vfs_bio.c revision 1.252
1/*	$NetBSD: vfs_bio.c,v 1.252 2014/09/08 22:01:24 joerg Exp $	*/
2
3/*-
4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 *    may be used to endorse or promote products derived from this software
51 *    without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
66 */
67
68/*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 *    notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 *    notice, this list of conditions and the following disclaimer in the
78 *    documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 *    must display the following acknowledgement:
81 *	This product includes software developed by the University of
82 *	California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 *    may be used to endorse or promote products derived from this software
85 *    without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
100 */
101
102/*
103 * The buffer cache subsystem.
104 *
105 * Some references:
106 *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 *	Leffler, et al.: The Design and Implementation of the 4.3BSD
108 *		UNIX Operating System (Addison Welley, 1989)
109 *
110 * Locking
111 *
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 *
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
119 *
120 * Lock order:
121 *	bufcache_lock ->
122 *		buf_t::b_objlock
123 */
124
125#include <sys/cdefs.h>
126__KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.252 2014/09/08 22:01:24 joerg Exp $");
127
128#include "opt_bufcache.h"
129
130#include <sys/param.h>
131#include <sys/systm.h>
132#include <sys/kernel.h>
133#include <sys/proc.h>
134#include <sys/buf.h>
135#include <sys/vnode.h>
136#include <sys/mount.h>
137#include <sys/resourcevar.h>
138#include <sys/sysctl.h>
139#include <sys/conf.h>
140#include <sys/kauth.h>
141#include <sys/fstrans.h>
142#include <sys/intr.h>
143#include <sys/cpu.h>
144#include <sys/wapbl.h>
145#include <sys/bitops.h>
146#include <sys/cprng.h>
147
148#include <uvm/uvm.h>	/* extern struct uvm uvm */
149
150#include <miscfs/specfs/specdev.h>
151
152#ifndef	BUFPAGES
153# define BUFPAGES 0
154#endif
155
156#ifdef BUFCACHE
157# if (BUFCACHE < 5) || (BUFCACHE > 95)
158#  error BUFCACHE is not between 5 and 95
159# endif
160#else
161# define BUFCACHE 15
162#endif
163
164u_int	nbuf;			/* desired number of buffer headers */
165u_int	bufpages = BUFPAGES;	/* optional hardwired count */
166u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
167
168/* Function prototypes */
169struct bqueue;
170
171static void buf_setwm(void);
172static int buf_trim(void);
173static void *bufpool_page_alloc(struct pool *, int);
174static void bufpool_page_free(struct pool *, void *);
175static buf_t *bio_doread(struct vnode *, daddr_t, int,
176    kauth_cred_t, int);
177static buf_t *getnewbuf(int, int, int);
178static int buf_lotsfree(void);
179static int buf_canrelease(void);
180static u_long buf_mempoolidx(u_long);
181static u_long buf_roundsize(u_long);
182static void *buf_alloc(size_t);
183static void buf_mrelease(void *, size_t);
184static void binsheadfree(buf_t *, struct bqueue *);
185static void binstailfree(buf_t *, struct bqueue *);
186#ifdef DEBUG
187static int checkfreelist(buf_t *, struct bqueue *, int);
188#endif
189static void biointr(void *);
190static void biodone2(buf_t *);
191static void bref(buf_t *);
192static void brele(buf_t *);
193static void sysctl_kern_buf_setup(void);
194static void sysctl_vm_buf_setup(void);
195
196/*
197 * Definitions for the buffer hash lists.
198 */
199#define	BUFHASH(dvp, lbn)	\
200	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
201LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
202u_long	bufhash;
203struct bqueue bufqueues[BQUEUES];
204
205static kcondvar_t needbuffer_cv;
206
207/*
208 * Buffer queue lock.
209 */
210kmutex_t bufcache_lock;
211kmutex_t buffer_lock;
212
213/* Software ISR for completed transfers. */
214static void *biodone_sih;
215
216/* Buffer pool for I/O buffers. */
217static pool_cache_t buf_cache;
218static pool_cache_t bufio_cache;
219
220#define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE))	/* smallest pool is 512 bytes */
221#define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
222__CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
223
224/* Buffer memory pools */
225static struct pool bmempools[NMEMPOOLS];
226
227static struct vm_map *buf_map;
228
229/*
230 * Buffer memory pool allocator.
231 */
232static void *
233bufpool_page_alloc(struct pool *pp, int flags)
234{
235
236	return (void *)uvm_km_alloc(buf_map,
237	    MAXBSIZE, MAXBSIZE,
238	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
239	    | UVM_KMF_WIRED);
240}
241
242static void
243bufpool_page_free(struct pool *pp, void *v)
244{
245
246	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
247}
248
249static struct pool_allocator bufmempool_allocator = {
250	.pa_alloc = bufpool_page_alloc,
251	.pa_free = bufpool_page_free,
252	.pa_pagesz = MAXBSIZE,
253};
254
255/* Buffer memory management variables */
256u_long bufmem_valimit;
257u_long bufmem_hiwater;
258u_long bufmem_lowater;
259u_long bufmem;
260
261/*
262 * MD code can call this to set a hard limit on the amount
263 * of virtual memory used by the buffer cache.
264 */
265int
266buf_setvalimit(vsize_t sz)
267{
268
269	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
270	if (sz < NMEMPOOLS * MAXBSIZE)
271		return EINVAL;
272
273	bufmem_valimit = sz;
274	return 0;
275}
276
277static void
278buf_setwm(void)
279{
280
281	bufmem_hiwater = buf_memcalc();
282	/* lowater is approx. 2% of memory (with bufcache = 15) */
283#define	BUFMEM_WMSHIFT	3
284#define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
285	if (bufmem_hiwater < BUFMEM_HIWMMIN)
286		/* Ensure a reasonable minimum value */
287		bufmem_hiwater = BUFMEM_HIWMMIN;
288	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
289}
290
291#ifdef DEBUG
292int debug_verify_freelist = 0;
293static int
294checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
295{
296	buf_t *b;
297
298	if (!debug_verify_freelist)
299		return 1;
300
301	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
302		if (b == bp)
303			return ison ? 1 : 0;
304	}
305
306	return ison ? 0 : 1;
307}
308#endif
309
310/*
311 * Insq/Remq for the buffer hash lists.
312 * Call with buffer queue locked.
313 */
314static void
315binsheadfree(buf_t *bp, struct bqueue *dp)
316{
317
318	KASSERT(mutex_owned(&bufcache_lock));
319	KASSERT(bp->b_freelistindex == -1);
320	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
321	dp->bq_bytes += bp->b_bufsize;
322	bp->b_freelistindex = dp - bufqueues;
323}
324
325static void
326binstailfree(buf_t *bp, struct bqueue *dp)
327{
328
329	KASSERT(mutex_owned(&bufcache_lock));
330	KASSERT(bp->b_freelistindex == -1);
331	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
332	dp->bq_bytes += bp->b_bufsize;
333	bp->b_freelistindex = dp - bufqueues;
334}
335
336void
337bremfree(buf_t *bp)
338{
339	struct bqueue *dp;
340	int bqidx = bp->b_freelistindex;
341
342	KASSERT(mutex_owned(&bufcache_lock));
343
344	KASSERT(bqidx != -1);
345	dp = &bufqueues[bqidx];
346	KDASSERT(checkfreelist(bp, dp, 1));
347	KASSERT(dp->bq_bytes >= bp->b_bufsize);
348	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
349	dp->bq_bytes -= bp->b_bufsize;
350
351	/* For the sysctl helper. */
352	if (bp == dp->bq_marker)
353		dp->bq_marker = NULL;
354
355#if defined(DIAGNOSTIC)
356	bp->b_freelistindex = -1;
357#endif /* defined(DIAGNOSTIC) */
358}
359
360/*
361 * Add a reference to an buffer structure that came from buf_cache.
