vfs_bio.c revision 1.145
1/*	$NetBSD: vfs_bio.c,v 1.145 2005/05/29 22:24:15 christos Exp $	*/
2
3/*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
37 */
38
39/*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 *    notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in the
49 *    documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 *    must display the following acknowledgement:
52 *	This product includes software developed by the University of
53 *	California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 *    may be used to endorse or promote products derived from this software
56 *    without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
71 */
72
73/*
74 * Some references:
75 *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 *	Leffler, et al.: The Design and Implementation of the 4.3BSD
77 *		UNIX Operating System (Addison Welley, 1989)
78 */
79
80#include "opt_bufcache.h"
81#include "opt_softdep.h"
82
83#include <sys/cdefs.h>
84__KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.145 2005/05/29 22:24:15 christos Exp $");
85
86#include <sys/param.h>
87#include <sys/systm.h>
88#include <sys/kernel.h>
89#include <sys/proc.h>
90#include <sys/buf.h>
91#include <sys/vnode.h>
92#include <sys/mount.h>
93#include <sys/malloc.h>
94#include <sys/resourcevar.h>
95#include <sys/sysctl.h>
96#include <sys/conf.h>
97
98#include <uvm/uvm.h>
99
100#include <miscfs/specfs/specdev.h>
101
102#ifndef	BUFPAGES
103# define BUFPAGES 0
104#endif
105
106#ifdef BUFCACHE
107# if (BUFCACHE < 5) || (BUFCACHE > 95)
108#  error BUFCACHE is not between 5 and 95
109# endif
110#else
111# define BUFCACHE 15
112#endif
113
114u_int	nbuf;			/* XXX - for softdep_lockedbufs */
115u_int	bufpages = BUFPAGES;	/* optional hardwired count */
116u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
117
118/* Function prototypes */
119struct bqueue;
120
121static void buf_setwm(void);
122static int buf_trim(void);
123static void *bufpool_page_alloc(struct pool *, int);
124static void bufpool_page_free(struct pool *, void *);
125static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
126    struct ucred *, int);
127static int buf_lotsfree(void);
128static int buf_canrelease(void);
129static __inline u_long buf_mempoolidx(u_long);
130static __inline u_long buf_roundsize(u_long);
131static __inline caddr_t buf_malloc(size_t);
132static void buf_mrelease(caddr_t, size_t);
133static __inline void binsheadfree(struct buf *, struct bqueue *);
134static __inline void binstailfree(struct buf *, struct bqueue *);
135int count_lock_queue(void); /* XXX */
136#ifdef DEBUG
137static int checkfreelist(struct buf *, struct bqueue *);
138#endif
139
140/* Macros to clear/set/test flags. */
141#define	SET(t, f)	(t) |= (f)
142#define	CLR(t, f)	(t) &= ~(f)
143#define	ISSET(t, f)	((t) & (f))
144
145/*
146 * Definitions for the buffer hash lists.
147 */
148#define	BUFHASH(dvp, lbn)	\
149	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
150LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
151u_long	bufhash;
152#if !defined(SOFTDEP) || !defined(FFS)
153struct bio_ops bioops;	/* I/O operation notification */
154#endif
155
156/*
157 * Insq/Remq for the buffer hash lists.
158 */
159#define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
160#define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
161
162/*
163 * Definitions for the buffer free lists.
164 */
165#define	BQUEUES		3		/* number of free buffer queues */
166
167#define	BQ_LOCKED	0		/* super-blocks &c */
168#define	BQ_LRU		1		/* lru, useful buffers */
169#define	BQ_AGE		2		/* rubbish */
170
171struct bqueue {
172	TAILQ_HEAD(, buf) bq_queue;
173	uint64_t bq_bytes;
174} bufqueues[BQUEUES];
175int needbuffer;
176
177/*
178 * Buffer queue lock.
179 * Take this lock first if also taking some buffer's b_interlock.
180 */
181struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
182
183/*
184 * Buffer pool for I/O buffers.
185 */
186struct pool bufpool;
187
188/* XXX - somewhat gross.. */
189#if MAXBSIZE == 0x2000
190#define NMEMPOOLS 4
191#elif MAXBSIZE == 0x4000
192#define NMEMPOOLS 5
193#elif MAXBSIZE == 0x8000
194#define NMEMPOOLS 6
195#else
196#define NMEMPOOLS 7
197#endif
198
199#define MEMPOOL_INDEX_OFFSET 10		/* smallest pool is 1k */
200#if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
201#error update vfs_bio buffer memory parameters
202#endif
203
204/* Buffer memory pools */
205static struct pool bmempools[NMEMPOOLS];
206
207struct vm_map *buf_map;
208
209/*
210 * Buffer memory pool allocator.
211 */
212static void *
213bufpool_page_alloc(struct pool *pp, int flags)
214{
215
216	return (void *)uvm_km_alloc(buf_map,
217	    MAXBSIZE, MAXBSIZE,
218	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
219	    | UVM_KMF_WIRED);
220}
221
222static void
223bufpool_page_free(struct pool *pp, void *v)
224{
225
226	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
227}
228
229static struct pool_allocator bufmempool_allocator = {
230	bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
231};
232
233/* Buffer memory management variables */
234u_long bufmem_valimit;
235u_long bufmem_hiwater;
236u_long bufmem_lowater;
237u_long bufmem;
238
239/*
240 * MD code can call this to set a hard limit on the amount
241 * of virtual memory used by the buffer cache.
242 */
243int
244buf_setvalimit(vsize_t sz)
245{
246
247	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
248	if (sz < NMEMPOOLS * MAXBSIZE)
249		return EINVAL;
250
251	bufmem_valimit = sz;
252	return 0;
253}
254
255static void
256buf_setwm(void)
257{
258
259	bufmem_hiwater = buf_memcalc();
260	/* lowater is approx. 2% of memory (with bufcache = 15) */
261#define	BUFMEM_WMSHIFT	3
262#define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
263	if (bufmem_hiwater < BUFMEM_HIWMMIN)
264		/* Ensure a reasonable minimum value */
265		bufmem_hiwater = BUFMEM_HIWMMIN;
266	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
267}
268
269#ifdef DEBUG
270int debug_verify_freelist = 0;
271static int
272checkfreelist(struct buf *bp, struct bqueue *dp)
273{
274	struct buf *b;
275
276	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
277		if (b == bp)
278			return 1;
279	}
280	return 0;
281}
282#endif
283
284/*
285 * Insq/Remq for the buffer hash lists.
