vfs_bio.c revision 1.181
1/*	$NetBSD: vfs_bio.c,v 1.181 2007/12/02 13:56:16 hannken Exp $	*/
2
3/*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
37 */
38
39/*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 *    notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in the
49 *    documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 *    must display the following acknowledgement:
52 *	This product includes software developed by the University of
53 *	California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 *    may be used to endorse or promote products derived from this software
56 *    without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
71 */
72
73/*
74 * Some references:
75 *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 *	Leffler, et al.: The Design and Implementation of the 4.3BSD
77 *		UNIX Operating System (Addison Welley, 1989)
78 */
79
80#include <sys/cdefs.h>
81__KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.181 2007/12/02 13:56:16 hannken Exp $");
82
83#include "fs_ffs.h"
84#include "opt_bufcache.h"
85
86#include <sys/param.h>
87#include <sys/systm.h>
88#include <sys/kernel.h>
89#include <sys/proc.h>
90#include <sys/buf.h>
91#include <sys/vnode.h>
92#include <sys/mount.h>
93#include <sys/malloc.h>
94#include <sys/resourcevar.h>
95#include <sys/sysctl.h>
96#include <sys/conf.h>
97#include <sys/kauth.h>
98
99#include <uvm/uvm.h>
100
101#include <miscfs/specfs/specdev.h>
102
103#ifndef	BUFPAGES
104# define BUFPAGES 0
105#endif
106
107#ifdef BUFCACHE
108# if (BUFCACHE < 5) || (BUFCACHE > 95)
109#  error BUFCACHE is not between 5 and 95
110# endif
111#else
112# define BUFCACHE 15
113#endif
114
115u_int	nbuf;			/* XXX - for softdep_lockedbufs */
116u_int	bufpages = BUFPAGES;	/* optional hardwired count */
117u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
118
119/* Function prototypes */
120struct bqueue;
121
122static void buf_setwm(void);
123static int buf_trim(void);
124static void *bufpool_page_alloc(struct pool *, int);
125static void bufpool_page_free(struct pool *, void *);
126static inline struct buf *bio_doread(struct vnode *, daddr_t, int,
127    kauth_cred_t, int);
128static struct buf *getnewbuf(int, int, int);
129static int buf_lotsfree(void);
130static int buf_canrelease(void);
131static inline u_long buf_mempoolidx(u_long);
132static inline u_long buf_roundsize(u_long);
133static inline void *buf_malloc(size_t);
134static void buf_mrelease(void *, size_t);
135static inline void binsheadfree(struct buf *, struct bqueue *);
136static inline void binstailfree(struct buf *, struct bqueue *);
137int count_lock_queue(void); /* XXX */
138#ifdef DEBUG
139static int checkfreelist(struct buf *, struct bqueue *);
140#endif
141
142/*
143 * Definitions for the buffer hash lists.
144 */
145#define	BUFHASH(dvp, lbn)	\
146	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
147LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
148u_long	bufhash;
149
150struct bio_ops *bioopsp;	/* can be overriden by ffs_softdep */
151
152/*
153 * Insq/Remq for the buffer hash lists.
154 */
155#define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
156#define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
157
158/*
159 * Definitions for the buffer free lists.
160 */
161#define	BQUEUES		3		/* number of free buffer queues */
162
163#define	BQ_LOCKED	0		/* super-blocks &c */
164#define	BQ_LRU		1		/* lru, useful buffers */
165#define	BQ_AGE		2		/* rubbish */
166
167struct bqueue {
168	TAILQ_HEAD(, buf) bq_queue;
169	uint64_t bq_bytes;
170} bufqueues[BQUEUES];
171int needbuffer;
172
173/*
174 * Buffer queue lock.
175 * Take this lock first if also taking some buffer's b_interlock.
176 */
177struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
178
179/*
180 * Buffer pools for I/O buffers.
181 */
182static struct pool bufpool;
183static struct pool bufiopool;
184
185
186/* XXX - somewhat gross.. */
187#if MAXBSIZE == 0x2000
188#define NMEMPOOLS 5
189#elif MAXBSIZE == 0x4000
190#define NMEMPOOLS 6
191#elif MAXBSIZE == 0x8000
192#define NMEMPOOLS 7
193#else
194#define NMEMPOOLS 8
195#endif
196
197#define MEMPOOL_INDEX_OFFSET 9	/* smallest pool is 512 bytes */
198#if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
199#error update vfs_bio buffer memory parameters
200#endif
201
202/* Buffer memory pools */
203static struct pool bmempools[NMEMPOOLS];
204
205struct vm_map *buf_map;
206
207/*
208 * Buffer memory pool allocator.
209 */
210static void *
211bufpool_page_alloc(struct pool *pp, int flags)
212{
213
214	return (void *)uvm_km_alloc(buf_map,
215	    MAXBSIZE, MAXBSIZE,
216	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
217	    | UVM_KMF_WIRED);
218}
219
220static void
221bufpool_page_free(struct pool *pp, void *v)
222{
223
224	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
225}
226
227static struct pool_allocator bufmempool_allocator = {
228	.pa_alloc = bufpool_page_alloc,
229	.pa_free = bufpool_page_free,
230	.pa_pagesz = MAXBSIZE,
231};
232
233/* Buffer memory management variables */
234uint64_t bufmem_valimit;
235uint64_t bufmem_hiwater;
236uint64_t bufmem_lowater;
237uint64_t bufmem;
238
239/*
240 * MD code can call this to set a hard limit on the amount
241 * of virtual memory used by the buffer cache.
242 */
243int
244buf_setvalimit(vsize_t sz)
245{
246
247	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
248	if (sz < NMEMPOOLS * MAXBSIZE)
249		return EINVAL;
250
251	bufmem_valimit = sz;
252	return 0;
253}
254
255static void
256buf_setwm(void)
257{
258
259	bufmem_hiwater = buf_memcalc();
260	/* lowater is approx. 2% of memory (with bufcache = 15) */
261#define	BUFMEM_WMSHIFT	3
262#define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
263	if (bufmem_hiwater < BUFMEM_HIWMMIN)
264		/* Ensure a reasonable minimum value */
265		bufmem_hiwater = BUFMEM_HIWMMIN;
266	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
267}
268
269#ifdef DEBUG
270int debug_verify_freelist = 0;
271static int
272checkfreelist(struct buf *bp, struct bqueue *dp)
273{
274	struct buf *b;
275
276	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
277		if (b == bp)
278			return 1;
279	}
280	return 0;
281}
282#endif
283
284/*
285 * Insq/Remq for the buffer hash lists.
286 * Call with buffer queue locked.