362 */
363static inline void
364bref(buf_t *bp)
365{
366
367	KASSERT(mutex_owned(&bufcache_lock));
368	KASSERT(bp->b_refcnt > 0);
369
370	bp->b_refcnt++;
371}
372
373/*
374 * Free an unused buffer structure that came from buf_cache.
375 */
376static inline void
377brele(buf_t *bp)
378{
379
380	KASSERT(mutex_owned(&bufcache_lock));
381	KASSERT(bp->b_refcnt > 0);
382
383	if (bp->b_refcnt-- == 1) {
384		buf_destroy(bp);
385#ifdef DEBUG
386		memset((char *)bp, 0, sizeof(*bp));
387#endif
388		pool_cache_put(buf_cache, bp);
389	}
390}
391
392/*
393 * note that for some ports this is used by pmap bootstrap code to
394 * determine kva size.
395 */
396u_long
397buf_memcalc(void)
398{
399	u_long n;
400	vsize_t mapsz = 0;
401
402	/*
403	 * Determine the upper bound of memory to use for buffers.
404	 *
405	 *	- If bufpages is specified, use that as the number
406	 *	  pages.
407	 *
408	 *	- Otherwise, use bufcache as the percentage of
409	 *	  physical memory.
410	 */
411	if (bufpages != 0) {
412		n = bufpages;
413	} else {
414		if (bufcache < 5) {
415			printf("forcing bufcache %d -> 5", bufcache);
416			bufcache = 5;
417		}
418		if (bufcache > 95) {
419			printf("forcing bufcache %d -> 95", bufcache);
420			bufcache = 95;
421		}
422		if (buf_map != NULL)
423			mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
424		n = calc_cache_size(mapsz, bufcache,
425		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
426		    / PAGE_SIZE;
427	}
428
429	n <<= PAGE_SHIFT;
430	if (bufmem_valimit != 0 && n > bufmem_valimit)
431		n = bufmem_valimit;
432
433	return (n);
434}
435
436/*
437 * Initialize buffers and hash links for buffers.
438 */
439void
440bufinit(void)
441{
442	struct bqueue *dp;
443	int use_std;
444	u_int i;
445	extern void (*biodone_vfs)(buf_t *);
446
447	biodone_vfs = biodone;
448
449	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
450	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
451	cv_init(&needbuffer_cv, "needbuf");
452
453	if (bufmem_valimit != 0) {
454		vaddr_t minaddr = 0, maxaddr;
455		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
456					  bufmem_valimit, 0, false, 0);
457		if (buf_map == NULL)
458			panic("bufinit: cannot allocate submap");
459	} else
460		buf_map = kernel_map;
461
462	/*
463	 * Initialize buffer cache memory parameters.
464	 */
465	bufmem = 0;
466	buf_setwm();
467
468	/* On "small" machines use small pool page sizes where possible */
469	use_std = (physmem < atop(16*1024*1024));
470
471	/*
472	 * Also use them on systems that can map the pool pages using
473	 * a direct-mapped segment.
474	 */
475#ifdef PMAP_MAP_POOLPAGE
476	use_std = 1;
477#endif
478
479	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
480	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
481	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
482	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
483
484	for (i = 0; i < NMEMPOOLS; i++) {
485		struct pool_allocator *pa;
486		struct pool *pp = &bmempools[i];
487		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
488		char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
489		if (__predict_false(size >= 1048576))
490			(void)snprintf(name, 8, "buf%um", size / 1048576);
491		else if (__predict_true(size >= 1024))
492			(void)snprintf(name, 8, "buf%uk", size / 1024);
493		else
494			(void)snprintf(name, 8, "buf%ub", size);
495		pa = (size <= PAGE_SIZE && use_std)
496			? &pool_allocator_nointr
497			: &bufmempool_allocator;
498		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
499		pool_setlowat(pp, 1);
500		pool_sethiwat(pp, 1);
501	}
502
503	/* Initialize the buffer queues */
504	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
505		TAILQ_INIT(&dp->bq_queue);
506		dp->bq_bytes = 0;
507	}
508
509	/*
510	 * Estimate hash table size based on the amount of memory we
511	 * intend to use for the buffer cache. The average buffer
512	 * size is dependent on our clients (i.e. filesystems).
513	 *
514	 * For now, use an empirical 3K per buffer.
515	 */
516	nbuf = (bufmem_hiwater / 1024) / 3;
517	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
518
519	sysctl_kern_buf_setup();
520	sysctl_vm_buf_setup();
521}
522
523void
524bufinit2(void)
525{
526
527	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
528	    NULL);
529	if (biodone_sih == NULL)
530		panic("bufinit2: can't establish soft interrupt");
531}
532
533static int
534buf_lotsfree(void)
535{
536	u_long guess;
537
538	/* Always allocate if less than the low water mark. */
539	if (bufmem < bufmem_lowater)
540		return 1;
541
542	/* Never allocate if greater than the high water mark. */
543	if (bufmem > bufmem_hiwater)
544		return 0;
545
546	/* If there's anything on the AGE list, it should be eaten. */
547	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
548		return 0;
549
550	/*
551	 * The probabily of getting a new allocation is inversely
552	 * proportional  to the current size of the cache above
553	 * the low water mark.  Divide the total first to avoid overflows
554	 * in the product.
555	 */
556	guess = cprng_fast32() % 16;
557
558	if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
559	    (bufmem - bufmem_lowater))
560		return 1;
561
562	/* Otherwise don't allocate. */
563	return 0;
564}
565
566/*
567 * Return estimate of bytes we think need to be
568 * released to help resolve low memory conditions.
569 *
570 * => called with bufcache_lock held.
