprint(NULL, bp->b_vp);
1707		    }
1708		}
1709#endif
1710	}
1711
1712	return nbusy;
1713}
1714
1715static void
1716sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1717{
1718
1719	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1720	o->b_error = i->b_error;
1721	o->b_prio = i->b_prio;
1722	o->b_dev = i->b_dev;
1723	o->b_bufsize = i->b_bufsize;
1724	o->b_bcount = i->b_bcount;
1725	o->b_resid = i->b_resid;
1726	o->b_addr = PTRTOUINT64(i->b_data);
1727	o->b_blkno = i->b_blkno;
1728	o->b_rawblkno = i->b_rawblkno;
1729	o->b_iodone = PTRTOUINT64(i->b_iodone);
1730	o->b_proc = PTRTOUINT64(i->b_proc);
1731	o->b_vp = PTRTOUINT64(i->b_vp);
1732	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1733	o->b_lblkno = i->b_lblkno;
1734}
1735
1736#define KERN_BUFSLOP 20
1737static int
1738sysctl_dobuf(SYSCTLFN_ARGS)
1739{
1740	buf_t *bp;
1741	struct buf_sysctl bs;
1742	struct bqueue *bq;
1743	char *dp;
1744	u_int i, op, arg;
1745	size_t len, needed, elem_size, out_size;
1746	int error, elem_count, retries;
1747
1748	if (namelen == 1 && name[0] == CTL_QUERY)
1749		return (sysctl_query(SYSCTLFN_CALL(rnode)));
1750
1751	if (namelen != 4)
1752		return (EINVAL);
1753
1754	retries = 100;
1755 retry:
1756	dp = oldp;
1757	len = (oldp != NULL) ? *oldlenp : 0;
1758	op = name[0];
1759	arg = name[1];
1760	elem_size = name[2];
1761	elem_count = name[3];
1762	out_size = MIN(sizeof(bs), elem_size);
1763
1764	/*
1765	 * at the moment, these are just "placeholders" to make the
1766	 * API for retrieving kern.buf data more extensible in the
1767	 * future.
1768	 *
1769	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1770	 * these will be resolved at a later point.
1771	 */
1772	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1773	    elem_size < 1 || elem_count < 0)
1774		return (EINVAL);
1775
1776	error = 0;
1777	needed = 0;
1778	sysctl_unlock();
1779	mutex_enter(&bufcache_lock);
1780	for (i = 0; i < BQUEUES; i++) {
1781		bq = &bufqueues[i];
1782		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1783			bq->bq_marker = bp;
1784			if (len >= elem_size && elem_count > 0) {
1785				sysctl_fillbuf(bp, &bs);
1786				mutex_exit(&bufcache_lock);
1787				error = copyout(&bs, dp, out_size);
1788				mutex_enter(&bufcache_lock);
1789				if (error)
1790					break;
1791				if (bq->bq_marker != bp) {
1792					/*
1793					 * This sysctl node is only for
1794					 * statistics.  Retry; if the
1795					 * queue keeps changing, then
1796					 * bail out.
1797					 */
1798					if (retries-- == 0) {
1799						error = EAGAIN;
1800						break;
1801					}
1802					mutex_exit(&bufcache_lock);
1803					sysctl_relock();
1804					goto retry;
1805				}
1806				dp += elem_size;
1807				len -= elem_size;
1808			}
1809			needed += elem_size;
1810			if (elem_count > 0 && elem_count != INT_MAX)
1811				elem_count--;
1812		}
1813		if (error != 0)
1814			break;
1815	}
1816	mutex_exit(&bufcache_lock);
1817	sysctl_relock();
1818
1819	*oldlenp = needed;
1820	if (oldp == NULL)
1821		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1822
1823	return (error);
1824}
1825
1826static int
1827sysctl_bufvm_update(SYSCTLFN_ARGS)
1828{
1829	int error, rv;
1830	struct sysctlnode node;
1831	unsigned int temp_bufcache;
1832	unsigned long temp_water;
1833
1834	/* Take a copy of the supplied node and its data */
1835	node = *rnode;
1836	if (node.sysctl_data == &bufcache) {
1837	    node.sysctl_data = &temp_bufcache;
1838	    temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1839	} else {
1840	    node.sysctl_data = &temp_water;
1841	    temp_water = *(unsigned long *)rnode->sysctl_data;
1842	}
1843
1844	/* Update the copy */
1845	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1846	if (error || newp == NULL)
1847		return (error);
1848
1849	if (rnode->sysctl_data == &bufcache) {
1850		if (temp_bufcache > 100)
1851			return (EINVAL);
1852		bufcache = temp_bufcache;
1853		buf_setwm();
1854	} else if (rnode->sysctl_data == &bufmem_lowater) {