287 */
288static inline void
289binsheadfree(struct buf *bp, struct bqueue *dp)
290{
291
292	KASSERT(bp->b_freelistindex == -1);
293	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
294	dp->bq_bytes += bp->b_bufsize;
295	bp->b_freelistindex = dp - bufqueues;
296}
297
298static inline void
299binstailfree(struct buf *bp, struct bqueue *dp)
300{
301
302	KASSERT(bp->b_freelistindex == -1);
303	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
304	dp->bq_bytes += bp->b_bufsize;
305	bp->b_freelistindex = dp - bufqueues;
306}
307
308void
309bremfree(struct buf *bp)
310{
311	struct bqueue *dp;
312	int bqidx = bp->b_freelistindex;
313
314	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
315
316	KASSERT(bqidx != -1);
317	dp = &bufqueues[bqidx];
318	KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
319	KASSERT(dp->bq_bytes >= bp->b_bufsize);
320	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
321	dp->bq_bytes -= bp->b_bufsize;
322#if defined(DIAGNOSTIC)
323	bp->b_freelistindex = -1;
324#endif /* defined(DIAGNOSTIC) */
325}
326
327u_long
328buf_memcalc(void)
329{
330	u_long n;
331
332	/*
333	 * Determine the upper bound of memory to use for buffers.
334	 *
335	 *	- If bufpages is specified, use that as the number
336	 *	  pages.
337	 *
338	 *	- Otherwise, use bufcache as the percentage of
339	 *	  physical memory.
340	 */
341	if (bufpages != 0) {
342		n = bufpages;
343	} else {
344		if (bufcache < 5) {
345			printf("forcing bufcache %d -> 5", bufcache);
346			bufcache = 5;
347		}
348		if (bufcache > 95) {
349			printf("forcing bufcache %d -> 95", bufcache);
350			bufcache = 95;
351		}
352		n = physmem / 100 * bufcache;
353	}
354
355	n <<= PAGE_SHIFT;
356	if (bufmem_valimit != 0 && n > bufmem_valimit)
357		n = bufmem_valimit;
358
359	return (n);
360}
361
362/*
363 * Initialize buffers and hash links for buffers.
364 */
365void
366bufinit(void)
367{
368	struct bqueue *dp;
369	int use_std;
370	u_int i;
371
372	/*
373	 * Initialize buffer cache memory parameters.
374	 */
375	bufmem = 0;
376	buf_setwm();
377
378	if (bufmem_valimit != 0) {
379		vaddr_t minaddr = 0, maxaddr;
380		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
381					  bufmem_valimit, 0, false, 0);
382		if (buf_map == NULL)
383			panic("bufinit: cannot allocate submap");
384	} else
385		buf_map = kernel_map;
386
387	/* On "small" machines use small pool page sizes where possible */
388	use_std = (physmem < atop(16*1024*1024));
389
390	/*
391	 * Also use them on systems that can map the pool pages using
392	 * a direct-mapped segment.
393	 */
394#ifdef PMAP_MAP_POOLPAGE
395	use_std = 1;
396#endif
397
398	pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl",
399	    &pool_allocator_nointr, IPL_NONE);
400	pool_init(&bufiopool, sizeof(struct buf), 0, 0, 0, "biopl",
401	    NULL, IPL_BIO);
402
403	bufmempool_allocator.pa_backingmap = buf_map;
404	for (i = 0; i < NMEMPOOLS; i++) {
405		struct pool_allocator *pa;
406		struct pool *pp = &bmempools[i];
407		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
408		char *name = malloc(8, M_TEMP, M_WAITOK);
409		if (__predict_true(size >= 1024))
410			(void)snprintf(name, 8, "buf%dk", size / 1024);
411		else
412			(void)snprintf(name, 8, "buf%db", size);
413		pa = (size <= PAGE_SIZE && use_std)
414			? &pool_allocator_nointr
415			: &bufmempool_allocator;
416		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
417		pool_setlowat(pp, 1);
418		pool_sethiwat(pp, 1);
419	}
420
421	/* Initialize the buffer queues */
422	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
423		TAILQ_INIT(&dp->bq_queue);
424		dp->bq_bytes = 0;
425	}
426
427	/*
428	 * Estimate hash table size based on the amount of memory we
429	 * intend to use for the buffer cache. The average buffer
430	 * size is dependent on our clients (i.e. filesystems).
431	 *
432	 * For now, use an empirical 3K per buffer.
433	 */
434	nbuf = (bufmem_hiwater / 1024) / 3;
435	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
436}
437
438static int
439buf_lotsfree(void)
440{
441	int try, thresh;
442
443	/* Always allocate if doing copy on write */
444	if (curlwp->l_pflag & LP_UFSCOW)
445		return 1;
446
447	/* Always allocate if less than the low water mark. */
448	if (bufmem < bufmem_lowater)
449		return 1;
450
451	/* Never allocate if greater than the high water mark. */
452	if (bufmem > bufmem_hiwater)
453		return 0;
454
455	/* If there's anything on the AGE list, it should be eaten. */
456	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
457		return 0;
458
459	/*
460	 * The probabily of getting a new allocation is inversely
461	 * proportional to the current size of the cache, using
462	 * a granularity of 16 steps.
463	 */
464	try = random() & 0x0000000fL;
465
466	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
467	thresh = (bufmem - bufmem_lowater) /
468	    ((bufmem_hiwater - bufmem_lowater) / 16);
469
470	if (try >= thresh)
471		return 1;
472
473	/* Otherwise don't allocate. */
474	return 0;
475}
476
477/*
478 * Return estimate of bytes we think need to be
479 * released to help resolve low memory conditions.
480 *
481 * => called at splbio.
482 * => called with bqueue_slock held.
483 */
484static int
485buf_canrelease(void)
486{
487	int pagedemand, ninvalid = 0;
488
489	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
490
491	if (bufmem < bufmem_lowater)
492		return 0;
493
494	if (bufmem > bufmem_hiwater)
495		return bufmem - bufmem_hiwater;
496
497	ninvalid += bufqueues[BQ_AGE].bq_bytes;
498
499	pagedemand = uvmexp.freetarg - uvmexp.free;
500	if (pagedemand < 0)
501		return ninvalid;
502	return MAX(ninvalid, MIN(2 * MAXBSIZE,
503	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
504}
505
506/*
507 * Buffer memory allocation helper functions
508 */
509static inline u_long
510buf_mempoolidx(u_long size)
511{
512	u_int n = 0;
513
514	size -= 1;
515	size >>= MEMPOOL_INDEX_OFFSET;
516	while (size) {
517		size >>= 1;
518		n += 1;
519	}
520	if (n >= NMEMPOOLS)
521		panic("buf mem pool index %d", n);
522	return n;
523}
524
525static inline u_long
526buf_roundsize(u_long size)
527{
528	/* Round up to nearest power of 2 */
529	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
530}
531
532static inline void *
533buf_malloc(size_t size)
534{
535	u_int n = buf_mempoolidx(size);
536	void *addr;
537	int s;
538
539	while (1) {
540		addr = pool_get(&bmempools[n], PR_NOWAIT);
541		if (addr != NULL)
542			break;
543
544		/* No memory, see if we can free some. If so, try again */
545		if (buf_drain(1) > 0)
546			continue;
547
548		/* Wait for buffers to arrive on the LRU queue */
549		s = splbio();
550		simple_lock(&bqueue_slock);
551		needbuffer = 1;
552		ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
553			"buf_malloc", 0, &bqueue_slock);
554		splx(s);
555	}
556
557	return addr;
558}
559
560static void
561buf_mrelease(void *addr, size_t size)
562{
563
564	pool_put(&bmempools[buf_mempoolidx(size)], addr);
565}
566
567/*
568 * bread()/breadn() helper.