571 */
572static int
573buf_canrelease(void)
574{
575	int pagedemand, ninvalid = 0;
576
577	KASSERT(mutex_owned(&bufcache_lock));
578
579	if (bufmem < bufmem_lowater)
580		return 0;
581
582	if (bufmem > bufmem_hiwater)
583		return bufmem - bufmem_hiwater;
584
585	ninvalid += bufqueues[BQ_AGE].bq_bytes;
586
587	pagedemand = uvmexp.freetarg - uvmexp.free;
588	if (pagedemand < 0)
589		return ninvalid;
590	return MAX(ninvalid, MIN(2 * MAXBSIZE,
591	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
592}
593
594/*
595 * Buffer memory allocation helper functions
596 */
597static u_long
598buf_mempoolidx(u_long size)
599{
600	u_int n = 0;
601
602	size -= 1;
603	size >>= MEMPOOL_INDEX_OFFSET;
604	while (size) {
605		size >>= 1;
606		n += 1;
607	}
608	if (n >= NMEMPOOLS)
609		panic("buf mem pool index %d", n);
610	return n;
611}
612
613static u_long
614buf_roundsize(u_long size)
615{
616	/* Round up to nearest power of 2 */
617	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
618}
619
620static void *
621buf_alloc(size_t size)
622{
623	u_int n = buf_mempoolidx(size);
624	void *addr;
625
626	while (1) {
627		addr = pool_get(&bmempools[n], PR_NOWAIT);
628		if (addr != NULL)
629			break;
630
631		/* No memory, see if we can free some. If so, try again */
632		mutex_enter(&bufcache_lock);
633		if (buf_drain(1) > 0) {
634			mutex_exit(&bufcache_lock);
635			continue;
636		}
637
638		if (curlwp == uvm.pagedaemon_lwp) {
639			mutex_exit(&bufcache_lock);
640			return NULL;
641		}
642
643		/* Wait for buffers to arrive on the LRU queue */
644		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
645		mutex_exit(&bufcache_lock);
646	}
647
648	return addr;
649}
650
651static void
652buf_mrelease(void *addr, size_t size)
653{
654
655	pool_put(&bmempools[buf_mempoolidx(size)], addr);
656}
657
658/*
659 * bread()/breadn() helper.
660 */
661static buf_t *
662bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
663    int async)
664{
665	buf_t *bp;
666	struct mount *mp;
667
668	bp = getblk(vp, blkno, size, 0, 0);
669
670	/*
671	 * getblk() may return NULL if we are the pagedaemon.
672	 */
673	if (bp == NULL) {
674		KASSERT(curlwp == uvm.pagedaemon_lwp);
675		return NULL;
676	}
677
678	/*
679	 * If buffer does not have data valid, start a read.
680	 * Note that if buffer is BC_INVAL, getblk() won't return it.
681	 * Therefore, it's valid if its I/O has completed or been delayed.
682	 */
683	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
684		/* Start I/O for the buffer. */
685		SET(bp->b_flags, B_READ | async);
686		if (async)
687			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
688		else
689			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
690		VOP_STRATEGY(vp, bp);
691
692		/* Pay for the read. */
693		curlwp->l_ru.ru_inblock++;
694	} else if (async)
695		brelse(bp, 0);
696
697	if (vp->v_type == VBLK)
698		mp = spec_node_getmountedfs(vp);
699	else
700		mp = vp->v_mount;
701
702	/*
703	 * Collect statistics on synchronous and asynchronous reads.
704	 * Reads from block devices are charged to their associated
705	 * filesystem (if any).
706	 */
707	if (mp != NULL) {
708		if (async == 0)
709			mp->mnt_stat.f_syncreads++;
710		else
711			mp->mnt_stat.f_asyncreads++;
712	}
713
714	return (bp);
715}
716
717/*
718 * Read a disk block.
719 * This algorithm described in Bach (p.54).
720 */
721int
722bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
723    int flags, buf_t **bpp)
724{
725	buf_t *bp;
726	int error;
727
728	/* Get buffer for block. */
729	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
730	if (bp == NULL)
731		return ENOMEM;
732
733	/* Wait for the read to complete, and return result. */
734	error = biowait(bp);
735	if (error == 0 && (flags & B_MODIFY) != 0)
736		error = fscow_run(bp, true);
737	if (error) {
738		brelse(bp, 0);
739		*bpp = NULL;
740	}
741
742	return error;
743}
744
745/*
746 * Read-ahead multiple disk blocks. The first is sync, the rest async.
747 * Trivial modification to the breada algorithm presented in Bach (p.55).
748 */
749int
750breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
751    int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
752{
753	buf_t *bp;
754	int error, i;
755
756	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
757	if (bp == NULL)
758		return ENOMEM;
759
760	/*
761	 * For each of the read-ahead blocks, start a read, if necessary.
762	 */
763	mutex_enter(&bufcache_lock);
764	for (i = 0; i < nrablks; i++) {
765		/* If it's in the cache, just go on to next one. */
766		if (incore(vp, rablks[i]))
767			continue;
768
769		/* Get a buffer for the read-ahead block */
770		mutex_exit(&bufcache_lock);
771		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
772		mutex_enter(&bufcache_lock);
773	}
774	mutex_exit(&bufcache_lock);
775
776	/* Otherwise, we had to start a read for it; wait until it's valid. */
777	error = biowait(bp);
778	if (error == 0 && (flags & B_MODIFY) != 0)
779		error = fscow_run(bp, true);
780	if (error) {
781		brelse(bp, 0);
782		*bpp = NULL;
783	}
784
785	return error;
786}
787
788/*
789 * Block write.  Described in Bach (p.56)
790 */
791int
792bwrite(buf_t *bp)
793{
794	int rv, sync, wasdelayed;
795	struct vnode *vp;
796	struct mount *mp;
797
798	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
799	KASSERT(!cv_has_waiters(&bp->b_done));
800
801	vp = bp->b_vp;
802	if (vp != NULL) {
803		KASSERT(bp->b_objlock == vp->v_interlock);
804		if (vp->v_type == VBLK)
805			mp = spec_node_getmountedfs(vp);
806		else
807			mp = vp->v_mount;
808	} else {
809		mp = NULL;
810	}
811
812	if (mp && mp->mnt_wapbl) {
813		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
814			bdwrite(bp);
815			return 0;
816		}
817	}
818
819	/*
820	 * Remember buffer type, to switch on it later.  If the write was
821	 * synchronous, but the file system was mounted with MNT_ASYNC,
822	 * convert it to a delayed write.
823	 * XXX note that this relies on delayed tape writes being converted
824	 * to async, not sync writes (which is safe, but ugly).
825	 */
826	sync = !ISSET(bp->b_flags, B_ASYNC);
827	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
828		bdwrite(bp);
829		return (0);
830	}
831
832	/*
833	 * Collect statistics on synchronous and asynchronous writes.
834	 * Writes to block devices are charged to their associated
835	 * filesystem (if any).
836	 */
837	if (mp != NULL) {
838		if (sync)
839			mp->mnt_stat.f_syncwrites++;
840		else
841			mp->mnt_stat.f_asyncwrites++;
842	}
843
844	/*
845	 * Pay for the I/O operation and make sure the buf is on the correct
846	 * vnode queue.
847	 */
848	bp->b_error = 0;
849	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
850	CLR(bp->b_flags, B_READ);
851	if (wasdelayed) {
852		mutex_enter(&bufcache_lock);
853		mutex_enter(bp->b_objlock);
854		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
855		reassignbuf(bp, bp->b_vp);
856		mutex_exit(&bufcache_lock);
857	} else {
858		curlwp->l_ru.ru_oublock++;
859		mutex_enter(bp->b_objlock);
860		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
861	}
862	if (vp != NULL)
863		vp->v_numoutput++;
864	mutex_exit(bp->b_objlock);
865
866	/* Initiate disk write. */
867	if (sync)
868		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
869	else
870		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
871
872	VOP_STRATEGY(vp, bp);
873
874	if (sync) {
875		/* If I/O was synchronous, wait for it to complete. */
876		rv = biowait(bp);
877
878		/* Release the buffer. */
879		brelse(bp, 0);
880
881		return (rv);
882	} else {
883		return (0);
884	}
885}
886
887int
888vn_bwrite(void *v)
889{
890	struct vop_bwrite_args *ap = v;
891
892	return (bwrite(ap->a_bp));
893}
894
895/*
896 * Delayed write.
