vfs_bio.c revision 1.133
1/*	$NetBSD: vfs_bio.c,v 1.133 2004/10/03 08:30:09 enami Exp $	*/
2
3/*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
37 */
38
39/*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 *    notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in the
49 *    documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 *    must display the following acknowledgement:
52 *	This product includes software developed by the University of
53 *	California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 *    may be used to endorse or promote products derived from this software
56 *    without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
71 */
72
73/*
74 * Some references:
75 *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 *	Leffler, et al.: The Design and Implementation of the 4.3BSD
77 *		UNIX Operating System (Addison Welley, 1989)
78 */
79
80#include "opt_bufcache.h"
81#include "opt_softdep.h"
82
83#include <sys/cdefs.h>
84__KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.133 2004/10/03 08:30:09 enami Exp $");
85
86#include <sys/param.h>
87#include <sys/systm.h>
88#include <sys/kernel.h>
89#include <sys/proc.h>
90#include <sys/buf.h>
91#include <sys/vnode.h>
92#include <sys/mount.h>
93#include <sys/malloc.h>
94#include <sys/resourcevar.h>
95#include <sys/sysctl.h>
96#include <sys/conf.h>
97
98#include <uvm/uvm.h>
99
100#include <miscfs/specfs/specdev.h>
101
102#ifndef	BUFPAGES
103# define BUFPAGES 0
104#endif
105
106#ifdef BUFCACHE
107# if (BUFCACHE < 5) || (BUFCACHE > 95)
108#  error BUFCACHE is not between 5 and 95
109# endif
110#else
111# define BUFCACHE 15
112#endif
113
114u_int	nbuf;			/* XXX - for softdep_lockedbufs */
115u_int	bufpages = BUFPAGES;	/* optional hardwired count */
116u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
117
118/* Function prototypes */
119struct bqueue;
120
121static int buf_trim(void);
122static void *bufpool_page_alloc(struct pool *, int);
123static void bufpool_page_free(struct pool *, void *);
124static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
125    struct ucred *, int);
126static int buf_lotsfree(void);
127static int buf_canrelease(void);
128static __inline u_long buf_mempoolidx(u_long);
129static __inline u_long buf_roundsize(u_long);
130static __inline caddr_t buf_malloc(size_t);
131static void buf_mrelease(caddr_t, size_t);
132static __inline void binsheadfree(struct buf *, struct bqueue *);
133static __inline void binstailfree(struct buf *, struct bqueue *);
134int count_lock_queue(void); /* XXX */
135#ifdef DEBUG
136static int checkfreelist(struct buf *, struct bqueue *);
137#endif
138
139/* Macros to clear/set/test flags. */
140#define	SET(t, f)	(t) |= (f)
141#define	CLR(t, f)	(t) &= ~(f)
142#define	ISSET(t, f)	((t) & (f))
143
144/*
145 * Definitions for the buffer hash lists.
146 */
147#define	BUFHASH(dvp, lbn)	\
148	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
149LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
150u_long	bufhash;
151#ifndef SOFTDEP
152struct bio_ops bioops;	/* I/O operation notification */
153#endif
154
155/*
156 * Insq/Remq for the buffer hash lists.
157 */
158#define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
159#define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
160
161/*
162 * Definitions for the buffer free lists.
163 */
164#define	BQUEUES		3		/* number of free buffer queues */
165
166#define	BQ_LOCKED	0		/* super-blocks &c */
167#define	BQ_LRU		1		/* lru, useful buffers */
168#define	BQ_AGE		2		/* rubbish */
169
170struct bqueue {
171	TAILQ_HEAD(, buf) bq_queue;
172	uint64_t bq_bytes;
173} bufqueues[BQUEUES];
174int needbuffer;
175
176/*
177 * Buffer queue lock.
178 * Take this lock first if also taking some buffer's b_interlock.
179 */
180struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
181
182/*
183 * Buffer pool for I/O buffers.
184 */
185struct pool bufpool;
186
187/* XXX - somewhat gross.. */
188#if MAXBSIZE == 0x2000
189#define NMEMPOOLS 4
190#elif MAXBSIZE == 0x4000
191#define NMEMPOOLS 5
192#elif MAXBSIZE == 0x8000
193#define NMEMPOOLS 6
194#else
195#define NMEMPOOLS 7
196#endif
197
198#define MEMPOOL_INDEX_OFFSET 10		/* smallest pool is 1k */
199#if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
200#error update vfs_bio buffer memory parameters
201#endif
202
203/* Buffer memory pools */
204static struct pool bmempools[NMEMPOOLS];
205
206struct vm_map *buf_map;
207
208/*
209 * Buffer memory pool allocator.