569 */
570static inline struct buf *
571bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
572    int async)
573{
574	struct buf *bp;
575	struct mount *mp;
576
577	bp = getblk(vp, blkno, size, 0, 0);
578
579#ifdef DIAGNOSTIC
580	if (bp == NULL) {
581		panic("bio_doread: no such buf");
582	}
583#endif
584
585	/*
586	 * If buffer does not have data valid, start a read.
587	 * Note that if buffer is B_INVAL, getblk() won't return it.
588	 * Therefore, it's valid if its I/O has completed or been delayed.
589	 */
590	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
591		/* Start I/O for the buffer. */
592		SET(bp->b_flags, B_READ | async);
593		if (async)
594			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
595		else
596			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
597		VOP_STRATEGY(vp, bp);
598
599		/* Pay for the read. */
600		curproc->p_stats->p_ru.ru_inblock++;
601	} else if (async) {
602		brelse(bp, 0);
603	}
604
605	if (vp->v_type == VBLK)
606		mp = vp->v_specmountpoint;
607	else
608		mp = vp->v_mount;
609
610	/*
611	 * Collect statistics on synchronous and asynchronous reads.
612	 * Reads from block devices are charged to their associated
613	 * filesystem (if any).
614	 */
615	if (mp != NULL) {
616		if (async == 0)
617			mp->mnt_stat.f_syncreads++;
618		else
619			mp->mnt_stat.f_asyncreads++;
620	}
621
622	return (bp);
623}
624
625/*
626 * Read a disk block.
627 * This algorithm described in Bach (p.54).
628 */
629int
630bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
631    struct buf **bpp)
632{
633	struct buf *bp;
634
635	/* Get buffer for block. */
636	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
637
638	/* Wait for the read to complete, and return result. */
639	return (biowait(bp));
640}
641
642/*
643 * Read-ahead multiple disk blocks. The first is sync, the rest async.
644 * Trivial modification to the breada algorithm presented in Bach (p.55).
645 */
646int
647breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
648    int *rasizes, int nrablks, kauth_cred_t cred, struct buf **bpp)
649{
650	struct buf *bp;
651	int i;
652
653	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
654
655	/*
656	 * For each of the read-ahead blocks, start a read, if necessary.
657	 */
658	for (i = 0; i < nrablks; i++) {
659		/* If it's in the cache, just go on to next one. */
660		if (incore(vp, rablks[i]))
661			continue;
662
663		/* Get a buffer for the read-ahead block */
664		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
665	}
666
667	/* Otherwise, we had to start a read for it; wait until it's valid. */
668	return (biowait(bp));
669}
670
671/*
672 * Read with single-block read-ahead.  Defined in Bach (p.55), but
673 * implemented as a call to breadn().
674 * XXX for compatibility with old file systems.
675 */
676int
677breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
678    int rabsize, kauth_cred_t cred, struct buf **bpp)
679{
680
681	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
682}
683
684/*
685 * Block write.  Described in Bach (p.56)
686 */
687int
688bwrite(struct buf *bp)
689{
690	int rv, sync, wasdelayed, s;
691	struct vnode *vp;
692	struct mount *mp;
693
694	KASSERT(ISSET(bp->b_flags, B_BUSY));
695
696	vp = bp->b_vp;
697	if (vp != NULL) {
698		if (vp->v_type == VBLK)
699			mp = vp->v_specmountpoint;
700		else
701			mp = vp->v_mount;
702	} else {
703		mp = NULL;
704	}
705
706	/*
707	 * Remember buffer type, to switch on it later.  If the write was
708	 * synchronous, but the file system was mounted with MNT_ASYNC,
709	 * convert it to a delayed write.
710	 * XXX note that this relies on delayed tape writes being converted
711	 * to async, not sync writes (which is safe, but ugly).
712	 */
713	sync = !ISSET(bp->b_flags, B_ASYNC);
714	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
715		bdwrite(bp);
716		return (0);
717	}
718
719	/*
720	 * Collect statistics on synchronous and asynchronous writes.
721	 * Writes to block devices are charged to their associated
722	 * filesystem (if any).
723	 */
724	if (mp != NULL) {
725		if (sync)
726			mp->mnt_stat.f_syncwrites++;
727		else
728			mp->mnt_stat.f_asyncwrites++;
729	}
730
731	s = splbio();
732	simple_lock(&bp->b_interlock);
733
734	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
735
736	CLR(bp->b_flags, (B_READ | B_DONE | B_DELWRI));
737	bp->b_error = 0;
738
739	/*
740	 * Pay for the I/O operation and make sure the buf is on the correct
741	 * vnode queue.
742	 */
743	if (wasdelayed)
744		reassignbuf(bp, bp->b_vp);
745	else
746		curproc->p_stats->p_ru.ru_oublock++;
747
748	/* Initiate disk write.  Make sure the appropriate party is charged. */
749	V_INCR_NUMOUTPUT(bp->b_vp);
750	simple_unlock(&bp->b_interlock);
751	splx(s);
752
753	if (sync)
754		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
755	else
756		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
757
758	VOP_STRATEGY(vp, bp);
759
760	if (sync) {
761		/* If I/O was synchronous, wait for it to complete. */
762		rv = biowait(bp);
763
764		/* Release the buffer. */
765		brelse(bp, 0);
766
767		return (rv);
768	} else {
769		return (0);
770	}
771}
772
773int
774vn_bwrite(void *v)
775{
776	struct vop_bwrite_args *ap = v;
777
778	return (bwrite(ap->a_bp));
779}
780
781/*
782 * Delayed write.
783 *
784 * The buffer is marked dirty, but is not queued for I/O.
785 * This routine should be used when the buffer is expected
786 * to be modified again soon, typically a small write that
787 * partially fills a buffer.
788 *
789 * NB: magnetic tapes cannot be delayed; they must be
790 * written in the order that the writes are requested.
791 *
792 * Described in Leffler, et al. (pp. 208-213).