897 *
898 * The buffer is marked dirty, but is not queued for I/O.
899 * This routine should be used when the buffer is expected
900 * to be modified again soon, typically a small write that
901 * partially fills a buffer.
902 *
903 * NB: magnetic tapes cannot be delayed; they must be
904 * written in the order that the writes are requested.
905 *
906 * Described in Leffler, et al. (pp. 208-213).
907 */
908void
909bdwrite(buf_t *bp)
910{
911
912	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
913	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
914	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
915	KASSERT(!cv_has_waiters(&bp->b_done));
916
917	/* If this is a tape block, write the block now. */
918	if (bdev_type(bp->b_dev) == D_TAPE) {
919		bawrite(bp);
920		return;
921	}
922
923	if (wapbl_vphaswapbl(bp->b_vp)) {
924		struct mount *mp = wapbl_vptomp(bp->b_vp);
925
926		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
927			WAPBL_ADD_BUF(mp, bp);
928		}
929	}
930
931	/*
932	 * If the block hasn't been seen before:
933	 *	(1) Mark it as having been seen,
934	 *	(2) Charge for the write,
935	 *	(3) Make sure it's on its vnode's correct block list.
936	 */
937	KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
938
939	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
940		mutex_enter(&bufcache_lock);
941		mutex_enter(bp->b_objlock);
942		SET(bp->b_oflags, BO_DELWRI);
943		curlwp->l_ru.ru_oublock++;
944		reassignbuf(bp, bp->b_vp);
945		mutex_exit(&bufcache_lock);
946	} else {
947		mutex_enter(bp->b_objlock);
948	}
949	/* Otherwise, the "write" is done, so mark and release the buffer. */
950	CLR(bp->b_oflags, BO_DONE);
951	mutex_exit(bp->b_objlock);
952
953	brelse(bp, 0);
954}
955
956/*
957 * Asynchronous block write; just an asynchronous bwrite().
958 */
959void
960bawrite(buf_t *bp)
961{
962
963	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
964	KASSERT(bp->b_vp != NULL);
965
966	SET(bp->b_flags, B_ASYNC);
967	VOP_BWRITE(bp->b_vp, bp);
968}
969
970/*
971 * Release a buffer on to the free lists.
972 * Described in Bach (p. 46).
973 */
974void
975brelsel(buf_t *bp, int set)
976{
977	struct bqueue *bufq;
978	struct vnode *vp;
979
980	KASSERT(bp != NULL);
981	KASSERT(mutex_owned(&bufcache_lock));
982	KASSERT(!cv_has_waiters(&bp->b_done));
983	KASSERT(bp->b_refcnt > 0);
984
985	SET(bp->b_cflags, set);
986
987	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
988	KASSERT(bp->b_iodone == NULL);
989
990	/* Wake up any processes waiting for any buffer to become free. */
991	cv_signal(&needbuffer_cv);
992
993	/* Wake up any proceeses waiting for _this_ buffer to become */
994	if (ISSET(bp->b_cflags, BC_WANTED))
995		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
996
997	/* If it's clean clear the copy-on-write flag. */
998	if (ISSET(bp->b_flags, B_COWDONE)) {
999		mutex_enter(bp->b_objlock);
1000		if (!ISSET(bp->b_oflags, BO_DELWRI))
1001			CLR(bp->b_flags, B_COWDONE);
1002		mutex_exit(bp->b_objlock);
1003	}
1004
1005	/*
1006	 * Determine which queue the buffer should be on, then put it there.
1007	 */
1008
1009	/* If it's locked, don't report an error; try again later. */
1010	if (ISSET(bp->b_flags, B_LOCKED))
1011		bp->b_error = 0;
1012
1013	/* If it's not cacheable, or an error, mark it invalid. */
1014	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1015		SET(bp->b_cflags, BC_INVAL);
1016
1017	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1018		/*
1019		 * This is a delayed write buffer that was just flushed to
1020		 * disk.  It is still on the LRU queue.  If it's become
1021		 * invalid, then we need to move it to a different queue;
1022		 * otherwise leave it in its current position.
1023		 */
1024		CLR(bp->b_cflags, BC_VFLUSH);
1025		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1026		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1027			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1028			goto already_queued;
1029		} else {
1030			bremfree(bp);
1031		}
1032	}
1033
1034	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1035	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1036	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1037
1038	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1039		/*
1040		 * If it's invalid or empty, dissociate it from its vnode
1041		 * and put on the head of the appropriate queue.
1042		 */
1043		if (ISSET(bp->b_flags, B_LOCKED)) {
1044			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1045				struct mount *mp = wapbl_vptomp(vp);
1046
1047				KASSERT(bp->b_iodone
1048				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
1049				WAPBL_REMOVE_BUF(mp, bp);
1050			}
1051		}
1052
1053		mutex_enter(bp->b_objlock);
1054		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1055		if ((vp = bp->b_vp) != NULL) {
1056			KASSERT(bp->b_objlock == vp->v_interlock);
1057			reassignbuf(bp, bp->b_vp);
1058			brelvp(bp);
1059			mutex_exit(vp->v_interlock);
1060		} else {
1061			KASSERT(bp->b_objlock == &buffer_lock);
1062			mutex_exit(bp->b_objlock);
1063		}
1064
1065		if (bp->b_bufsize <= 0)
1066			/* no data */
1067			goto already_queued;
1068		else
1069			/* invalid data */
1070			bufq = &bufqueues[BQ_AGE];
1071		binsheadfree(bp, bufq);
1072	} else  {
1073		/*
1074		 * It has valid data.  Put it on the end of the appropriate
1075		 * queue, so that it'll stick around for as long as possible.
1076		 * If buf is AGE, but has dependencies, must put it on last
1077		 * bufqueue to be scanned, ie LRU. This protects against the
1078		 * livelock where BQ_AGE only has buffers with dependencies,
1079		 * and we thus never get to the dependent buffers in BQ_LRU.
1080		 */
1081		if (ISSET(bp->b_flags, B_LOCKED)) {
1082			/* locked in core */
1083			bufq = &bufqueues[BQ_LOCKED];
1084		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
1085			/* valid data */
1086			bufq = &bufqueues[BQ_LRU];
1087		} else {
1088			/* stale but valid data */
1089			bufq = &bufqueues[BQ_AGE];
1090		}
1091		binstailfree(bp, bufq);
1092	}
1093already_queued:
1094	/* Unlock the buffer. */
1095	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1096	CLR(bp->b_flags, B_ASYNC);
1097	cv_broadcast(&bp->b_busy);
1098
1099	if (bp->b_bufsize <= 0)
1100		brele(bp);
1101}
1102
1103void
1104brelse(buf_t *bp, int set)
1105{
1106
1107	mutex_enter(&bufcache_lock);
1108	brelsel(bp, set);
1109	mutex_exit(&bufcache_lock);
1110}
1111
1112/*
1113 * Determine if a block is in the cache.
1114 * Just look on what would be its hash chain.  If it's there, return
1115 * a pointer to it, unless it's marked invalid.  If it's marked invalid,
1116 * we normally don't return the buffer, unless the caller explicitly
1117 * wants us to.