1855		if (bufmem_hiwater - temp_water < 16)
1856			return (EINVAL);
1857		bufmem_lowater = temp_water;
1858	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1859		if (temp_water - bufmem_lowater < 16)
1860			return (EINVAL);
1861		bufmem_hiwater = temp_water;
1862	} else
1863		return (EINVAL);
1864
1865	/* Drain until below new high water mark */
1866	sysctl_unlock();
1867	mutex_enter(&bufcache_lock);
1868	while (bufmem > bufmem_hiwater) {
1869		rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1870		if (rv <= 0)
1871			break;
1872	}
1873	mutex_exit(&bufcache_lock);
1874	sysctl_relock();
1875
1876	return 0;
1877}
1878
1879static struct sysctllog *vfsbio_sysctllog;
1880
1881static void
1882sysctl_kern_buf_setup(void)
1883{
1884
1885	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1886		       CTLFLAG_PERMANENT,
1887		       CTLTYPE_NODE, "buf",
1888		       SYSCTL_DESCR("Kernel buffer cache information"),
1889		       sysctl_dobuf, 0, NULL, 0,
1890		       CTL_KERN, KERN_BUF, CTL_EOL);
1891}
1892
1893static void
1894sysctl_vm_buf_setup(void)
1895{
1896
1897	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1898		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1899		       CTLTYPE_INT, "bufcache",
1900		       SYSCTL_DESCR("Percentage of physical memory to use for "
1901				    "buffer cache"),
1902		       sysctl_bufvm_update, 0, &bufcache, 0,
1903		       CTL_VM, CTL_CREATE, CTL_EOL);
1904	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1905		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1906		       CTLTYPE_LONG, "bufmem",
1907		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
1908				    "cache"),
1909		       NULL, 0, &bufmem, 0,
1910		       CTL_VM, CTL_CREATE, CTL_EOL);
1911	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1912		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1913		       CTLTYPE_LONG, "bufmem_lowater",
1914		       SYSCTL_DESCR("Minimum amount of kernel memory to "
1915				    "reserve for buffer cache"),
1916		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1917		       CTL_VM, CTL_CREATE, CTL_EOL);
1918	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1919		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1920		       CTLTYPE_LONG, "bufmem_hiwater",
1921		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
1922				    "for buffer cache"),
1923		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1924		       CTL_VM, CTL_CREATE, CTL_EOL);
1925}
1926
1927#ifdef DEBUG
1928/*
1929 * Print out statistics on the current allocation of the buffer pool.
1930 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1931 * in vfs_syscalls.c using sysctl.
1932 */
1933void
1934vfs_bufstats(void)
1935{
1936	int i, j, count;
1937	buf_t *bp;
1938	struct bqueue *dp;
1939	int counts[MAXBSIZE / MIN_PAGE_SIZE + 1];
1940	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1941
1942	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1943		count = 0;
1944		memset(counts, 0, sizeof(counts));
1945		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1946			counts[bp->b_bufsize / PAGE_SIZE]++;
1947			count++;
1948		}
1949		printf("%s: total-%d", bname[i], count);
1950		for (j = 0; j <= MAXBSIZE / PAGE_SIZE; j++)
1951			if (counts[j] != 0)
1952				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1953		printf("\n");
1954	}
1955}
1956#endif /* DEBUG */
1957
1958/* ------------------------------ */
1959
1960buf_t *
1961getiobuf(struct vnode *vp, bool waitok)
1962{
1963	buf_t *bp;
1964
1965	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1966	if (bp == NULL)
1967		return bp;
1968
1969	buf_init(bp);
1970
1971	if ((bp->b_vp = vp) != NULL) {
1972		bp->b_objlock = vp->v_interlock;
1973	} else {
1974		KASSERT(bp->b_objlock == &buffer_lock);
1975	}
1976
1977	return bp;
1978}
1979
1980void
1981putiobuf(buf_t *bp)
1982{
1983
1984	buf_destroy(bp);
1985	pool_cache_put(bufio_cache, bp);
1986}
1987
1988/*
1989 * nestiobuf_iodone: b_iodone callback for nested buffers.