286 * Call with buffer queue locked.
287 */
288static __inline void
289binsheadfree(struct buf *bp, struct bqueue *dp)
290{
291
292	KASSERT(bp->b_freelistindex == -1);
293	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
294	dp->bq_bytes += bp->b_bufsize;
295	bp->b_freelistindex = dp - bufqueues;
296}
297
298static __inline void
299binstailfree(struct buf *bp, struct bqueue *dp)
300{
301
302	KASSERT(bp->b_freelistindex == -1);
303	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
304	dp->bq_bytes += bp->b_bufsize;
305	bp->b_freelistindex = dp - bufqueues;
306}
307
308void
309bremfree(struct buf *bp)
310{
311	struct bqueue *dp;
312	int bqidx = bp->b_freelistindex;
313
314	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
315
316	KASSERT(bqidx != -1);
317	dp = &bufqueues[bqidx];
318	KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
319	KASSERT(dp->bq_bytes >= bp->b_bufsize);
320	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
321	dp->bq_bytes -= bp->b_bufsize;
322#if defined(DIAGNOSTIC)
323	bp->b_freelistindex = -1;
324#endif /* defined(DIAGNOSTIC) */
325}
326
327u_long
328buf_memcalc(void)
329{
330	u_long n;
331
332	/*
333	 * Determine the upper bound of memory to use for buffers.
334	 *
335	 *	- If bufpages is specified, use that as the number
336	 *	  pages.
337	 *
338	 *	- Otherwise, use bufcache as the percentage of
339	 *	  physical memory.
340	 */
341	if (bufpages != 0) {
342		n = bufpages;
343	} else {
344		if (bufcache < 5) {
345			printf("forcing bufcache %d -> 5", bufcache);
346			bufcache = 5;
347		}
348		if (bufcache > 95) {
349			printf("forcing bufcache %d -> 95", bufcache);
350			bufcache = 95;
351		}
352		n = physmem / 100 * bufcache;
353	}
354
355	n <<= PAGE_SHIFT;
356	if (bufmem_valimit != 0 && n > bufmem_valimit)
357		n = bufmem_valimit;
358
359	return (n);
360}
361
362/*
363 * Initialize buffers and hash links for buffers.
364 */
365void
366bufinit(void)
367{
368	struct bqueue *dp;
369	int use_std;
370	u_int i;
371
372	/*
373	 * Initialize buffer cache memory parameters.
374	 */
375	bufmem = 0;
376	buf_setwm();
377
378	if (bufmem_valimit != 0) {
379		vaddr_t minaddr = 0, maxaddr;
380		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
381					  bufmem_valimit, VM_MAP_PAGEABLE,
382					  FALSE, 0);
383		if (buf_map == NULL)
384			panic("bufinit: cannot allocate submap");
385	} else
386		buf_map = kernel_map;
387
388	/*
389	 * Initialize the buffer pools.
390	 */
391	pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
392
393	/* On "small" machines use small pool page sizes where possible */
394	use_std = (physmem < atop(16*1024*1024));
395
396	/*
397	 * Also use them on systems that can map the pool pages using
398	 * a direct-mapped segment.
399	 */
400#ifdef PMAP_MAP_POOLPAGE
401	use_std = 1;
402#endif
403
404	for (i = 0; i < NMEMPOOLS; i++) {
405		struct pool_allocator *pa;
406		struct pool *pp = &bmempools[i];
407		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
408		char *name = malloc(8, M_TEMP, M_WAITOK);
409		snprintf(name, 8, "buf%dk", 1 << i);
410		pa = (size <= PAGE_SIZE && use_std)
411			? &pool_allocator_nointr
412			: &bufmempool_allocator;
413		pool_init(pp, size, 0, 0, 0, name, pa);
414		pool_setlowat(pp, 1);
415		pool_sethiwat(pp, 1);
416	}
417
418	/* Initialize the buffer queues */
419	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
420		TAILQ_INIT(&dp->bq_queue);
421		dp->bq_bytes = 0;
422	}
423
424	/*
425	 * Estimate hash table size based on the amount of memory we
426	 * intend to use for the buffer cache. The average buffer
427	 * size is dependent on our clients (i.e. filesystems).
428	 *
429	 * For now, use an empirical 3K per buffer.
430	 */
431	nbuf = (bufmem_hiwater / 1024) / 3;
432	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
433}
434
435static int
436buf_lotsfree(void)
437{
438	int try, thresh;
439	struct lwp *l = curlwp;
440
441	/* Always allocate if doing copy on write */
442	if (l->l_flag & L_COWINPROGRESS)
443		return 1;
444
445	/* Always allocate if less than the low water mark. */
446	if (bufmem < bufmem_lowater)
447		return 1;
448
449	/* Never allocate if greater than the high water mark. */
450	if (bufmem > bufmem_hiwater)
451		return 0;
452
453	/* If there's anything on the AGE list, it should be eaten. */
454	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
455		return 0;
456
457	/*
458	 * The probabily of getting a new allocation is inversely
459	 * proportional to the current size of the cache, using
460	 * a granularity of 16 steps.
461	 */
462	try = random() & 0x0000000fL;
463
464	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
465	thresh = (bufmem - bufmem_lowater) /
466	    ((bufmem_hiwater - bufmem_lowater) / 16);
467
468	if (try >= thresh)
469		return 1;
470
471	/* Otherwise don't allocate. */
472	return 0;
473}
474
475/*
476 * Return estimate of bytes we think need to be
477 * released to help resolve low memory conditions.
478 *
479 * => called at splbio.
480 * => called with bqueue_slock held.