1118 */
1119buf_t *
1120incore(struct vnode *vp, daddr_t blkno)
1121{
1122	buf_t *bp;
1123
1124	KASSERT(mutex_owned(&bufcache_lock));
1125
1126	/* Search hash chain */
1127	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1128		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1129		    !ISSET(bp->b_cflags, BC_INVAL)) {
1130		    	KASSERT(bp->b_objlock == vp->v_interlock);
1131		    	return (bp);
1132		}
1133	}
1134
1135	return (NULL);
1136}
1137
1138/*
1139 * Get a block of requested size that is associated with
1140 * a given vnode and block offset. If it is found in the
1141 * block cache, mark it as having been found, make it busy
1142 * and return it. Otherwise, return an empty block of the
1143 * correct size. It is up to the caller to insure that the
1144 * cached blocks be of the correct size.
1145 */
1146buf_t *
1147getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1148{
1149	int err, preserve;
1150	buf_t *bp;
1151
1152	mutex_enter(&bufcache_lock);
1153 loop:
1154	bp = incore(vp, blkno);
1155	if (bp != NULL) {
1156		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1157		if (err != 0) {
1158			if (err == EPASSTHROUGH)
1159				goto loop;
1160			mutex_exit(&bufcache_lock);
1161			return (NULL);
1162		}
1163		KASSERT(!cv_has_waiters(&bp->b_done));
1164#ifdef DIAGNOSTIC
1165		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1166		    bp->b_bcount < size && vp->v_type != VBLK)
1167			panic("getblk: block size invariant failed");
1168#endif
1169		bremfree(bp);
1170		preserve = 1;
1171	} else {
1172		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1173			goto loop;
1174
1175		if (incore(vp, blkno) != NULL) {
1176			/* The block has come into memory in the meantime. */
1177			brelsel(bp, 0);
1178			goto loop;
1179		}
1180
1181		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1182		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1183		mutex_enter(vp->v_interlock);
1184		bgetvp(vp, bp);
1185		mutex_exit(vp->v_interlock);
1186		preserve = 0;
1187	}
1188	mutex_exit(&bufcache_lock);
1189
1190	/*
1191	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1192	 * if we re-size buffers here.
1193	 */
1194	if (ISSET(bp->b_flags, B_LOCKED)) {
1195		KASSERT(bp->b_bufsize >= size);
1196	} else {
1197		if (allocbuf(bp, size, preserve)) {
1198			mutex_enter(&bufcache_lock);
1199			LIST_REMOVE(bp, b_hash);
1200			mutex_exit(&bufcache_lock);
1201			brelse(bp, BC_INVAL);
1202			return NULL;
1203		}
1204	}
1205	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1206	return (bp);
1207}
1208
1209/*
1210 * Get an empty, disassociated buffer of given size.
1211 */
1212buf_t *
1213geteblk(int size)
1214{
1215	buf_t *bp;
1216	int error __diagused;
1217
1218	mutex_enter(&bufcache_lock);
1219	while ((bp = getnewbuf(0, 0, 0)) == NULL)
1220		;
1221
1222	SET(bp->b_cflags, BC_INVAL);
1223	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1224	mutex_exit(&bufcache_lock);
1225	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1226	error = allocbuf(bp, size, 0);
1227	KASSERT(error == 0);
1228	return (bp);
1229}
1230
1231/*
1232 * Expand or contract the actual memory allocated to a buffer.
1233 *
1234 * If the buffer shrinks, data is lost, so it's up to the
1235 * caller to have written it out *first*; this routine will not
1236 * start a write.  If the buffer grows, it's the callers
1237 * responsibility to fill out the buffer's additional contents.
1238 */
1239int
1240allocbuf(buf_t *bp, int size, int preserve)
1241{
1242	void *addr;
1243	vsize_t oldsize, desired_size;
1244	int oldcount;
1245	int delta;
1246
1247	desired_size = buf_roundsize(size);
1248	if (desired_size > MAXBSIZE)
1249		printf("allocbuf: buffer larger than MAXBSIZE requested");
1250
1251	oldcount = bp->b_bcount;
1252
1253	bp->b_bcount = size;
1254
1255	oldsize = bp->b_bufsize;
1256	if (oldsize == desired_size) {
1257		/*
1258		 * Do not short cut the WAPBL resize, as the buffer length
1259		 * could still have changed and this would corrupt the
1260		 * tracking of the transaction length.
1261		 */
1262		goto out;
1263	}
1264
1265	/*
1266	 * If we want a buffer of a different size, re-allocate the
1267	 * buffer's memory; copy old content only if needed.
1268	 */
1269	addr = buf_alloc(desired_size);
1270	if (addr == NULL)
1271		return ENOMEM;
1272	if (preserve)
1273		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1274	if (bp->b_data != NULL)
1275		buf_mrelease(bp->b_data, oldsize);
1276	bp->b_data = addr;
1277	bp->b_bufsize = desired_size;
1278
1279	/*
1280	 * Update overall buffer memory counter (protected by bufcache_lock)
1281	 */
1282	delta = (long)desired_size - (long)oldsize;
1283
1284	mutex_enter(&bufcache_lock);
1285	if ((bufmem += delta) > bufmem_hiwater) {
1286		/*
1287		 * Need to trim overall memory usage.
1288		 */
1289		while (buf_canrelease()) {
1290			if (curcpu()->ci_schedstate.spc_flags &
1291			    SPCF_SHOULDYIELD) {
1292				mutex_exit(&bufcache_lock);
1293				preempt();
1294				mutex_enter(&bufcache_lock);
1295			}
1296			if (buf_trim() == 0)
1297				break;
1298		}
1299	}
1300	mutex_exit(&bufcache_lock);
1301
1302 out:
1303	if (wapbl_vphaswapbl(bp->b_vp))
1304		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1305
1306	return 0;
1307}
1308
1309/*
1310 * Find a buffer which is available for use.
1311 * Select something from a free list.
1312 * Preference is to AGE list, then LRU list.
1313 *
1314 * Called with the buffer queues locked.
1315 * Return buffer locked.
1316 */
1317buf_t *
1318getnewbuf(int slpflag, int slptimeo, int from_bufq)
1319{
1320	buf_t *bp;
1321	struct vnode *vp;
1322
1323 start:
1324	KASSERT(mutex_owned(&bufcache_lock));
1325
1326	/*
1327	 * Get a new buffer from the pool.
1328	 */
1329	if (!from_bufq && buf_lotsfree()) {
1330		mutex_exit(&bufcache_lock);
1331		bp = pool_cache_get(buf_cache, PR_NOWAIT);
1332		if (bp != NULL) {
1333			memset((char *)bp, 0, sizeof(*bp));
1334			buf_init(bp);
1335			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
1336			mutex_enter(&bufcache_lock);
1337#if defined(DIAGNOSTIC)
1338			bp->b_freelistindex = -1;
1339#endif /* defined(DIAGNOSTIC) */
1340			return (bp);
1341		}
1342		mutex_enter(&bufcache_lock);
1343	}
1344
1345	KASSERT(mutex_owned(&bufcache_lock));
1346	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1347	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1348	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1349		bremfree(bp);
1350
1351		/* Buffer is no longer on free lists. */
1352		SET(bp->b_cflags, BC_BUSY);
1353	} else {
1354		/*
1355		 * XXX: !from_bufq should be removed.