793 */
794void
795bdwrite(struct buf *bp)
796{
797	int s;
798
799	/* If this is a tape block, write the block now. */
800	if (bdev_type(bp->b_dev) == D_TAPE) {
801		bawrite(bp);
802		return;
803	}
804
805	/*
806	 * If the block hasn't been seen before:
807	 *	(1) Mark it as having been seen,
808	 *	(2) Charge for the write,
809	 *	(3) Make sure it's on its vnode's correct block list.
810	 */
811	s = splbio();
812	simple_lock(&bp->b_interlock);
813
814	KASSERT(ISSET(bp->b_flags, B_BUSY));
815
816	if (!ISSET(bp->b_flags, B_DELWRI)) {
817		SET(bp->b_flags, B_DELWRI);
818		curproc->p_stats->p_ru.ru_oublock++;
819		reassignbuf(bp, bp->b_vp);
820	}
821
822	/* Otherwise, the "write" is done, so mark and release the buffer. */
823	CLR(bp->b_flags, B_DONE);
824	simple_unlock(&bp->b_interlock);
825	splx(s);
826
827	brelse(bp, 0);
828}
829
830/*
831 * Asynchronous block write; just an asynchronous bwrite().
832 */
833void
834bawrite(struct buf *bp)
835{
836	int s;
837
838	s = splbio();
839	simple_lock(&bp->b_interlock);
840
841	KASSERT(ISSET(bp->b_flags, B_BUSY));
842
843	SET(bp->b_flags, B_ASYNC);
844	simple_unlock(&bp->b_interlock);
845	splx(s);
846	VOP_BWRITE(bp);
847}
848
849/*
850 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
851 * Call at splbio() and with the buffer interlock locked.
852 * Note: called only from biodone() through ffs softdep's bioopsp->io_complete()
853 */
854void
855bdirty(struct buf *bp)
856{
857
858	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
859	KASSERT(ISSET(bp->b_flags, B_BUSY));
860
861	CLR(bp->b_flags, B_AGE);
862
863	if (!ISSET(bp->b_flags, B_DELWRI)) {
864		SET(bp->b_flags, B_DELWRI);
865		curproc->p_stats->p_ru.ru_oublock++;
866		reassignbuf(bp, bp->b_vp);
867	}
868}
869
870/*
871 * Release a buffer on to the free lists.
872 * Described in Bach (p. 46).
873 */
874void
875brelse(struct buf *bp, int set)
876{
877	struct bqueue *bufq;
878	int s;
879
880	/* Block disk interrupts. */
881	s = splbio();
882	simple_lock(&bqueue_slock);
883	simple_lock(&bp->b_interlock);
884
885	bp->b_flags |= set;
886
887	KASSERT(ISSET(bp->b_flags, B_BUSY));
888	KASSERT(!ISSET(bp->b_flags, B_CALL));
889
890	/* Wake up any processes waiting for any buffer to become free. */
891	if (needbuffer) {
892		needbuffer = 0;
893		wakeup(&needbuffer);
894	}
895
896	/* Wake up any proceeses waiting for _this_ buffer to become free. */
897	if (ISSET(bp->b_flags, B_WANTED)) {
898		CLR(bp->b_flags, B_WANTED|B_AGE);
899		wakeup(bp);
900	}
901
902	/*
903	 * Determine which queue the buffer should be on, then put it there.
904	 */
905
906	/* If it's locked, don't report an error; try again later. */
907	if (ISSET(bp->b_flags, B_LOCKED) && bp->b_error != 0)
908		bp->b_error = 0;
909
910	/* If it's not cacheable, or an error, mark it invalid. */
911	if (ISSET(bp->b_flags, B_NOCACHE) || bp->b_error != 0)
912		SET(bp->b_flags, B_INVAL);
913
914	if (ISSET(bp->b_flags, B_VFLUSH)) {
915		/*
916		 * This is a delayed write buffer that was just flushed to
917		 * disk.  It is still on the LRU queue.  If it's become
918		 * invalid, then we need to move it to a different queue;
919		 * otherwise leave it in its current position.
920		 */
921		CLR(bp->b_flags, B_VFLUSH);
922		if (!ISSET(bp->b_flags, B_INVAL|B_LOCKED|B_AGE) &&
923		    bp->b_error == 0) {
924			KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
925			goto already_queued;
926		} else {
927			bremfree(bp);
928		}
929	}
930
931  KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
932  KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
933  KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
934
935	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
936		/*
937		 * If it's invalid or empty, dissociate it from its vnode
938		 * and put on the head of the appropriate queue.
939		 */
940		if (LIST_FIRST(&bp->b_dep) != NULL && bioopsp)
941			bioopsp->io_deallocate(bp);
942		CLR(bp->b_flags, B_DONE|B_DELWRI);
943		if (bp->b_vp) {
944			reassignbuf(bp, bp->b_vp);
945			brelvp(bp);
946		}
947		if (bp->b_bufsize <= 0)
948			/* no data */
949			goto already_queued;
950		else
951			/* invalid data */
952			bufq = &bufqueues[BQ_AGE];
953		binsheadfree(bp, bufq);
954	} else {
955		/*
956		 * It has valid data.  Put it on the end of the appropriate
957		 * queue, so that it'll stick around for as long as possible.
958		 * If buf is AGE, but has dependencies, must put it on last
959		 * bufqueue to be scanned, ie LRU. This protects against the
960		 * livelock where BQ_AGE only has buffers with dependencies,
961		 * and we thus never get to the dependent buffers in BQ_LRU.
962		 */
963		if (ISSET(bp->b_flags, B_LOCKED))
964			/* locked in core */
965			bufq = &bufqueues[BQ_LOCKED];
966		else if (!ISSET(bp->b_flags, B_AGE))
967			/* valid data */
968			bufq = &bufqueues[BQ_LRU];
969		else {
970			/* stale but valid data */
971			int has_deps;
972
973			if (LIST_FIRST(&bp->b_dep) != NULL && bioopsp)
974				has_deps = bioopsp->io_countdeps(bp, 0);
975			else
976				has_deps = 0;
977			bufq = has_deps ? &bufqueues[BQ_LRU] :
978			    &bufqueues[BQ_AGE];
979		}
980		binstailfree(bp, bufq);
981	}
982
983already_queued:
984	/* Unlock the buffer. */
985	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
986	SET(bp->b_flags, B_CACHE);
987
988	/* Allow disk interrupts. */
989	simple_unlock(&bp->b_interlock);
990	simple_unlock(&bqueue_slock);
991	splx(s);
992	if (bp->b_bufsize <= 0) {
993#ifdef DEBUG
994		memset((char *)bp, 0, sizeof(*bp));
995#endif
996		pool_put(&bufpool, bp);
997	}
998}
999
1000/*
1001 * Determine if a block is in the cache.
1002 * Just look on what would be its hash chain.  If it's there, return
1003 * a pointer to it, unless it's marked invalid.  If it's marked invalid,
1004 * we normally don't return the buffer, unless the caller explicitly
1005 * wants us to.