481 */
482static int
483buf_canrelease(void)
484{
485	int pagedemand, ninvalid = 0;
486
487	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
488
489	if (bufmem < bufmem_lowater)
490		return 0;
491
492	if (bufmem > bufmem_hiwater)
493		return bufmem - bufmem_hiwater;
494
495	ninvalid += bufqueues[BQ_AGE].bq_bytes;
496
497	pagedemand = uvmexp.freetarg - uvmexp.free;
498	if (pagedemand < 0)
499		return ninvalid;
500	return MAX(ninvalid, MIN(2 * MAXBSIZE,
501	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
502}
503
504/*
505 * Buffer memory allocation helper functions
506 */
507static __inline u_long
508buf_mempoolidx(u_long size)
509{
510	u_int n = 0;
511
512	size -= 1;
513	size >>= MEMPOOL_INDEX_OFFSET;
514	while (size) {
515		size >>= 1;
516		n += 1;
517	}
518	if (n >= NMEMPOOLS)
519		panic("buf mem pool index %d", n);
520	return n;
521}
522
523static __inline u_long
524buf_roundsize(u_long size)
525{
526	/* Round up to nearest power of 2 */
527	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
528}
529
530static __inline caddr_t
531buf_malloc(size_t size)
532{
533	u_int n = buf_mempoolidx(size);
534	caddr_t addr;
535	int s;
536
537	while (1) {
538		addr = pool_get(&bmempools[n], PR_NOWAIT);
539		if (addr != NULL)
540			break;
541
542		/* No memory, see if we can free some. If so, try again */
543		if (buf_drain(1) > 0)
544			continue;
545
546		/* Wait for buffers to arrive on the LRU queue */
547		s = splbio();
548		simple_lock(&bqueue_slock);
549		needbuffer = 1;
550		ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
551			"buf_malloc", 0, &bqueue_slock);
552		splx(s);
553	}
554
555	return addr;
556}
557
558static void
559buf_mrelease(caddr_t addr, size_t size)
560{
561
562	pool_put(&bmempools[buf_mempoolidx(size)], addr);
563}
564
565/*
566 * bread()/breadn() helper.
567 */
568static __inline struct buf *
569bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
570    int async)
571{
572	struct buf *bp;
573	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
574	struct proc *p = l->l_proc;
575	struct mount *mp;
576
577	bp = getblk(vp, blkno, size, 0, 0);
578
579#ifdef DIAGNOSTIC
580	if (bp == NULL) {
581		panic("bio_doread: no such buf");
582	}
583#endif
584
585	/*
586	 * If buffer does not have data valid, start a read.
587	 * Note that if buffer is B_INVAL, getblk() won't return it.
588	 * Therefore, it's valid if its I/O has completed or been delayed.
589	 */
590	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
591		/* Start I/O for the buffer. */
592		SET(bp->b_flags, B_READ | async);
593		if (async)
594			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
595		else
596			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
597		VOP_STRATEGY(vp, bp);
598
599		/* Pay for the read. */
600		p->p_stats->p_ru.ru_inblock++;
601	} else if (async) {
602		brelse(bp);
603	}
604
605	if (vp->v_type == VBLK)
606		mp = vp->v_specmountpoint;
607	else
608		mp = vp->v_mount;
609
610	/*
611	 * Collect statistics on synchronous and asynchronous reads.
612	 * Reads from block devices are charged to their associated
613	 * filesystem (if any).
614	 */
615	if (mp != NULL) {
616		if (async == 0)
617			mp->mnt_stat.f_syncreads++;
618		else
619			mp->mnt_stat.f_asyncreads++;
620	}
621
622	return (bp);
623}
624
625/*
626 * Read a disk block.
627 * This algorithm described in Bach (p.54).
628 */
629int
630bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
631    struct buf **bpp)
632{
633	struct buf *bp;
634
635	/* Get buffer for block. */
636	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
637
638	/* Wait for the read to complete, and return result. */
639	return (biowait(bp));
640}
641
642/*
643 * Read-ahead multiple disk blocks. The first is sync, the rest async.
644 * Trivial modification to the breada algorithm presented in Bach (p.55).
645 */
646int
647breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
648    int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
649{
650	struct buf *bp;
651	int i;
652
653	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
654
655	/*
656	 * For each of the read-ahead blocks, start a read, if necessary.
657	 */
658	for (i = 0; i < nrablks; i++) {
659		/* If it's in the cache, just go on to next one. */
660		if (incore(vp, rablks[i]))
661			continue;
662
663		/* Get a buffer for the read-ahead block */
664		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
665	}
666
667	/* Otherwise, we had to start a read for it; wait until it's valid. */
668	return (biowait(bp));
669}
670
671/*
672 * Read with single-block read-ahead.  Defined in Bach (p.55), but
673 * implemented as a call to breadn().
674 * XXX for compatibility with old file systems.
675 */
676int
677breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
678    int rabsize, struct ucred *cred, struct buf **bpp)
679{
680
681	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
682}
683
684/*
685 * Block write.  Described in Bach (p.56)
686 */
687int
688bwrite(struct buf *bp)
689{
690	int rv, sync, wasdelayed, s;
691	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
692	struct proc *p = l->l_proc;
693	struct vnode *vp;
694	struct mount *mp;
695
696	KASSERT(ISSET(bp->b_flags, B_BUSY));
697
698	vp = bp->b_vp;
699	if (vp != NULL) {
700		if (vp->v_type == VBLK)
701			mp = vp->v_specmountpoint;
702		else
703			mp = vp->v_mount;
704	} else {
705		mp = NULL;
706	}
707
708	/*
709	 * Remember buffer type, to switch on it later.  If the write was
710	 * synchronous, but the file system was mounted with MNT_ASYNC,
711	 * convert it to a delayed write.
712	 * XXX note that this relies on delayed tape writes being converted
713	 * to async, not sync writes (which is safe, but ugly).
714	 */
715	sync = !ISSET(bp->b_flags, B_ASYNC);
716	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
717		bdwrite(bp);
718		return (0);
719	}
720
721	/*
722	 * Collect statistics on synchronous and asynchronous writes.
723	 * Writes to block devices are charged to their associated
724	 * filesystem (if any).
725	 */
726	if (mp != NULL) {
727		if (sync)
728			mp->mnt_stat.f_syncwrites++;
729		else
730			mp->mnt_stat.f_asyncwrites++;
731	}
732
733	s = splbio();
734	simple_lock(&bp->b_interlock);
735
736	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
737
738	CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
739
740	/*
741	 * Pay for the I/O operation and make sure the buf is on the correct
742	 * vnode queue.