1990 */
1991
1992void
1993nestiobuf_iodone(buf_t *bp)
1994{
1995	buf_t *mbp = bp->b_private;
1996	int error;
1997	int donebytes;
1998
1999	KASSERT(bp->b_bcount <= bp->b_bufsize);
2000	KASSERT(mbp != bp);
2001
2002	error = bp->b_error;
2003	if (bp->b_error == 0 &&
2004	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
2005		/*
2006		 * Not all got transfered, raise an error. We have no way to
2007		 * propagate these conditions to mbp.
2008		 */
2009		error = EIO;
2010	}
2011
2012	donebytes = bp->b_bufsize;
2013
2014	putiobuf(bp);
2015	nestiobuf_done(mbp, donebytes, error);
2016}
2017
2018/*
2019 * nestiobuf_setup: setup a "nested" buffer.
2020 *
2021 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
2022 * => 'bp' should be a buffer allocated by getiobuf.
2023 * => 'offset' is a byte offset in the master buffer.
2024 * => 'size' is a size in bytes of this nested buffer.
2025 */
2026
2027void
2028nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
2029{
2030	const int b_read = mbp->b_flags & B_READ;
2031	struct vnode *vp = mbp->b_vp;
2032
2033	KASSERT(mbp->b_bcount >= offset + size);
2034	bp->b_vp = vp;
2035	bp->b_dev = mbp->b_dev;
2036	bp->b_objlock = mbp->b_objlock;
2037	bp->b_cflags = BC_BUSY;
2038	bp->b_flags = B_ASYNC | b_read;
2039	bp->b_iodone = nestiobuf_iodone;
2040	bp->b_data = (char *)mbp->b_data + offset;
2041	bp->b_resid = bp->b_bcount = size;
2042	bp->b_bufsize = bp->b_bcount;
2043	bp->b_private = mbp;
2044	BIO_COPYPRIO(bp, mbp);
2045	if (!b_read && vp != NULL) {
2046		mutex_enter(vp->v_interlock);
2047		vp->v_numoutput++;
2048		mutex_exit(vp->v_interlock);
2049	}
2050}
2051
2052/*
2053 * nestiobuf_done: propagate completion to the master buffer.
2054 *
2055 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
2056 * => 'error' is an errno(2) that 'donebytes' has been completed with.
2057 */
2058
2059void
2060nestiobuf_done(buf_t *mbp, int donebytes, int error)
2061{
2062
2063	if (donebytes == 0) {
2064		return;
2065	}
2066	mutex_enter(mbp->b_objlock);
2067	KASSERT(mbp->b_resid >= donebytes);
2068	mbp->b_resid -= donebytes;
2069	if (error)
2070		mbp->b_error = error;
2071	if (mbp->b_resid == 0) {
2072		if (mbp->b_error)
2073			mbp->b_resid = mbp->b_bcount;
2074		mutex_exit(mbp->b_objlock);
2075		biodone(mbp);
2076	} else
2077		mutex_exit(mbp->b_objlock);
2078}
2079
2080void
2081buf_init(buf_t *bp)
2082{
2083
2084	cv_init(&bp->b_busy, "biolock");
2085	cv_init(&bp->b_done, "biowait");
2086	bp->b_dev = NODEV;
2087	bp->b_error = 0;
2088	bp->b_flags = 0;
2089	bp->b_cflags = 0;
2090	bp->b_oflags = 0;
2091	bp->b_objlock = &buffer_lock;
2092	bp->b_iodone = NULL;
2093	bp->b_refcnt = 1;
2094	bp->b_dev = NODEV;
2095	bp->b_vnbufs.le_next = NOLIST;
2096	BIO_SETPRIO(bp, BPRIO_DEFAULT);
2097}
2098
2099void
2100buf_destroy(buf_t *bp)
2101{
2102
2103	cv_destroy(&bp->b_done);
2104	cv_destroy(&bp->b_busy);
2105}
2106
2107int
2108bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2109{
2110	int error;
2111
2112	KASSERT(mutex_owned(&bufcache_lock));
2113
2114	if ((bp->b_cflags & BC_BUSY) != 0) {
2115		if (curlwp == uvm.pagedaemon_lwp)
2116			return EDEADLK;
2117		bp->b_cflags |= BC_WANTED;
2118		bref(bp);
2119		if (interlock != NULL)
2120			mutex_exit(interlock);
2121		if (intr) {
2122			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2123			    timo);
2124		} else {
2125			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2126			    timo);
2127		}
2128		brele(bp);
2129		if (interlock != NULL)
2130			mutex_enter(interlock);
2131		if (error != 0)
2132			return error;
2133		return EPASSTHROUGH;
2134	}
2135	bp->b_cflags |= BC_BUSY;
2136
2137	return 0;
2138}
2139