1006 */
1007struct buf *
1008incore(struct vnode *vp, daddr_t blkno)
1009{
1010	struct buf *bp;
1011
1012	/* Search hash chain */
1013	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1014		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1015		    !ISSET(bp->b_flags, B_INVAL))
1016		return (bp);
1017	}
1018
1019	return (NULL);
1020}
1021
1022/*
1023 * Get a block of requested size that is associated with
1024 * a given vnode and block offset. If it is found in the
1025 * block cache, mark it as having been found, make it busy
1026 * and return it. Otherwise, return an empty block of the
1027 * correct size. It is up to the caller to insure that the
1028 * cached blocks be of the correct size.
1029 */
1030struct buf *
1031getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1032{
1033	struct buf *bp;
1034	int s, err;
1035	int preserve;
1036
1037start:
1038	s = splbio();
1039	simple_lock(&bqueue_slock);
1040	bp = incore(vp, blkno);
1041	if (bp != NULL) {
1042		simple_lock(&bp->b_interlock);
1043		if (ISSET(bp->b_flags, B_BUSY)) {
1044			simple_unlock(&bqueue_slock);
1045			if (curlwp == uvm.pagedaemon_lwp) {
1046				simple_unlock(&bp->b_interlock);
1047				splx(s);
1048				return NULL;
1049			}
1050			SET(bp->b_flags, B_WANTED);
1051			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1052					"getblk", slptimeo, &bp->b_interlock);
1053			splx(s);
1054			if (err)
1055				return (NULL);
1056			goto start;
1057		}
1058#ifdef DIAGNOSTIC
1059		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1060		    bp->b_bcount < size && vp->v_type != VBLK)
1061			panic("getblk: block size invariant failed");
1062#endif
1063		SET(bp->b_flags, B_BUSY);
1064		bremfree(bp);
1065		preserve = 1;
1066	} else {
1067		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1068			simple_unlock(&bqueue_slock);
1069			splx(s);
1070			goto start;
1071		}
1072
1073		binshash(bp, BUFHASH(vp, blkno));
1074		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1075		bgetvp(vp, bp);
1076		preserve = 0;
1077	}
1078	simple_unlock(&bp->b_interlock);
1079	simple_unlock(&bqueue_slock);
1080	splx(s);
1081	/*
1082	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1083	 * if we re-size buffers here.
1084	 */
1085	if (ISSET(bp->b_flags, B_LOCKED)) {
1086		KASSERT(bp->b_bufsize >= size);
1087	} else {
1088		allocbuf(bp, size, preserve);
1089	}
1090	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1091	return (bp);
1092}
1093
1094/*
1095 * Get an empty, disassociated buffer of given size.
1096 */
1097struct buf *
1098geteblk(int size)
1099{
1100	struct buf *bp;
1101	int s;
1102
1103	s = splbio();
1104	simple_lock(&bqueue_slock);
1105	while ((bp = getnewbuf(0, 0, 0)) == 0)
1106		;
1107
1108	SET(bp->b_flags, B_INVAL);
1109	binshash(bp, &invalhash);
1110	simple_unlock(&bqueue_slock);
1111	simple_unlock(&bp->b_interlock);
1112	splx(s);
1113	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1114	allocbuf(bp, size, 0);
1115	return (bp);
1116}
1117
1118/*
1119 * Expand or contract the actual memory allocated to a buffer.
1120 *
1121 * If the buffer shrinks, data is lost, so it's up to the
1122 * caller to have written it out *first*; this routine will not
1123 * start a write.  If the buffer grows, it's the callers
1124 * responsibility to fill out the buffer's additional contents.
1125 */
1126void
1127allocbuf(struct buf *bp, int size, int preserve)
1128{
1129	vsize_t oldsize, desired_size;
1130	void *addr;
1131	int s, delta;
1132
1133	desired_size = buf_roundsize(size);
1134	if (desired_size > MAXBSIZE)
1135		printf("allocbuf: buffer larger than MAXBSIZE requested");
1136
1137	bp->b_bcount = size;
1138
1139	oldsize = bp->b_bufsize;
1140	if (oldsize == desired_size)
1141		return;
1142
1143	/*
1144	 * If we want a buffer of a different size, re-allocate the
1145	 * buffer's memory; copy old content only if needed.
1146	 */
1147	addr = buf_malloc(desired_size);
1148	if (preserve)
1149		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1150	if (bp->b_data != NULL)
1151		buf_mrelease(bp->b_data, oldsize);
1152	bp->b_data = addr;
1153	bp->b_bufsize = desired_size;
1154
1155	/*
1156	 * Update overall buffer memory counter (protected by bqueue_slock)
1157	 */
1158	delta = (long)desired_size - (long)oldsize;
1159
1160	s = splbio();
1161	simple_lock(&bqueue_slock);
1162	if ((bufmem += delta) > bufmem_hiwater) {
1163		/*
1164		 * Need to trim overall memory usage.
1165		 */
1166		while (buf_canrelease()) {
1167			if (curcpu()->ci_schedstate.spc_flags &
1168			    SPCF_SHOULDYIELD) {
1169				simple_unlock(&bqueue_slock);
1170				splx(s);
1171				preempt();
1172				s = splbio();
1173				simple_lock(&bqueue_slock);
1174			}
1175
1176			if (buf_trim() == 0)
1177				break;
1178		}
1179	}
1180
1181	simple_unlock(&bqueue_slock);
1182	splx(s);
1183}
1184
1185/*
1186 * Find a buffer which is available for use.
1187 * Select something from a free list.
1188 * Preference is to AGE list, then LRU list.
1189 *
1190 * Called at splbio and with buffer queues locked.
1191 * Return buffer locked.
1192 */
1193struct buf *
1194getnewbuf(int slpflag, int slptimeo, int from_bufq)
1195{
1196	struct buf *bp;
1197
1198start:
1199	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1200
1201	/*
1202	 * Get a new buffer from the pool; but use NOWAIT because
1203	 * we have the buffer queues locked.
1204	 */
1205	if (!from_bufq && buf_lotsfree() &&
1206	    (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1207		memset((char *)bp, 0, sizeof(*bp));
1208		BUF_INIT(bp);
1209		bp->b_dev = NODEV;
1210		bp->b_vnbufs.le_next = NOLIST;
1211		bp->b_flags = B_BUSY;
1212		simple_lock(&bp->b_interlock);
1213#if defined(DIAGNOSTIC)
1214		bp->b_freelistindex = -1;
1215#endif /* defined(DIAGNOSTIC) */
1216		return (bp);
1217	}
1218
1219	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1220	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1221		simple_lock(&bp->b_interlock);
1222		bremfree(bp);
1223	} else {
1224		/*
1225		 * XXX: !from_bufq should be removed.