743	 */
744	if (wasdelayed)
745		reassignbuf(bp, bp->b_vp);
746	else
747		p->p_stats->p_ru.ru_oublock++;
748
749	/* Initiate disk write.  Make sure the appropriate party is charged. */
750	V_INCR_NUMOUTPUT(bp->b_vp);
751	simple_unlock(&bp->b_interlock);
752	splx(s);
753
754	if (sync)
755		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
756	else
757		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
758
759	VOP_STRATEGY(vp, bp);
760
761	if (sync) {
762		/* If I/O was synchronous, wait for it to complete. */
763		rv = biowait(bp);
764
765		/* Release the buffer. */
766		brelse(bp);
767
768		return (rv);
769	} else {
770		return (0);
771	}
772}
773
774int
775vn_bwrite(void *v)
776{
777	struct vop_bwrite_args *ap = v;
778
779	return (bwrite(ap->a_bp));
780}
781
782/*
783 * Delayed write.
784 *
785 * The buffer is marked dirty, but is not queued for I/O.
786 * This routine should be used when the buffer is expected
787 * to be modified again soon, typically a small write that
788 * partially fills a buffer.
789 *
790 * NB: magnetic tapes cannot be delayed; they must be
791 * written in the order that the writes are requested.
792 *
793 * Described in Leffler, et al. (pp. 208-213).
794 */
795void
796bdwrite(struct buf *bp)
797{
798	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
799	struct proc *p = l->l_proc;
800	const struct bdevsw *bdev;
801	int s;
802
803	/* If this is a tape block, write the block now. */
804	bdev = bdevsw_lookup(bp->b_dev);
805	if (bdev != NULL && bdev->d_type == D_TAPE) {
806		bawrite(bp);
807		return;
808	}
809
810	/*
811	 * If the block hasn't been seen before:
812	 *	(1) Mark it as having been seen,
813	 *	(2) Charge for the write,
814	 *	(3) Make sure it's on its vnode's correct block list.
815	 */
816	s = splbio();
817	simple_lock(&bp->b_interlock);
818
819	KASSERT(ISSET(bp->b_flags, B_BUSY));
820
821	if (!ISSET(bp->b_flags, B_DELWRI)) {
822		SET(bp->b_flags, B_DELWRI);
823		p->p_stats->p_ru.ru_oublock++;
824		reassignbuf(bp, bp->b_vp);
825	}
826
827	/* Otherwise, the "write" is done, so mark and release the buffer. */
828	CLR(bp->b_flags, B_DONE);
829	simple_unlock(&bp->b_interlock);
830	splx(s);
831
832	brelse(bp);
833}
834
835/*
836 * Asynchronous block write; just an asynchronous bwrite().
837 */
838void
839bawrite(struct buf *bp)
840{
841	int s;
842
843	s = splbio();
844	simple_lock(&bp->b_interlock);
845
846	KASSERT(ISSET(bp->b_flags, B_BUSY));
847
848	SET(bp->b_flags, B_ASYNC);
849	simple_unlock(&bp->b_interlock);
850	splx(s);
851	VOP_BWRITE(bp);
852}
853
854/*
855 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
856 * Call at splbio() and with the buffer interlock locked.
857 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
858 */
859void
860bdirty(struct buf *bp)
861{
862	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
863	struct proc *p = l->l_proc;
864
865	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
866	KASSERT(ISSET(bp->b_flags, B_BUSY));
867
868	CLR(bp->b_flags, B_AGE);
869
870	if (!ISSET(bp->b_flags, B_DELWRI)) {
871		SET(bp->b_flags, B_DELWRI);
872		p->p_stats->p_ru.ru_oublock++;
873		reassignbuf(bp, bp->b_vp);
874	}
875}
876
877/*
878 * Release a buffer on to the free lists.
879 * Described in Bach (p. 46).
880 */
881void
882brelse(struct buf *bp)
883{
884	struct bqueue *bufq;
885	int s;
886
887	/* Block disk interrupts. */
888	s = splbio();
889	simple_lock(&bqueue_slock);
890	simple_lock(&bp->b_interlock);
891
892	KASSERT(ISSET(bp->b_flags, B_BUSY));
893	KASSERT(!ISSET(bp->b_flags, B_CALL));
894
895	/* Wake up any processes waiting for any buffer to become free. */
896	if (needbuffer) {
897		needbuffer = 0;
898		wakeup(&needbuffer);
899	}
900
901	/* Wake up any proceeses waiting for _this_ buffer to become free. */
902	if (ISSET(bp->b_flags, B_WANTED)) {
903		CLR(bp->b_flags, B_WANTED|B_AGE);
904		wakeup(bp);
905	}
906
907	/*
908	 * Determine which queue the buffer should be on, then put it there.
909	 */
910
911	/* If it's locked, don't report an error; try again later. */
912	if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
913		CLR(bp->b_flags, B_ERROR);
914
915	/* If it's not cacheable, or an error, mark it invalid. */
916	if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
917		SET(bp->b_flags, B_INVAL);
918
919	if (ISSET(bp->b_flags, B_VFLUSH)) {
920		/*
921		 * This is a delayed write buffer that was just flushed to
922		 * disk.  It is still on the LRU queue.  If it's become
923		 * invalid, then we need to move it to a different queue;
924		 * otherwise leave it in its current position.
925		 */
926		CLR(bp->b_flags, B_VFLUSH);
927		if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
928			KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
929			goto already_queued;
930		} else {
931			bremfree(bp);
932		}
933	}
934
935  KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
936  KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
937  KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
938
939	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
940		/*
941		 * If it's invalid or empty, dissociate it from its vnode
942		 * and put on the head of the appropriate queue.
943		 */
944		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
945			(*bioops.io_deallocate)(bp);
946		CLR(bp->b_flags, B_DONE|B_DELWRI);
947		if (bp->b_vp) {
948			reassignbuf(bp, bp->b_vp);
949			brelvp(bp);
950		}
951		if (bp->b_bufsize <= 0)
952			/* no data */
953			goto already_queued;
954		else
955			/* invalid data */
956			bufq = &bufqueues[BQ_AGE];
957		binsheadfree(bp, bufq);
958	} else {
959		/*
960		 * It has valid data.  Put it on the end of the appropriate
961		 * queue, so that it'll stick around for as long as possible.