1356		 */
1357		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1358			/* wait for a free buffer of any kind */
1359			if ((slpflag & PCATCH) != 0)
1360				(void)cv_timedwait_sig(&needbuffer_cv,
1361				    &bufcache_lock, slptimeo);
1362			else
1363				(void)cv_timedwait(&needbuffer_cv,
1364				    &bufcache_lock, slptimeo);
1365		}
1366		return (NULL);
1367	}
1368
1369#ifdef DIAGNOSTIC
1370	if (bp->b_bufsize <= 0)
1371		panic("buffer %p: on queue but empty", bp);
1372#endif
1373
1374	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1375		/*
1376		 * This is a delayed write buffer being flushed to disk.  Make
1377		 * sure it gets aged out of the queue when it's finished, and
1378		 * leave it off the LRU queue.
1379		 */
1380		CLR(bp->b_cflags, BC_VFLUSH);
1381		SET(bp->b_cflags, BC_AGE);
1382		goto start;
1383	}
1384
1385	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1386	KASSERT(bp->b_refcnt > 0);
1387    	KASSERT(!cv_has_waiters(&bp->b_done));
1388
1389	/*
1390	 * If buffer was a delayed write, start it and return NULL
1391	 * (since we might sleep while starting the write).
1392	 */
1393	if (ISSET(bp->b_oflags, BO_DELWRI)) {
1394		/*
1395		 * This buffer has gone through the LRU, so make sure it gets
1396		 * reused ASAP.
1397		 */
1398		SET(bp->b_cflags, BC_AGE);
1399		mutex_exit(&bufcache_lock);
1400		bawrite(bp);
1401		mutex_enter(&bufcache_lock);
1402		return (NULL);
1403	}
1404
1405	vp = bp->b_vp;
1406
1407	/* clear out various other fields */
1408	bp->b_cflags = BC_BUSY;
1409	bp->b_oflags = 0;
1410	bp->b_flags = 0;
1411	bp->b_dev = NODEV;
1412	bp->b_blkno = 0;
1413	bp->b_lblkno = 0;
1414	bp->b_rawblkno = 0;
1415	bp->b_iodone = 0;
1416	bp->b_error = 0;
1417	bp->b_resid = 0;
1418	bp->b_bcount = 0;
1419
1420	LIST_REMOVE(bp, b_hash);
1421
1422	/* Disassociate us from our vnode, if we had one... */
1423	if (vp != NULL) {
1424		mutex_enter(vp->v_interlock);
1425		brelvp(bp);
1426		mutex_exit(vp->v_interlock);
1427	}
1428
1429	return (bp);
1430}
1431
1432/*
1433 * Attempt to free an aged buffer off the queues.
1434 * Called with queue lock held.
1435 * Returns the amount of buffer memory freed.
1436 */
1437static int
1438buf_trim(void)
1439{
1440	buf_t *bp;
1441	long size;
1442
1443	KASSERT(mutex_owned(&bufcache_lock));
1444
1445	/* Instruct getnewbuf() to get buffers off the queues */
1446	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1447		return 0;
1448
1449	KASSERT((bp->b_cflags & BC_WANTED) == 0);
1450	size = bp->b_bufsize;
1451	bufmem -= size;
1452	if (size > 0) {
1453		buf_mrelease(bp->b_data, size);
1454		bp->b_bcount = bp->b_bufsize = 0;
1455	}
1456	/* brelse() will return the buffer to the global buffer pool */
1457	brelsel(bp, 0);
1458	return size;
1459}
1460
1461int
1462buf_drain(int n)
1463{
1464	int size = 0, sz;
1465
1466	KASSERT(mutex_owned(&bufcache_lock));
1467
1468	while (size < n && bufmem > bufmem_lowater) {
1469		sz = buf_trim();
1470		if (sz <= 0)
1471			break;
1472		size += sz;
1473	}
1474
1475	return size;
1476}
1477
1478/*
1479 * Wait for operations on the buffer to complete.
1480 * When they do, extract and return the I/O's error value.
1481 */
1482int
1483biowait(buf_t *bp)
1484{
1485
1486	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1487	KASSERT(bp->b_refcnt > 0);
1488
1489	mutex_enter(bp->b_objlock);
1490	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1491		cv_wait(&bp->b_done, bp->b_objlock);
1492	mutex_exit(bp->b_objlock);
1493
1494	return bp->b_error;
1495}
1496
1497/*
1498 * Mark I/O complete on a buffer.
1499 *
1500 * If a callback has been requested, e.g. the pageout
1501 * daemon, do so. Otherwise, awaken waiting processes.
1502 *
1503 * [ Leffler, et al., says on p.247:
1504 *	"This routine wakes up the blocked process, frees the buffer
1505 *	for an asynchronous write, or, for a request by the pagedaemon
1506 *	process, invokes a procedure specified in the buffer structure" ]
1507 *
1508 * In real life, the pagedaemon (or other system processes) wants
1509 * to do async stuff to, and doesn't want the buffer brelse()'d.
1510 * (for swap pager, that puts swap buffers on the free lists (!!!),
1511 * for the vn device, that puts allocated buffers on the free lists!)
1512 */
1513void
1514biodone(buf_t *bp)
1515{
1516	int s;
1517
1518	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1519
1520	if (cpu_intr_p()) {
1521		/* From interrupt mode: defer to a soft interrupt. */
1522		s = splvm();
1523		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1524		softint_schedule(biodone_sih);
1525		splx(s);
1526	} else {
1527		/* Process now - the buffer may be freed soon. */
1528		biodone2(bp);
1529	}
1530}
1531
1532static void
1533biodone2(buf_t *bp)
1534{
1535	void (*callout)(buf_t *);
1536
1537	mutex_enter(bp->b_objlock);
1538	/* Note that the transfer is done. */
1539	if (ISSET(bp->b_oflags, BO_DONE))
1540		panic("biodone2 already");
1541	CLR(bp->b_flags, B_COWDONE);
1542	SET(bp->b_oflags, BO_DONE);
1543	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1544
1545	/* Wake up waiting writers. */
1546	if (!ISSET(bp->b_flags, B_READ))
1547		vwakeup(bp);
1548
1549	if ((callout = bp->b_iodone) != NULL) {
1550		/* Note callout done, then call out. */
1551		KASSERT(!cv_has_waiters(&bp->b_done));
1552		KERNEL_LOCK(1, NULL);		/* XXXSMP */
1553		bp->b_iodone = NULL;
1554		mutex_exit(bp->b_objlock);
1555		(*callout)(bp);
1556		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1557	} else if (ISSET(bp->b_flags, B_ASYNC)) {
1558		/* If async, release. */
1559		KASSERT(!cv_has_waiters(&bp->b_done));
1560		mutex_exit(bp->b_objlock);
1561		brelse(bp, 0);
1562	} else {
1563		/* Otherwise just wake up waiters in biowait(). */
1564		cv_broadcast(&bp->b_done);
1565		mutex_exit(bp->b_objlock);
1566	}
1567}
1568
1569static void
1570biointr(void *cookie)
1571{
1572	struct cpu_info *ci;
1573	buf_t *bp;
1574	int s;
1575
1576	ci = curcpu();
1577
1578	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1579		KASSERT(curcpu() == ci);
1580
1581		s = splvm();
1582		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1583		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1584		splx(s);
1585
1586		biodone2(bp);
1587	}
1588}
1589
1590/*
1591 * Wait for all buffers to complete I/O
1592 * Return the number of "stuck" buffers.