210 */
211static void *
212bufpool_page_alloc(struct pool *pp, int flags)
213{
214
215	return (void *)uvm_km_kmemalloc1(buf_map,
216	    uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET,
217	    (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
218}
219
220static void
221bufpool_page_free(struct pool *pp, void *v)
222{
223	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE);
224}
225
226static struct pool_allocator bufmempool_allocator = {
227	bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
228};
229
230/* Buffer memory management variables */
231u_long bufmem_valimit;
232u_long bufmem_hiwater;
233u_long bufmem_lowater;
234u_long bufmem;
235
236/*
237 * MD code can call this to set a hard limit on the amount
238 * of virtual memory used by the buffer cache.
239 */
240int
241buf_setvalimit(vsize_t sz)
242{
243
244	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
245	if (sz < NMEMPOOLS * MAXBSIZE)
246		return EINVAL;
247
248	bufmem_valimit = sz;
249	return 0;
250}
251
252#ifdef DEBUG
253int debug_verify_freelist = 0;
254static int
255checkfreelist(struct buf *bp, struct bqueue *dp)
256{
257	struct buf *b;
258
259	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
260		if (b == bp)
261			return 1;
262	}
263	return 0;
264}
265#endif
266
267/*
268 * Insq/Remq for the buffer hash lists.
269 * Call with buffer queue locked.
270 */
271static __inline void
272binsheadfree(struct buf *bp, struct bqueue *dp)
273{
274
275	KASSERT(bp->b_freelistindex == -1);
276	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
277	dp->bq_bytes += bp->b_bufsize;
278	bp->b_freelistindex = dp - bufqueues;
279}
280
281static __inline void
282binstailfree(struct buf *bp, struct bqueue *dp)
283{
284
285	KASSERT(bp->b_freelistindex == -1);
286	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
287	dp->bq_bytes += bp->b_bufsize;
288	bp->b_freelistindex = dp - bufqueues;
289}
290
291void
292bremfree(struct buf *bp)
293{
294	struct bqueue *dp;
295	int bqidx = bp->b_freelistindex;
296
297	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
298
299	KASSERT(bqidx != -1);
300	dp = &bufqueues[bqidx];
301	KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
302	KASSERT(dp->bq_bytes >= bp->b_bufsize);
303	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
304	dp->bq_bytes -= bp->b_bufsize;
305#if defined(DIAGNOSTIC)
306	bp->b_freelistindex = -1;
307#endif /* defined(DIAGNOSTIC) */
308}
309
310u_long
311buf_memcalc(void)
312{
313	u_long n;
314
315	/*
316	 * Determine the upper bound of memory to use for buffers.
317	 *
318	 *	- If bufpages is specified, use that as the number
319	 *	  pages.
320	 *
321	 *	- Otherwise, use bufcache as the percentage of
322	 *	  physical memory.
323	 */
324	if (bufpages != 0) {
325		n = bufpages;
326	} else {
327		if (bufcache < 5) {
328			printf("forcing bufcache %d -> 5", bufcache);
329			bufcache = 5;
330		}
331		if (bufcache > 95) {
332			printf("forcing bufcache %d -> 95", bufcache);
333			bufcache = 95;
334		}
335		n = physmem / 100 * bufcache;
336	}
337
338	n <<= PAGE_SHIFT;
339	if (bufmem_valimit != 0 && n > bufmem_valimit)
340		n = bufmem_valimit;
341
342	return (n);
343}
344
345/*
346 * Initialize buffers and hash links for buffers.
347 */
348void
349bufinit(void)
350{
351	struct bqueue *dp;
352	int use_std;
353	u_int i;
354
355	/*
356	 * Initialize buffer cache memory parameters.
357	 */
358	bufmem = 0;
359	bufmem_hiwater = buf_memcalc();
360	/* lowater is approx. 2% of memory (with bufcache=15) */
361	bufmem_lowater = (bufmem_hiwater >> 3);
362	if (bufmem_lowater < 64 * 1024)
363		/* Ensure a reasonable minimum value */
364		bufmem_lowater = 64 * 1024;
365
366	if (bufmem_valimit != 0) {
367		vaddr_t minaddr = 0, maxaddr;
368		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
369					  bufmem_valimit, VM_MAP_PAGEABLE,
370					  FALSE, 0);
371		if (buf_map == NULL)
372			panic("bufinit: cannot allocate submap");
373	} else
374		buf_map = kernel_map;
375
376	/*
377	 * Initialize the buffer pools.
378	 */
379	pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
380
381	/* On "small" machines use small pool page sizes where possible */
382	use_std = (physmem < atop(16*1024*1024));
383
384	/*
385	 * Also use them on systems that can map the pool pages using
386	 * a direct-mapped segment.