962		 * If buf is AGE, but has dependencies, must put it on last
963		 * bufqueue to be scanned, ie LRU. This protects against the
964		 * livelock where BQ_AGE only has buffers with dependencies,
965		 * and we thus never get to the dependent buffers in BQ_LRU.
966		 */
967		if (ISSET(bp->b_flags, B_LOCKED))
968			/* locked in core */
969			bufq = &bufqueues[BQ_LOCKED];
970		else if (!ISSET(bp->b_flags, B_AGE))
971			/* valid data */
972			bufq = &bufqueues[BQ_LRU];
973		else {
974			/* stale but valid data */
975			int has_deps;
976
977			if (LIST_FIRST(&bp->b_dep) != NULL &&
978			    bioops.io_countdeps)
979				has_deps = (*bioops.io_countdeps)(bp, 0);
980			else
981				has_deps = 0;
982			bufq = has_deps ? &bufqueues[BQ_LRU] :
983			    &bufqueues[BQ_AGE];
984		}
985		binstailfree(bp, bufq);
986	}
987
988already_queued:
989	/* Unlock the buffer. */
990	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
991	SET(bp->b_flags, B_CACHE);
992
993	/* Allow disk interrupts. */
994	simple_unlock(&bp->b_interlock);
995	simple_unlock(&bqueue_slock);
996	if (bp->b_bufsize <= 0) {
997#ifdef DEBUG
998		memset((char *)bp, 0, sizeof(*bp));
999#endif
1000		pool_put(&bufpool, bp);
1001	}
1002	splx(s);
1003}
1004
1005/*
1006 * Determine if a block is in the cache.
1007 * Just look on what would be its hash chain.  If it's there, return
1008 * a pointer to it, unless it's marked invalid.  If it's marked invalid,
1009 * we normally don't return the buffer, unless the caller explicitly
1010 * wants us to.
1011 */
1012struct buf *
1013incore(struct vnode *vp, daddr_t blkno)
1014{
1015	struct buf *bp;
1016
1017	/* Search hash chain */
1018	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1019		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1020		    !ISSET(bp->b_flags, B_INVAL))
1021		return (bp);
1022	}
1023
1024	return (NULL);
1025}
1026
1027/*
1028 * Get a block of requested size that is associated with
1029 * a given vnode and block offset. If it is found in the
1030 * block cache, mark it as having been found, make it busy
1031 * and return it. Otherwise, return an empty block of the
1032 * correct size. It is up to the caller to insure that the
1033 * cached blocks be of the correct size.
1034 */
1035struct buf *
1036getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1037{
1038	struct buf *bp;
1039	int s, err;
1040	int preserve;
1041
1042start:
1043	s = splbio();
1044	simple_lock(&bqueue_slock);
1045	bp = incore(vp, blkno);
1046	if (bp != NULL) {
1047		simple_lock(&bp->b_interlock);
1048		if (ISSET(bp->b_flags, B_BUSY)) {
1049			simple_unlock(&bqueue_slock);
1050			if (curproc == uvm.pagedaemon_proc) {
1051				simple_unlock(&bp->b_interlock);
1052				splx(s);
1053				return NULL;
1054			}
1055			SET(bp->b_flags, B_WANTED);
1056			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1057					"getblk", slptimeo, &bp->b_interlock);
1058			splx(s);
1059			if (err)
1060				return (NULL);
1061			goto start;
1062		}
1063#ifdef DIAGNOSTIC
1064		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1065		    bp->b_bcount < size && vp->v_type != VBLK)
1066			panic("getblk: block size invariant failed");
1067#endif
1068		SET(bp->b_flags, B_BUSY);
1069		bremfree(bp);
1070		preserve = 1;
1071	} else {
1072		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1073			simple_unlock(&bqueue_slock);
1074			splx(s);
1075			goto start;
1076		}
1077
1078		binshash(bp, BUFHASH(vp, blkno));
1079		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1080		bgetvp(vp, bp);
1081		preserve = 0;
1082	}
1083	simple_unlock(&bp->b_interlock);
1084	simple_unlock(&bqueue_slock);
1085	splx(s);
1086	/*
1087	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1088	 * if we re-size buffers here.
1089	 */
1090	if (ISSET(bp->b_flags, B_LOCKED)) {
1091		KASSERT(bp->b_bufsize >= size);
1092	} else {
1093		allocbuf(bp, size, preserve);
1094	}
1095	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1096	return (bp);
1097}
1098
1099/*
1100 * Get an empty, disassociated buffer of given size.
1101 */
1102struct buf *
1103geteblk(int size)
1104{
1105	struct buf *bp;
1106	int s;
1107
1108	s = splbio();
1109	simple_lock(&bqueue_slock);
1110	while ((bp = getnewbuf(0, 0, 0)) == 0)
1111		;
1112
1113	SET(bp->b_flags, B_INVAL);
1114	binshash(bp, &invalhash);
1115	simple_unlock(&bqueue_slock);
1116	simple_unlock(&bp->b_interlock);
1117	splx(s);
1118	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1119	allocbuf(bp, size, 0);
1120	return (bp);
1121}
1122
1123/*
1124 * Expand or contract the actual memory allocated to a buffer.
1125 *
1126 * If the buffer shrinks, data is lost, so it's up to the
1127 * caller to have written it out *first*; this routine will not
1128 * start a write.  If the buffer grows, it's the callers
1129 * responsibility to fill out the buffer's additional contents.
1130 */
1131void
1132allocbuf(struct buf *bp, int size, int preserve)
1133{
1134	vsize_t oldsize, desired_size;
1135	caddr_t addr;
1136	int s, delta;
1137
1138	desired_size = buf_roundsize(size);
1139	if (desired_size > MAXBSIZE)
1140		printf("allocbuf: buffer larger than MAXBSIZE requested");
1141
1142	bp->b_bcount = size;
1143
1144	oldsize = bp->b_bufsize;
1145	if (oldsize == desired_size)
1146		return;
1147
1148	/*
1149	 * If we want a buffer of a different size, re-allocate the
1150	 * buffer's memory; copy old content only if needed.