1226		 */
1227		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1228			/* wait for a free buffer of any kind */
1229			needbuffer = 1;
1230			ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1231			    "getnewbuf", slptimeo, &bqueue_slock);
1232		}
1233		return (NULL);
1234	}
1235
1236#ifdef DIAGNOSTIC
1237	if (bp->b_bufsize <= 0)
1238		panic("buffer %p: on queue but empty", bp);
1239#endif
1240
1241	if (ISSET(bp->b_flags, B_VFLUSH)) {
1242		/*
1243		 * This is a delayed write buffer being flushed to disk.  Make
1244		 * sure it gets aged out of the queue when it's finished, and
1245		 * leave it off the LRU queue.
1246		 */
1247		CLR(bp->b_flags, B_VFLUSH);
1248		SET(bp->b_flags, B_AGE);
1249		simple_unlock(&bp->b_interlock);
1250		goto start;
1251	}
1252
1253	/* Buffer is no longer on free lists. */
1254	SET(bp->b_flags, B_BUSY);
1255
1256	/*
1257	 * If buffer was a delayed write, start it and return NULL
1258	 * (since we might sleep while starting the write).
1259	 */
1260	if (ISSET(bp->b_flags, B_DELWRI)) {
1261		/*
1262		 * This buffer has gone through the LRU, so make sure it gets
1263		 * reused ASAP.
1264		 */
1265		SET(bp->b_flags, B_AGE);
1266		simple_unlock(&bp->b_interlock);
1267		simple_unlock(&bqueue_slock);
1268		bawrite(bp);
1269		simple_lock(&bqueue_slock);
1270		return (NULL);
1271	}
1272
1273	/* disassociate us from our vnode, if we had one... */
1274	if (bp->b_vp)
1275		brelvp(bp);
1276
1277	if (LIST_FIRST(&bp->b_dep) != NULL && bioopsp)
1278		bioopsp->io_deallocate(bp);
1279
1280	/* clear out various other fields */
1281	bp->b_flags = B_BUSY;
1282	bp->b_dev = NODEV;
1283	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1284	bp->b_iodone = 0;
1285	bp->b_error = 0;
1286	bp->b_resid = 0;
1287	bp->b_bcount = 0;
1288
1289	bremhash(bp);
1290	return (bp);
1291}
1292
1293/*
1294 * Attempt to free an aged buffer off the queues.
1295 * Called at splbio and with queue lock held.
1296 * Returns the amount of buffer memory freed.
1297 */
1298static int
1299buf_trim(void)
1300{
1301	struct buf *bp;
1302	long size = 0;
1303
1304	/* Instruct getnewbuf() to get buffers off the queues */
1305	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1306		return 0;
1307
1308	KASSERT(!ISSET(bp->b_flags, B_WANTED));
1309	simple_unlock(&bp->b_interlock);
1310	size = bp->b_bufsize;
1311	bufmem -= size;
1312	simple_unlock(&bqueue_slock);
1313	if (size > 0) {
1314		buf_mrelease(bp->b_data, size);
1315		bp->b_bcount = bp->b_bufsize = 0;
1316	}
1317	/* brelse() will return the buffer to the global buffer pool */
1318	brelse(bp, 0);
1319	simple_lock(&bqueue_slock);
1320	return size;
1321}
1322
1323int
1324buf_drain(int n)
1325{
1326	int s, size = 0, sz;
1327
1328	s = splbio();
1329	simple_lock(&bqueue_slock);
1330
1331	while (size < n && bufmem > bufmem_lowater) {
1332		sz = buf_trim();
1333		if (sz <= 0)
1334			break;
1335		size += sz;
1336	}
1337
1338	simple_unlock(&bqueue_slock);
1339	splx(s);
1340	return size;
1341}
1342
1343/*
1344 * Wait for operations on the buffer to complete.
1345 * When they do, extract and return the I/O's error value.
1346 */
1347int
1348biowait(struct buf *bp)
1349{
1350	int s, error;
1351
1352	s = splbio();
1353	simple_lock(&bp->b_interlock);
1354	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1355		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1356	error = bp->b_error;
1357	simple_unlock(&bp->b_interlock);
1358	splx(s);
1359	return (error);
1360}
1361
1362/*
1363 * Mark I/O complete on a buffer.
1364 *
1365 * If a callback has been requested, e.g. the pageout
1366 * daemon, do so. Otherwise, awaken waiting processes.
1367 *
1368 * [ Leffler, et al., says on p.247:
1369 *	"This routine wakes up the blocked process, frees the buffer
1370 *	for an asynchronous write, or, for a request by the pagedaemon
1371 *	process, invokes a procedure specified in the buffer structure" ]
1372 *
1373 * In real life, the pagedaemon (or other system processes) wants
1374 * to do async stuff to, and doesn't want the buffer brelse()'d.
1375 * (for swap pager, that puts swap buffers on the free lists (!!!),
1376 * for the vn device, that puts malloc'd buffers on the free lists!)
1377 */
1378void
1379biodone(struct buf *bp)
1380{
1381	int s = splbio();
1382
1383	simple_lock(&bp->b_interlock);
1384	if (ISSET(bp->b_flags, B_DONE))
1385		panic("biodone already");
1386	CLR(bp->b_flags, B_COWDONE);
1387	SET(bp->b_flags, B_DONE);		/* note that it's done */
1388	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1389
1390	if (LIST_FIRST(&bp->b_dep) != NULL && bioopsp)
1391		bioopsp->io_complete(bp);
1392
1393	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
1394		vwakeup(bp);
1395
1396	/*
1397	 * If necessary, call out.  Unlock the buffer before calling
1398	 * iodone() as the buffer isn't valid any more when it return.
1399	 */
1400	if (ISSET(bp->b_flags, B_CALL)) {
1401		CLR(bp->b_flags, B_CALL);	/* but note callout done */
1402		simple_unlock(&bp->b_interlock);
1403		(*bp->b_iodone)(bp);
1404	} else {
1405		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
1406			simple_unlock(&bp->b_interlock);
1407			brelse(bp, 0);
1408		} else {			/* or just wakeup the buffer */
1409			CLR(bp->b_flags, B_WANTED);
1410			wakeup(bp);
1411			simple_unlock(&bp->b_interlock);
1412		}
1413	}
1414
1415	splx(s);
1416}
1417
1418/*
1419 * Return a count of buffers on the "locked" queue.
1420 */
1421int
1422count_lock_queue(void)
1423{
1424	struct buf *bp;
1425	int n = 0;
1426
1427	simple_lock(&bqueue_slock);
1428	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1429		n++;
1430	simple_unlock(&bqueue_slock);
1431	return (n);
1432}
1433
1434/*
1435 * Wait for all buffers to complete I/O
1436 * Return the number of "stuck" buffers.