387	 */
388#ifdef PMAP_MAP_POOLPAGE
389	use_std = 1;
390#endif
391
392	for (i = 0; i < NMEMPOOLS; i++) {
393		struct pool_allocator *pa;
394		struct pool *pp = &bmempools[i];
395		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
396		char *name = malloc(8, M_TEMP, M_WAITOK);
397		snprintf(name, 8, "buf%dk", 1 << i);
398		pa = (size <= PAGE_SIZE && use_std)
399			? &pool_allocator_nointr
400			: &bufmempool_allocator;
401		pool_init(pp, size, 0, 0, 0, name, pa);
402		pool_setlowat(pp, 1);
403		pool_sethiwat(pp, 1);
404	}
405
406	/* Initialize the buffer queues */
407	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
408		TAILQ_INIT(&dp->bq_queue);
409		dp->bq_bytes = 0;
410	}
411
412	/*
413	 * Estimate hash table size based on the amount of memory we
414	 * intend to use for the buffer cache. The average buffer
415	 * size is dependent on our clients (i.e. filesystems).
416	 *
417	 * For now, use an empirical 3K per buffer.
418	 */
419	nbuf = (bufmem_hiwater / 1024) / 3;
420	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
421}
422
423static int
424buf_lotsfree(void)
425{
426	int try, thresh;
427	struct lwp *l = curlwp;
428
429	/* Always allocate if doing copy on write */
430	if (l->l_flag & L_COWINPROGRESS)
431		return 1;
432
433	/* Always allocate if less than the low water mark. */
434	if (bufmem < bufmem_lowater)
435		return 1;
436
437	/* Never allocate if greater than the high water mark. */
438	if (bufmem > bufmem_hiwater)
439		return 0;
440
441	/* If there's anything on the AGE list, it should be eaten. */
442	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
443		return 0;
444
445	/*
446	 * The probabily of getting a new allocation is inversely
447	 * proportional to the current size of the cache, using
448	 * a granularity of 16 steps.
449	 */
450	try = random() & 0x0000000fL;
451
452	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
453	thresh = bufmem / (bufmem_hiwater / 16);
454
455	if (try >= thresh && uvmexp.free > (2 * uvmexp.freetarg))
456		return 1;
457
458	/* Otherwise don't allocate. */
459	return 0;
460}
461
462/*
463 * Return estimate of bytes we think need to be
464 * released to help resolve low memory conditions.
465 *
466 * => called at splbio.
467 * => called with bqueue_slock held.
468 */
469static int
470buf_canrelease(void)
471{
472	int pagedemand, ninvalid = 0;
473
474	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
475
476	if (bufmem < bufmem_lowater)
477		return 0;
478
479	ninvalid += bufqueues[BQ_AGE].bq_bytes;
480
481	pagedemand = uvmexp.freetarg - uvmexp.free;
482	if (pagedemand < 0)
483		return ninvalid;
484	return MAX(ninvalid, MIN(2 * MAXBSIZE,
485	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
486}
487
488/*
489 * Buffer memory allocation helper functions
490 */
491static __inline u_long
492buf_mempoolidx(u_long size)
493{
494	u_int n = 0;
495
496	size -= 1;
497	size >>= MEMPOOL_INDEX_OFFSET;
498	while (size) {
499		size >>= 1;
500		n += 1;
501	}
502	if (n >= NMEMPOOLS)
503		panic("buf mem pool index %d", n);
504	return n;
505}
506
507static __inline u_long
508buf_roundsize(u_long size)
509{
510	/* Round up to nearest power of 2 */
511	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
512}
513
514static __inline caddr_t
515buf_malloc(size_t size)
516{
517	u_int n = buf_mempoolidx(size);
518	caddr_t addr;
519	int s;
520
521	while (1) {
522		addr = pool_get(&bmempools[n], PR_NOWAIT);
523		if (addr != NULL)
524			break;
525
526		/* No memory, see if we can free some. If so, try again */
527		if (buf_drain(1) > 0)
528			continue;
529
530		/* Wait for buffers to arrive on the LRU queue */
531		s = splbio();
532		simple_lock(&bqueue_slock);
533		needbuffer = 1;
534		ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
535			"buf_malloc", 0, &bqueue_slock);
536		splx(s);
537	}
538
539	return addr;
540}
541
542static void
543buf_mrelease(caddr_t addr, size_t size)
544{
545
546	pool_put(&bmempools[buf_mempoolidx(size)], addr);
547}
548
549/*
550 * bread()/breadn() helper.
551 */
552static __inline struct buf *
553bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
554    int async)
555{
556	struct buf *bp;
557	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
558	struct proc *p = l->l_proc;
559	struct mount *mp;
560
561	bp = getblk(vp, blkno, size, 0, 0);
562
563#ifdef DIAGNOSTIC
564	if (bp == NULL) {
565		panic("bio_doread: no such buf");
566	}
567#endif
568
569	/*
570	 * If buffer does not have data valid, start a read.