1151	 */
1152	addr = buf_malloc(desired_size);
1153	if (preserve)
1154		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1155	if (bp->b_data != NULL)
1156		buf_mrelease(bp->b_data, oldsize);
1157	bp->b_data = addr;
1158	bp->b_bufsize = desired_size;
1159
1160	/*
1161	 * Update overall buffer memory counter (protected by bqueue_slock)
1162	 */
1163	delta = (long)desired_size - (long)oldsize;
1164
1165	s = splbio();
1166	simple_lock(&bqueue_slock);
1167	if ((bufmem += delta) > bufmem_hiwater) {
1168		/*
1169		 * Need to trim overall memory usage.
1170		 */
1171		while (buf_canrelease()) {
1172			if (buf_trim() == 0)
1173				break;
1174		}
1175	}
1176
1177	simple_unlock(&bqueue_slock);
1178	splx(s);
1179}
1180
1181/*
1182 * Find a buffer which is available for use.
1183 * Select something from a free list.
1184 * Preference is to AGE list, then LRU list.
1185 *
1186 * Called at splbio and with buffer queues locked.
1187 * Return buffer locked.
1188 */
1189struct buf *
1190getnewbuf(int slpflag, int slptimeo, int from_bufq)
1191{
1192	struct buf *bp;
1193
1194start:
1195	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1196
1197	/*
1198	 * Get a new buffer from the pool; but use NOWAIT because
1199	 * we have the buffer queues locked.
1200	 */
1201	if (!from_bufq && buf_lotsfree() &&
1202	    (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1203		memset((char *)bp, 0, sizeof(*bp));
1204		BUF_INIT(bp);
1205		bp->b_dev = NODEV;
1206		bp->b_vnbufs.le_next = NOLIST;
1207		bp->b_flags = B_BUSY;
1208		simple_lock(&bp->b_interlock);
1209#if defined(DIAGNOSTIC)
1210		bp->b_freelistindex = -1;
1211#endif /* defined(DIAGNOSTIC) */
1212		return (bp);
1213	}
1214
1215	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1216	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1217		simple_lock(&bp->b_interlock);
1218		bremfree(bp);
1219	} else {
1220		/*
1221		 * XXX: !from_bufq should be removed.
1222		 */
1223		if (!from_bufq || curproc != uvm.pagedaemon_proc) {
1224			/* wait for a free buffer of any kind */
1225			needbuffer = 1;
1226			ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1227			    "getnewbuf", slptimeo, &bqueue_slock);
1228		}
1229		return (NULL);
1230	}
1231
1232#ifdef DIAGNOSTIC
1233	if (bp->b_bufsize <= 0)
1234		panic("buffer %p: on queue but empty", bp);
1235#endif
1236
1237	if (ISSET(bp->b_flags, B_VFLUSH)) {
1238		/*
1239		 * This is a delayed write buffer being flushed to disk.  Make
1240		 * sure it gets aged out of the queue when it's finished, and
1241		 * leave it off the LRU queue.
1242		 */
1243		CLR(bp->b_flags, B_VFLUSH);
1244		SET(bp->b_flags, B_AGE);
1245		simple_unlock(&bp->b_interlock);
1246		goto start;
1247	}
1248
1249	/* Buffer is no longer on free lists. */
1250	SET(bp->b_flags, B_BUSY);
1251
1252	/*
1253	 * If buffer was a delayed write, start it and return NULL
1254	 * (since we might sleep while starting the write).
1255	 */
1256	if (ISSET(bp->b_flags, B_DELWRI)) {
1257		/*
1258		 * This buffer has gone through the LRU, so make sure it gets
1259		 * reused ASAP.
1260		 */
1261		SET(bp->b_flags, B_AGE);
1262		simple_unlock(&bp->b_interlock);
1263		simple_unlock(&bqueue_slock);
1264		bawrite(bp);
1265		simple_lock(&bqueue_slock);
1266		return (NULL);
1267	}
1268
1269	/* disassociate us from our vnode, if we had one... */
1270	if (bp->b_vp)
1271		brelvp(bp);
1272
1273	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1274		(*bioops.io_deallocate)(bp);
1275
1276	/* clear out various other fields */
1277	bp->b_flags = B_BUSY;
1278	bp->b_dev = NODEV;
1279	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1280	bp->b_iodone = 0;
1281	bp->b_error = 0;
1282	bp->b_resid = 0;
1283	bp->b_bcount = 0;
1284
1285	bremhash(bp);
1286	return (bp);
1287}
1288
1289/*
1290 * Attempt to free an aged buffer off the queues.
1291 * Called at splbio and with queue lock held.
1292 * Returns the amount of buffer memory freed.
1293 */
1294static int
1295buf_trim(void)
1296{
1297	struct buf *bp;
1298	long size = 0;
1299
1300	/* Instruct getnewbuf() to get buffers off the queues */
1301	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1302		return 0;
1303
1304	KASSERT(!ISSET(bp->b_flags, B_WANTED));
1305	simple_unlock(&bp->b_interlock);
1306	size = bp->b_bufsize;
1307	bufmem -= size;
1308	simple_unlock(&bqueue_slock);
1309	if (size > 0) {
1310		buf_mrelease(bp->b_data, size);
1311		bp->b_bcount = bp->b_bufsize = 0;
1312	}
1313	/* brelse() will return the buffer to the global buffer pool */
1314	brelse(bp);
1315	simple_lock(&bqueue_slock);
1316	return size;
1317}
1318
1319int
1320buf_drain(int n)
1321{
1322	int s, size = 0, sz;
1323
1324	s = splbio();
1325	simple_lock(&bqueue_slock);
1326
1327	while (size < n && bufmem > bufmem_lowater) {
1328		sz = buf_trim();
1329		if (sz <= 0)
1330			break;
1331		size += sz;
1332	}
1333
1334	simple_unlock(&bqueue_slock);
1335	splx(s);
1336	return size;
1337}
1338
1339/*
1340 * Wait for operations on the buffer to complete.
1341 * When they do, extract and return the I/O's error value.