1437 */
1438int
1439buf_syncwait(void)
1440{
1441	struct buf *bp;
1442	int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1443
1444	dcount = 10000;
1445	for (iter = 0; iter < 20;) {
1446		s = splbio();
1447		simple_lock(&bqueue_slock);
1448		nbusy = 0;
1449		for (ihash = 0; ihash < bufhash+1; ihash++) {
1450		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1451			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1452				nbusy++;
1453			/*
1454			 * With soft updates, some buffers that are
1455			 * written will be remarked as dirty until other
1456			 * buffers are written.
1457			 */
1458			if (bp->b_vp && bp->b_vp->v_mount
1459			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1460			    && (bp->b_flags & B_DELWRI)) {
1461				simple_lock(&bp->b_interlock);
1462				bremfree(bp);
1463				bp->b_flags |= B_BUSY;
1464				nbusy++;
1465				simple_unlock(&bp->b_interlock);
1466				simple_unlock(&bqueue_slock);
1467				bawrite(bp);
1468				if (dcount-- <= 0) {
1469					printf("softdep ");
1470					splx(s);
1471					goto fail;
1472				}
1473				simple_lock(&bqueue_slock);
1474			}
1475		    }
1476		}
1477
1478		simple_unlock(&bqueue_slock);
1479		splx(s);
1480
1481		if (nbusy == 0)
1482			break;
1483		if (nbusy_prev == 0)
1484			nbusy_prev = nbusy;
1485		printf("%d ", nbusy);
1486		tsleep(&nbusy, PRIBIO, "bflush",
1487		    (iter == 0) ? 1 : hz / 25 * iter);
1488		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1489			iter++;
1490		else
1491			nbusy_prev = nbusy;
1492	}
1493
1494	if (nbusy) {
1495fail:;
1496#if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1497		printf("giving up\nPrinting vnodes for busy buffers\n");
1498		s = splbio();
1499		for (ihash = 0; ihash < bufhash+1; ihash++) {
1500		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1501			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1502				vprint(NULL, bp->b_vp);
1503		    }
1504		}
1505		splx(s);
1506#endif
1507	}
1508
1509	return nbusy;
1510}
1511
1512static void
1513sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1514{
1515
1516	o->b_flags = i->b_flags;
1517	o->b_error = i->b_error;
1518	o->b_prio = i->b_prio;
1519	o->b_dev = i->b_dev;
1520	o->b_bufsize = i->b_bufsize;
1521	o->b_bcount = i->b_bcount;
1522	o->b_resid = i->b_resid;
1523	o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1524	o->b_blkno = i->b_blkno;
1525	o->b_rawblkno = i->b_rawblkno;
1526	o->b_iodone = PTRTOUINT64(i->b_iodone);
1527	o->b_proc = PTRTOUINT64(i->b_proc);
1528	o->b_vp = PTRTOUINT64(i->b_vp);
1529	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1530	o->b_lblkno = i->b_lblkno;
1531}
1532
1533#define KERN_BUFSLOP 20
1534static int
1535sysctl_dobuf(SYSCTLFN_ARGS)
1536{
1537	struct buf *bp;
1538	struct buf_sysctl bs;
1539	char *dp;
1540	u_int i, op, arg;
1541	size_t len, needed, elem_size, out_size;
1542	int error, s, elem_count;
1543
1544	if (namelen == 1 && name[0] == CTL_QUERY)
1545		return (sysctl_query(SYSCTLFN_CALL(rnode)));
1546
1547	if (namelen != 4)
1548		return (EINVAL);
1549
1550	dp = oldp;
1551	len = (oldp != NULL) ? *oldlenp : 0;
1552	op = name[0];
1553	arg = name[1];
1554	elem_size = name[2];
1555	elem_count = name[3];
1556	out_size = MIN(sizeof(bs), elem_size);
1557
1558	/*
1559	 * at the moment, these are just "placeholders" to make the
1560	 * API for retrieving kern.buf data more extensible in the
1561	 * future.
1562	 *
1563	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1564	 * these will be resolved at a later point.
1565	 */
1566	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1567	    elem_size < 1 || elem_count < 0)
1568		return (EINVAL);
1569
1570	error = 0;
1571	needed = 0;
1572	s = splbio();
1573	simple_lock(&bqueue_slock);
1574	for (i = 0; i < BQUEUES; i++) {
1575		TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
1576			if (len >= elem_size && elem_count > 0) {
1577				sysctl_fillbuf(bp, &bs);
1578				error = copyout(&bs, dp, out_size);
1579				if (error)
1580					goto cleanup;
1581				dp += elem_size;
1582				len -= elem_size;
1583			}
1584			if (elem_count > 0) {
1585				needed += elem_size;
1586				if (elem_count != INT_MAX)
1587					elem_count--;
1588			}
1589		}
1590	}
1591cleanup:
1592	simple_unlock(&bqueue_slock);
1593	splx(s);
1594
1595	*oldlenp = needed;
1596	if (oldp == NULL)
1597		*oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1598
1599	return (error);
1600}
1601
1602static void
1603sysctl_bufvm_common(void)
1604{
1605	int64_t t;
1606
1607	/* Drain until below new high water mark */
1608	while ((t = (int64_t)bufmem - (int64_t)bufmem_hiwater) >= 0) {
1609		if (buf_drain(t / (2 * 1024)) <= 0)
1610			break;
1611	}
1612}
1613
1614static int
1615sysctl_bufcache_update(SYSCTLFN_ARGS)
1616{
1617	int t, error;
1618	struct sysctlnode node;
1619
1620	node = *rnode;
1621	node.sysctl_data = &t;
1622	t = *(int *)rnode->sysctl_data;
1623	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1624	if (error || newp == NULL)
1625		return (error);
1626
1627	if (t < 0 || t > 100)
1628		return EINVAL;
1629	bufcache = t;
1630	buf_setwm();
1631
1632	sysctl_bufvm_common();
1633	return 0;
1634}
1635
1636static int
1637sysctl_bufvm_update(SYSCTLFN_ARGS)
1638{
1639	int64_t t;
1640	int error;
1641	struct sysctlnode node;
1642
1643	node = *rnode;
1644	node.sysctl_data = &t;
1645	t = *(int64_t *)rnode->sysctl_data;
1646	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1647	if (error || newp == NULL)
1648		return (error);
1649
1650	if (t < 0)
1651		return EINVAL;
1652	if (rnode->sysctl_data == &bufmem_lowater) {
1653		if (bufmem_hiwater - t < 16)
1654			return (EINVAL);
1655		bufmem_lowater = t;
1656	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1657		if (t - bufmem_lowater < 16)
1658			return (EINVAL);
1659		bufmem_hiwater = t;
1660	} else
1661		return (EINVAL);
1662
1663	sysctl_bufvm_common();
1664
1665	return 0;
1666}
1667
1668SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1669{
1670
1671	sysctl_createv(clog, 0, NULL, NULL,