1593 */
1594int
1595buf_syncwait(void)
1596{
1597	buf_t *bp;
1598	int iter, nbusy, nbusy_prev = 0, ihash;
1599
1600	for (iter = 0; iter < 20;) {
1601		mutex_enter(&bufcache_lock);
1602		nbusy = 0;
1603		for (ihash = 0; ihash < bufhash+1; ihash++) {
1604		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1605			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1606				nbusy += ((bp->b_flags & B_READ) == 0);
1607		    }
1608		}
1609		mutex_exit(&bufcache_lock);
1610
1611		if (nbusy == 0)
1612			break;
1613		if (nbusy_prev == 0)
1614			nbusy_prev = nbusy;
1615		printf("%d ", nbusy);
1616		kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1617		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1618			iter++;
1619		else
1620			nbusy_prev = nbusy;
1621	}
1622
1623	if (nbusy) {
1624#if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1625		printf("giving up\nPrinting vnodes for busy buffers\n");
1626		for (ihash = 0; ihash < bufhash+1; ihash++) {
1627		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1628			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1629			    (bp->b_flags & B_READ) == 0)
1630				vprint(NULL, bp->b_vp);
1631		    }
1632		}
1633#endif
1634	}
1635
1636	return nbusy;
1637}
1638
1639static void
1640sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1641{
1642
1643	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1644	o->b_error = i->b_error;
1645	o->b_prio = i->b_prio;
1646	o->b_dev = i->b_dev;
1647	o->b_bufsize = i->b_bufsize;
1648	o->b_bcount = i->b_bcount;
1649	o->b_resid = i->b_resid;
1650	o->b_addr = PTRTOUINT64(i->b_data);
1651	o->b_blkno = i->b_blkno;
1652	o->b_rawblkno = i->b_rawblkno;
1653	o->b_iodone = PTRTOUINT64(i->b_iodone);
1654	o->b_proc = PTRTOUINT64(i->b_proc);
1655	o->b_vp = PTRTOUINT64(i->b_vp);
1656	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1657	o->b_lblkno = i->b_lblkno;
1658}
1659
1660#define KERN_BUFSLOP 20
1661static int
1662sysctl_dobuf(SYSCTLFN_ARGS)
1663{
1664	buf_t *bp;
1665	struct buf_sysctl bs;
1666	struct bqueue *bq;
1667	char *dp;
1668	u_int i, op, arg;
1669	size_t len, needed, elem_size, out_size;
1670	int error, elem_count, retries;
1671
1672	if (namelen == 1 && name[0] == CTL_QUERY)
1673		return (sysctl_query(SYSCTLFN_CALL(rnode)));
1674
1675	if (namelen != 4)
1676		return (EINVAL);
1677
1678	retries = 100;
1679 retry:
1680	dp = oldp;
1681	len = (oldp != NULL) ? *oldlenp : 0;
1682	op = name[0];
1683	arg = name[1];
1684	elem_size = name[2];
1685	elem_count = name[3];
1686	out_size = MIN(sizeof(bs), elem_size);
1687
1688	/*
1689	 * at the moment, these are just "placeholders" to make the
1690	 * API for retrieving kern.buf data more extensible in the
1691	 * future.
1692	 *
1693	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1694	 * these will be resolved at a later point.
1695	 */
1696	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1697	    elem_size < 1 || elem_count < 0)
1698		return (EINVAL);
1699
1700	error = 0;
1701	needed = 0;
1702	sysctl_unlock();
1703	mutex_enter(&bufcache_lock);
1704	for (i = 0; i < BQUEUES; i++) {
1705		bq = &bufqueues[i];
1706		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1707			bq->bq_marker = bp;
1708			if (len >= elem_size && elem_count > 0) {
1709				sysctl_fillbuf(bp, &bs);
1710				mutex_exit(&bufcache_lock);
1711				error = copyout(&bs, dp, out_size);
1712				mutex_enter(&bufcache_lock);
1713				if (error)
1714					break;
1715				if (bq->bq_marker != bp) {
1716					/*
1717					 * This sysctl node is only for
1718					 * statistics.  Retry; if the
1719					 * queue keeps changing, then
1720					 * bail out.
1721					 */
1722					if (retries-- == 0) {
1723						error = EAGAIN;
1724						break;
1725					}
1726					mutex_exit(&bufcache_lock);
1727					sysctl_relock();
1728					goto retry;
1729				}
1730				dp += elem_size;
1731				len -= elem_size;
1732			}
1733			needed += elem_size;
1734			if (elem_count > 0 && elem_count != INT_MAX)
1735				elem_count--;
1736		}
1737		if (error != 0)
1738			break;
1739	}
1740	mutex_exit(&bufcache_lock);
1741	sysctl_relock();
1742
1743	*oldlenp = needed;
1744	if (oldp == NULL)
1745		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1746
1747	return (error);
1748}
1749
1750static int
1751sysctl_bufvm_update(SYSCTLFN_ARGS)
1752{
1753	int error, rv;
1754	struct sysctlnode node;
1755	unsigned int temp_bufcache;
1756	unsigned long temp_water;
1757
1758	/* Take a copy of the supplied node and its data */
1759	node = *rnode;
1760	if (node.sysctl_data == &bufcache) {
1761	    node.sysctl_data = &temp_bufcache;
1762	    temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1763	} else {
1764	    node.sysctl_data = &temp_water;
1765	    temp_water = *(unsigned long *)rnode->sysctl_data;
1766	}
1767
1768	/* Update the copy */
1769	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1770	if (error || newp == NULL)
1771		return (error);
1772
1773	if (rnode->sysctl_data == &bufcache) {
1774		if (temp_bufcache > 100)
1775			return (EINVAL);
1776		bufcache = temp_bufcache;
1777		buf_setwm();
1778	} else if (rnode->sysctl_data == &bufmem_lowater) {
1779		if (bufmem_hiwater - temp_water < 16)
1780			return (EINVAL);
1781		bufmem_lowater = temp_water;
1782	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1783		if (temp_water - bufmem_lowater < 16)
1784			return (EINVAL);
1785		bufmem_hiwater = temp_water;
1786	} else
1787		return (EINVAL);
1788
1789	/* Drain until below new high water mark */
1790	sysctl_unlock();
1791	mutex_enter(&bufcache_lock);
1792	while (bufmem > bufmem_hiwater) {
1793		rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1794		if (rv <= 0)
1795			break;
1796	}
1797	mutex_exit(&bufcache_lock);
1798	sysctl_relock();
1799
1800	return 0;
1801}
1802
1803static struct sysctllog *vfsbio_sysctllog;
1804
1805static void
1806sysctl_kern_buf_setup(void)
1807{
1808
1809	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1810		       CTLFLAG_PERMANENT,
1811		       CTLTYPE_NODE, "buf",
1812		       SYSCTL_DESCR("Kernel buffer cache information"),
1813		       sysctl_dobuf, 0, NULL, 0,
1814		       CTL_KERN, KERN_BUF, CTL_EOL);
1815}
1816
1817static void
1818sysctl_vm_buf_setup(void)
1819{
1820
1821	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1822		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1823		       CTLTYPE_INT, "bufcache",
1824		       SYSCTL_DESCR("Percentage of physical memory to use for "
1825				    "buffer cache"),
1826		       sysctl_bufvm_update, 0, &bufcache, 0,
1827		       CTL_VM, CTL_CREATE, CTL_EOL);
1828	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1829		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1830		       CTLTYPE_LONG, "bufmem",
1831		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
1832				    "cache"),
1833		       NULL, 0, &bufmem, 0,
1834		       CTL_VM, CTL_CREATE, CTL_EOL);
1835	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1836		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1837		       CTLTYPE_LONG, "bufmem_lowater",
1838		       SYSCTL_DESCR("Minimum amount of kernel memory to "
1839				    "reserve for buffer cache"),
1840		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1841		       CTL_VM, CTL_CREATE, CTL_EOL);
1842	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1843		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1844		       CTLTYPE_LONG, "bufmem_hiwater",
1845		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
1846				    "for buffer cache"),
1847		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1848		       CTL_VM, CTL_CREATE, CTL_EOL);
1849}
1850
1851#ifdef DEBUG
1852/*
1853 * Print out statistics on the current allocation of the buffer pool.