1342 */
1343int
1344biowait(struct buf *bp)
1345{
1346	int s, error;
1347
1348	s = splbio();
1349	simple_lock(&bp->b_interlock);
1350	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1351		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1352
1353	/* check for interruption of I/O (e.g. via NFS), then errors. */
1354	if (ISSET(bp->b_flags, B_EINTR)) {
1355		CLR(bp->b_flags, B_EINTR);
1356		error = EINTR;
1357	} else if (ISSET(bp->b_flags, B_ERROR))
1358		error = bp->b_error ? bp->b_error : EIO;
1359	else
1360		error = 0;
1361
1362	simple_unlock(&bp->b_interlock);
1363	splx(s);
1364	return (error);
1365}
1366
1367/*
1368 * Mark I/O complete on a buffer.
1369 *
1370 * If a callback has been requested, e.g. the pageout
1371 * daemon, do so. Otherwise, awaken waiting processes.
1372 *
1373 * [ Leffler, et al., says on p.247:
1374 *	"This routine wakes up the blocked process, frees the buffer
1375 *	for an asynchronous write, or, for a request by the pagedaemon
1376 *	process, invokes a procedure specified in the buffer structure" ]
1377 *
1378 * In real life, the pagedaemon (or other system processes) wants
1379 * to do async stuff to, and doesn't want the buffer brelse()'d.
1380 * (for swap pager, that puts swap buffers on the free lists (!!!),
1381 * for the vn device, that puts malloc'd buffers on the free lists!)
1382 */
1383void
1384biodone(struct buf *bp)
1385{
1386	int s = splbio();
1387
1388	simple_lock(&bp->b_interlock);
1389	if (ISSET(bp->b_flags, B_DONE))
1390		panic("biodone already");
1391	SET(bp->b_flags, B_DONE);		/* note that it's done */
1392	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1393
1394	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1395		(*bioops.io_complete)(bp);
1396
1397	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
1398		vwakeup(bp);
1399
1400	/*
1401	 * If necessary, call out.  Unlock the buffer before calling
1402	 * iodone() as the buffer isn't valid any more when it return.
1403	 */
1404	if (ISSET(bp->b_flags, B_CALL)) {
1405		CLR(bp->b_flags, B_CALL);	/* but note callout done */
1406		simple_unlock(&bp->b_interlock);
1407		(*bp->b_iodone)(bp);
1408	} else {
1409		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
1410			simple_unlock(&bp->b_interlock);
1411			brelse(bp);
1412		} else {			/* or just wakeup the buffer */
1413			CLR(bp->b_flags, B_WANTED);
1414			wakeup(bp);
1415			simple_unlock(&bp->b_interlock);
1416		}
1417	}
1418
1419	splx(s);
1420}
1421
1422/*
1423 * Return a count of buffers on the "locked" queue.
1424 */
1425int
1426count_lock_queue(void)
1427{
1428	struct buf *bp;
1429	int n = 0;
1430
1431	simple_lock(&bqueue_slock);
1432	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1433		n++;
1434	simple_unlock(&bqueue_slock);
1435	return (n);
1436}
1437
1438/*
1439 * Wait for all buffers to complete I/O
1440 * Return the number of "stuck" buffers.
1441 */
1442int
1443buf_syncwait(void)
1444{
1445	struct buf *bp;
1446	int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1447
1448	dcount = 10000;
1449	for (iter = 0; iter < 20;) {
1450		s = splbio();
1451		simple_lock(&bqueue_slock);
1452		nbusy = 0;
1453		for (ihash = 0; ihash < bufhash+1; ihash++) {
1454		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1455			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1456				nbusy++;
1457			/*
1458			 * With soft updates, some buffers that are
1459			 * written will be remarked as dirty until other
1460			 * buffers are written.
1461			 */
1462			if (bp->b_vp && bp->b_vp->v_mount
1463			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1464			    && (bp->b_flags & B_DELWRI)) {
1465				simple_lock(&bp->b_interlock);
1466				bremfree(bp);
1467				bp->b_flags |= B_BUSY;
1468				nbusy++;
1469				simple_unlock(&bp->b_interlock);
1470				simple_unlock(&bqueue_slock);
1471				bawrite(bp);
1472				if (dcount-- <= 0) {
1473					printf("softdep ");
1474					splx(s);
1475					goto fail;
1476				}
1477				simple_lock(&bqueue_slock);
1478			}
1479		    }
1480		}
1481
1482		simple_unlock(&bqueue_slock);
1483		splx(s);
1484
1485		if (nbusy == 0)
1486			break;
1487		if (nbusy_prev == 0)
1488			nbusy_prev = nbusy;
1489		printf("%d ", nbusy);
1490		tsleep(&nbusy, PRIBIO, "bflush",
1491		    (iter == 0) ? 1 : hz / 25 * iter);
1492		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1493			iter++;
1494		else
1495			nbusy_prev = nbusy;
1496	}
1497
1498	if (nbusy) {
1499fail:;
1500#if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1501		printf("giving up\nPrinting vnodes for busy buffers\n");
1502		s = splbio();
1503		for (ihash = 0; ihash < bufhash+1; ihash++) {
1504		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1505			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1506				vprint(NULL, bp->b_vp);
1507		    }
1508		}
1509		splx(s);
1510#endif
1511	}
1512
1513	return nbusy;
1514}
1515
1516static void
1517sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1518{
1519
1520	o->b_flags = i->b_flags;
1521	o->b_error = i->b_error;
1522	o->b_prio = i->b_prio;
1523	o->b_dev = i->b_dev;
1524	o->b_bufsize = i->b_bufsize;
1525	o->b_bcount = i->b_bcount;
1526	o->b_resid = i->b_resid;
1527	o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1528	o->b_blkno = i->b_blkno;
1529	o->b_rawblkno = i->b_rawblkno;
1530	o->b_iodone = PTRTOUINT64(i->b_iodone);
1531	o->b_proc = PTRTOUINT64(i->b_proc);
1532	o->b_vp = PTRTOUINT64(i->b_vp);
1533	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1534	o->b_lblkno = i->b_lblkno;
1535}
1536
1537#define KERN_BUFSLOP 20
1538static int
1539sysctl_dobuf(SYSCTLFN_ARGS)
1540{
1541	struct buf *bp;
1542	struct buf_sysctl bs;
1543	char *dp;
1544	u_int i, op, arg;
1545	size_t len, needed, elem_size, out_size;
1546	int error, s, elem_count;
1547
1548	if (namelen == 1 && name[0] == CTL_QUERY)
1549		/*XXXUNCONST*/
1550		return (sysctl_query(SYSCTLFN_CALL(__UNCONST(rnode))));
1551
1552	if (namelen != 4)
1553		return (EINVAL);
1554
1555	dp = oldp;
1556	len = (oldp != NULL) ? *oldlenp : 0;
1557	op = name[0];
1558	arg = name[1];
1559	elem_size = name[2];
1560	elem_count = name[3];
1561	out_size = MIN(sizeof(bs), elem_size);
1562
1563	/*
1564	 * at the moment, these are just "placeholders" to make the
1565	 * API for retrieving kern.buf data more extensible in the
1566	 * future.