1672		       CTLFLAG_PERMANENT,
1673		       CTLTYPE_NODE, "kern", NULL,
1674		       NULL, 0, NULL, 0,
1675		       CTL_KERN, CTL_EOL);
1676	sysctl_createv(clog, 0, NULL, NULL,
1677		       CTLFLAG_PERMANENT,
1678		       CTLTYPE_NODE, "buf",
1679		       SYSCTL_DESCR("Kernel buffer cache information"),
1680		       sysctl_dobuf, 0, NULL, 0,
1681		       CTL_KERN, KERN_BUF, CTL_EOL);
1682}
1683
1684SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1685{
1686
1687	sysctl_createv(clog, 0, NULL, NULL,
1688		       CTLFLAG_PERMANENT,
1689		       CTLTYPE_NODE, "vm", NULL,
1690		       NULL, 0, NULL, 0,
1691		       CTL_VM, CTL_EOL);
1692
1693	sysctl_createv(clog, 0, NULL, NULL,
1694		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1695		       CTLTYPE_INT, "bufcache",
1696		       SYSCTL_DESCR("Percentage of physical memory to use for "
1697				    "buffer cache"),
1698		       sysctl_bufcache_update, 0, &bufcache, 0,
1699		       CTL_VM, CTL_CREATE, CTL_EOL);
1700	sysctl_createv(clog, 0, NULL, NULL,
1701		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1702		       CTLTYPE_QUAD, "bufmem",
1703		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
1704				    "cache"),
1705		       NULL, 0, &bufmem, 0,
1706		       CTL_VM, CTL_CREATE, CTL_EOL);
1707	sysctl_createv(clog, 0, NULL, NULL,
1708		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1709		       CTLTYPE_QUAD, "bufmem_lowater",
1710		       SYSCTL_DESCR("Minimum amount of kernel memory to "
1711				    "reserve for buffer cache"),
1712		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1713		       CTL_VM, CTL_CREATE, CTL_EOL);
1714	sysctl_createv(clog, 0, NULL, NULL,
1715		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1716		       CTLTYPE_QUAD, "bufmem_hiwater",
1717		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
1718				    "for buffer cache"),
1719		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1720		       CTL_VM, CTL_CREATE, CTL_EOL);
1721}
1722
1723#ifdef DEBUG
1724/*
1725 * Print out statistics on the current allocation of the buffer pool.
1726 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1727 * in vfs_syscalls.c using sysctl.
1728 */
1729void
1730vfs_bufstats(void)
1731{
1732	int s, i, j, count;
1733	struct buf *bp;
1734	struct bqueue *dp;
1735	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1736	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1737
1738	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1739		count = 0;
1740		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1741			counts[j] = 0;
1742		s = splbio();
1743		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1744			counts[bp->b_bufsize/PAGE_SIZE]++;
1745			count++;
1746		}
1747		splx(s);
1748		printf("%s: total-%d", bname[i], count);
1749		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1750			if (counts[j] != 0)
1751				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1752		printf("\n");
1753	}
1754}
1755#endif /* DEBUG */
1756
1757/* ------------------------------ */
1758
1759static struct buf *
1760getiobuf1(int prflags)
1761{
1762	struct buf *bp;
1763	int s;
1764
1765	s = splbio();
1766	bp = pool_get(&bufiopool, prflags);
1767	splx(s);
1768	if (bp != NULL) {
1769		BUF_INIT(bp);
1770	}
1771	return bp;
1772}
1773
1774struct buf *
1775getiobuf(void)
1776{
1777
1778	return getiobuf1(PR_WAITOK);
1779}
1780
1781struct buf *
1782getiobuf_nowait(void)
1783{
1784
1785	return getiobuf1(PR_NOWAIT);
1786}
1787
1788void
1789putiobuf(struct buf *bp)
1790{
1791	int s;
1792
1793	s = splbio();
1794	pool_put(&bufiopool, bp);
1795	splx(s);
1796}
1797
1798/*
1799 * nestiobuf_iodone: b_iodone callback for nested buffers.
1800 */
1801
1802void
1803nestiobuf_iodone(struct buf *bp)
1804{
1805	struct buf *mbp = bp->b_private;
1806	int error;
1807	int donebytes;
1808
1809	KASSERT(bp->b_bcount <= bp->b_bufsize);
1810	KASSERT(mbp != bp);
1811
1812	error = 0;
1813	if (bp->b_error != 0) {
1814		error = bp->b_error;
1815	} else if ((bp->b_bcount < bp->b_bufsize) || (bp->b_resid > 0)) {
1816		/*
1817		 * Not all got transfered, raise an error. We have no way to
1818		 * propagate these conditions to mbp.
1819		 */
1820		error = EIO;
1821	}
1822
1823	donebytes = bp->b_bufsize;
1824
1825	putiobuf(bp);
1826	nestiobuf_done(mbp, donebytes, error);
1827}
1828
1829/*
1830 * nestiobuf_setup: setup a "nested" buffer.
1831 *
1832 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1833 * => 'bp' should be a buffer allocated by getiobuf or getiobuf_nowait.
1834 * => 'offset' is a byte offset in the master buffer.
1835 * => 'size' is a size in bytes of this nested buffer.
1836 */
1837
1838void
1839nestiobuf_setup(struct buf *mbp, struct buf *bp, int offset, size_t size)
1840{
1841	const int b_read = mbp->b_flags & B_READ;
1842	struct vnode *vp = mbp->b_vp;
1843
1844	KASSERT(mbp->b_bcount >= offset + size);
1845	bp->b_vp = vp;
1846	bp->b_flags = B_BUSY | B_CALL | B_ASYNC | b_read;
1847	bp->b_iodone = nestiobuf_iodone;
1848	bp->b_data = (char *)mbp->b_data + offset;
1849	bp->b_resid = bp->b_bcount = size;
1850	bp->b_bufsize = bp->b_bcount;
1851	bp->b_private = mbp;
1852	BIO_COPYPRIO(bp, mbp);
1853	if (!b_read && vp != NULL) {
1854		int s;
1855
1856		s = splbio();
1857		V_INCR_NUMOUTPUT(vp);
1858		splx(s);
1859	}
1860}
1861
1862/*
1863 * nestiobuf_done: propagate completion to the master buffer.
1864 *
1865 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1866 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1867 */
1868
1869void
1870nestiobuf_done(struct buf *mbp, int donebytes, int error)
1871{
1872	int s;
1873
1874	if (donebytes == 0) {
1875		return;
1876	}
1877	s = splbio();
1878	KASSERT(mbp->b_resid >= donebytes);
1879	if (error) {
1880		mbp->b_error = error;
1881	}
1882	mbp->b_resid -= donebytes;
1883	if (mbp->b_resid == 0) {
1884		if (mbp->b_error != 0) {
1885			mbp->b_resid = mbp->b_bcount; /* be conservative */
1886		}
1887		biodone(mbp);
1888	}
1889	splx(s);
1890}
1891