1854 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1855 * in vfs_syscalls.c using sysctl.
1856 */
1857void
1858vfs_bufstats(void)
1859{
1860	int i, j, count;
1861	buf_t *bp;
1862	struct bqueue *dp;
1863	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1864	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1865
1866	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1867		count = 0;
1868		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1869			counts[j] = 0;
1870		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1871			counts[bp->b_bufsize/PAGE_SIZE]++;
1872			count++;
1873		}
1874		printf("%s: total-%d", bname[i], count);
1875		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1876			if (counts[j] != 0)
1877				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1878		printf("\n");
1879	}
1880}
1881#endif /* DEBUG */
1882
1883/* ------------------------------ */
1884
1885buf_t *
1886getiobuf(struct vnode *vp, bool waitok)
1887{
1888	buf_t *bp;
1889
1890	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1891	if (bp == NULL)
1892		return bp;
1893
1894	buf_init(bp);
1895
1896	if ((bp->b_vp = vp) == NULL)
1897		bp->b_objlock = &buffer_lock;
1898	else
1899		bp->b_objlock = vp->v_interlock;
1900
1901	return bp;
1902}
1903
1904void
1905putiobuf(buf_t *bp)
1906{
1907
1908	buf_destroy(bp);
1909	pool_cache_put(bufio_cache, bp);
1910}
1911
1912/*
1913 * nestiobuf_iodone: b_iodone callback for nested buffers.
1914 */
1915
1916void
1917nestiobuf_iodone(buf_t *bp)
1918{
1919	buf_t *mbp = bp->b_private;
1920	int error;
1921	int donebytes;
1922
1923	KASSERT(bp->b_bcount <= bp->b_bufsize);
1924	KASSERT(mbp != bp);
1925
1926	error = bp->b_error;
1927	if (bp->b_error == 0 &&
1928	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1929		/*
1930		 * Not all got transfered, raise an error. We have no way to
1931		 * propagate these conditions to mbp.
1932		 */
1933		error = EIO;
1934	}
1935
1936	donebytes = bp->b_bufsize;
1937
1938	putiobuf(bp);
1939	nestiobuf_done(mbp, donebytes, error);
1940}
1941
1942/*
1943 * nestiobuf_setup: setup a "nested" buffer.
1944 *
1945 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1946 * => 'bp' should be a buffer allocated by getiobuf.
1947 * => 'offset' is a byte offset in the master buffer.
1948 * => 'size' is a size in bytes of this nested buffer.
1949 */
1950
1951void
1952nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1953{
1954	const int b_read = mbp->b_flags & B_READ;
1955	struct vnode *vp = mbp->b_vp;
1956
1957	KASSERT(mbp->b_bcount >= offset + size);
1958	bp->b_vp = vp;
1959	bp->b_dev = mbp->b_dev;
1960	bp->b_objlock = mbp->b_objlock;
1961	bp->b_cflags = BC_BUSY;
1962	bp->b_flags = B_ASYNC | b_read;
1963	bp->b_iodone = nestiobuf_iodone;
1964	bp->b_data = (char *)mbp->b_data + offset;
1965	bp->b_resid = bp->b_bcount = size;
1966	bp->b_bufsize = bp->b_bcount;
1967	bp->b_private = mbp;
1968	BIO_COPYPRIO(bp, mbp);
1969	if (!b_read && vp != NULL) {
1970		mutex_enter(vp->v_interlock);
1971		vp->v_numoutput++;
1972		mutex_exit(vp->v_interlock);
1973	}
1974}
1975
1976/*
1977 * nestiobuf_done: propagate completion to the master buffer.
1978 *
1979 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1980 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1981 */
1982
1983void
1984nestiobuf_done(buf_t *mbp, int donebytes, int error)
1985{
1986
1987	if (donebytes == 0) {
1988		return;
1989	}
1990	mutex_enter(mbp->b_objlock);
1991	KASSERT(mbp->b_resid >= donebytes);
1992	mbp->b_resid -= donebytes;
1993	if (error)
1994		mbp->b_error = error;
1995	if (mbp->b_resid == 0) {
1996		if (mbp->b_error)
1997			mbp->b_resid = mbp->b_bcount;
1998		mutex_exit(mbp->b_objlock);
1999		biodone(mbp);
2000	} else
2001		mutex_exit(mbp->b_objlock);
2002}
2003
2004void
2005buf_init(buf_t *bp)
2006{
2007
2008	cv_init(&bp->b_busy, "biolock");
2009	cv_init(&bp->b_done, "biowait");
2010	bp->b_dev = NODEV;
2011	bp->b_error = 0;
2012	bp->b_flags = 0;
2013	bp->b_cflags = 0;
2014	bp->b_oflags = 0;
2015	bp->b_objlock = &buffer_lock;
2016	bp->b_iodone = NULL;
2017	bp->b_refcnt = 1;
2018	bp->b_dev = NODEV;
2019	bp->b_vnbufs.le_next = NOLIST;
2020	BIO_SETPRIO(bp, BPRIO_DEFAULT);
2021}
2022
2023void
2024buf_destroy(buf_t *bp)
2025{
2026
2027	cv_destroy(&bp->b_done);
2028	cv_destroy(&bp->b_busy);
2029}
2030
2031int
2032bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2033{
2034	int error;
2035
2036	KASSERT(mutex_owned(&bufcache_lock));
2037
2038	if ((bp->b_cflags & BC_BUSY) != 0) {
2039		if (curlwp == uvm.pagedaemon_lwp)
2040			return EDEADLK;
2041		bp->b_cflags |= BC_WANTED;
2042		bref(bp);
2043		if (interlock != NULL)
2044			mutex_exit(interlock);
2045		if (intr) {
2046			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2047			    timo);
2048		} else {
2049			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2050			    timo);
2051		}
2052		brele(bp);
2053		if (interlock != NULL)
2054			mutex_enter(interlock);
2055		if (error != 0)
2056			return error;
2057		return EPASSTHROUGH;
2058	}
2059	bp->b_cflags |= BC_BUSY;
2060
2061	return 0;
2062}
2063