1567	 *
1568	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1569	 * these will be resolved at a later point.
1570	 */
1571	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1572	    elem_size < 1 || elem_count < 0)
1573		return (EINVAL);
1574
1575	error = 0;
1576	needed = 0;
1577	s = splbio();
1578	simple_lock(&bqueue_slock);
1579	for (i = 0; i < BQUEUES; i++) {
1580		TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
1581			if (len >= elem_size && elem_count > 0) {
1582				sysctl_fillbuf(bp, &bs);
1583				error = copyout(&bs, dp, out_size);
1584				if (error)
1585					goto cleanup;
1586				dp += elem_size;
1587				len -= elem_size;
1588			}
1589			if (elem_count > 0) {
1590				needed += elem_size;
1591				if (elem_count != INT_MAX)
1592					elem_count--;
1593			}
1594		}
1595	}
1596cleanup:
1597	simple_unlock(&bqueue_slock);
1598	splx(s);
1599
1600	*oldlenp = needed;
1601	if (oldp == NULL)
1602		*oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1603
1604	return (error);
1605}
1606
1607static int
1608sysctl_bufvm_update(SYSCTLFN_ARGS)
1609{
1610	int t, error;
1611	struct sysctlnode node;
1612
1613	node = *rnode;
1614	node.sysctl_data = &t;
1615	t = *(int *)rnode->sysctl_data;
1616	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1617	if (error || newp == NULL)
1618		return (error);
1619
1620	if (t < 0)
1621		return EINVAL;
1622	if (rnode->sysctl_data == &bufcache) {
1623		if (t > 100)
1624			return (EINVAL);
1625		bufcache = t;
1626		buf_setwm();
1627	} else if (rnode->sysctl_data == &bufmem_lowater) {
1628		if (bufmem_hiwater - t < 16)
1629			return (EINVAL);
1630		bufmem_lowater = t;
1631	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1632		if (t - bufmem_lowater < 16)
1633			return (EINVAL);
1634		bufmem_hiwater = t;
1635	} else
1636		return (EINVAL);
1637
1638	/* Drain until below new high water mark */
1639	while ((t = bufmem - bufmem_hiwater) >= 0) {
1640		if (buf_drain(t / (2 * 1024)) <= 0)
1641			break;
1642	}
1643
1644	return 0;
1645}
1646
1647SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1648{
1649
1650	sysctl_createv(clog, 0, NULL, NULL,
1651		       CTLFLAG_PERMANENT,
1652		       CTLTYPE_NODE, "kern", NULL,
1653		       NULL, 0, NULL, 0,
1654		       CTL_KERN, CTL_EOL);
1655	sysctl_createv(clog, 0, NULL, NULL,
1656		       CTLFLAG_PERMANENT,
1657		       CTLTYPE_NODE, "buf",
1658		       SYSCTL_DESCR("Kernel buffer cache information"),
1659		       sysctl_dobuf, 0, NULL, 0,
1660		       CTL_KERN, KERN_BUF, CTL_EOL);
1661}
1662
1663SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1664{
1665
1666	sysctl_createv(clog, 0, NULL, NULL,
1667		       CTLFLAG_PERMANENT,
1668		       CTLTYPE_NODE, "vm", NULL,
1669		       NULL, 0, NULL, 0,
1670		       CTL_VM, CTL_EOL);
1671
1672	sysctl_createv(clog, 0, NULL, NULL,
1673		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1674		       CTLTYPE_INT, "bufcache",
1675		       SYSCTL_DESCR("Percentage of physical memory to use for "
1676				    "buffer cache"),
1677		       sysctl_bufvm_update, 0, &bufcache, 0,
1678		       CTL_VM, CTL_CREATE, CTL_EOL);
1679	sysctl_createv(clog, 0, NULL, NULL,
1680		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1681		       CTLTYPE_INT, "bufmem",
1682		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
1683				    "cache"),
1684		       NULL, 0, &bufmem, 0,
1685		       CTL_VM, CTL_CREATE, CTL_EOL);
1686	sysctl_createv(clog, 0, NULL, NULL,
1687		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1688		       CTLTYPE_INT, "bufmem_lowater",
1689		       SYSCTL_DESCR("Minimum amount of kernel memory to "
1690				    "reserve for buffer cache"),
1691		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1692		       CTL_VM, CTL_CREATE, CTL_EOL);
1693	sysctl_createv(clog, 0, NULL, NULL,
1694		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1695		       CTLTYPE_INT, "bufmem_hiwater",
1696		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
1697				    "for buffer cache"),
1698		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1699		       CTL_VM, CTL_CREATE, CTL_EOL);
1700}
1701
1702#ifdef DEBUG
1703/*
1704 * Print out statistics on the current allocation of the buffer pool.
1705 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1706 * in vfs_syscalls.c using sysctl.
1707 */
1708void
1709vfs_bufstats(void)
1710{
1711	int s, i, j, count;
1712	struct buf *bp;
1713	struct bqueue *dp;
1714	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1715	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1716
1717	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1718		count = 0;
1719		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1720			counts[j] = 0;
1721		s = splbio();
1722		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1723			counts[bp->b_bufsize/PAGE_SIZE]++;
1724			count++;
1725		}
1726		splx(s);
1727		printf("%s: total-%d", bname[i], count);
1728		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1729			if (counts[j] != 0)
1730				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1731		printf("\n");
1732	}
1733}
1734#endif /* DEBUG */
1735