571	 * Note that if buffer is B_INVAL, getblk() won't return it.
572	 * Therefore, it's valid if its I/O has completed or been delayed.
573	 */
574	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
575		/* Start I/O for the buffer. */
576		SET(bp->b_flags, B_READ | async);
577		if (async)
578			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
579		else
580			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
581		VOP_STRATEGY(vp, bp);
582
583		/* Pay for the read. */
584		p->p_stats->p_ru.ru_inblock++;
585	} else if (async) {
586		brelse(bp);
587	}
588
589	if (vp->v_type == VBLK)
590		mp = vp->v_specmountpoint;
591	else
592		mp = vp->v_mount;
593
594	/*
595	 * Collect statistics on synchronous and asynchronous reads.
596	 * Reads from block devices are charged to their associated
597	 * filesystem (if any).
598	 */
599	if (mp != NULL) {
600		if (async == 0)
601			mp->mnt_stat.f_syncreads++;
602		else
603			mp->mnt_stat.f_asyncreads++;
604	}
605
606	return (bp);
607}
608
609/*
610 * Read a disk block.
611 * This algorithm described in Bach (p.54).
612 */
613int
614bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
615    struct buf **bpp)
616{
617	struct buf *bp;
618
619	/* Get buffer for block. */
620	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
621
622	/* Wait for the read to complete, and return result. */
623	return (biowait(bp));
624}
625
626/*
627 * Read-ahead multiple disk blocks. The first is sync, the rest async.
628 * Trivial modification to the breada algorithm presented in Bach (p.55).
629 */
630int
631breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
632    int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
633{
634	struct buf *bp;
635	int i;
636
637	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
638
639	/*
640	 * For each of the read-ahead blocks, start a read, if necessary.
641	 */
642	for (i = 0; i < nrablks; i++) {
643		/* If it's in the cache, just go on to next one. */
644		if (incore(vp, rablks[i]))
645			continue;
646
647		/* Get a buffer for the read-ahead block */
648		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
649	}
650
651	/* Otherwise, we had to start a read for it; wait until it's valid. */
652	return (biowait(bp));
653}
654
655/*
656 * Read with single-block read-ahead.  Defined in Bach (p.55), but
657 * implemented as a call to breadn().
658 * XXX for compatibility with old file systems.
659 */
660int
661breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
662    int rabsize, struct ucred *cred, struct buf **bpp)
663{
664
665	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
666}
667
668/*
669 * Block write.  Described in Bach (p.56)
670 */
671int
672bwrite(struct buf *bp)
673{
674	int rv, sync, wasdelayed, s;
675	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
676	struct proc *p = l->l_proc;
677	struct vnode *vp;
678	struct mount *mp;
679
680	KASSERT(ISSET(bp->b_flags, B_BUSY));
681
682	vp = bp->b_vp;
683	if (vp != NULL) {
684		if (vp->v_type == VBLK)
685			mp = vp->v_specmountpoint;
686		else
687			mp = vp->v_mount;
688	} else {
689		mp = NULL;
690	}
691
692	/*
693	 * Remember buffer type, to switch on it later.  If the write was
694	 * synchronous, but the file system was mounted with MNT_ASYNC,
695	 * convert it to a delayed write.
696	 * XXX note that this relies on delayed tape writes being converted
697	 * to async, not sync writes (which is safe, but ugly).
698	 */
699	sync = !ISSET(bp->b_flags, B_ASYNC);
700	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
701		bdwrite(bp);
702		return (0);
703	}
704
705	/*
706	 * Collect statistics on synchronous and asynchronous writes.
707	 * Writes to block devices are charged to their associated
708	 * filesystem (if any).
709	 */
710	if (mp != NULL) {
711		if (sync)
712			mp->mnt_stat.f_syncwrites++;
713		else
714			mp->mnt_stat.f_asyncwrites++;
715	}
716
717	s = splbio();
718	simple_lock(&bp->b_interlock);
719
720	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
721
722	CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
723
724	/*
725	 * Pay for the I/O operation and make sure the buf is on the correct
726	 * vnode queue.
727	 */
728	if (wasdelayed)
729		reassignbuf(bp, bp->b_vp);
730	else
731		p->p_stats->p_ru.ru_oublock++;
732
733	/* Initiate disk write.  Make sure the appropriate party is charged. */
734	V_INCR_NUMOUTPUT(bp->b_vp);
735	simple_unlock(&bp->b_interlock);
736	splx(s);
737
738	if (sync)
739		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
740	else
741		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
742
743	VOP_STRATEGY(vp, bp);
744
745	if (sync) {
746		/* If I/O was synchronous, wait for it to complete. */
747		rv = biowait(bp);
748
749		/* Release the buffer. */
750		brelse(bp);
751
752		return (rv);
753	} else {
754		return (0);
755	}
756}
757
758int
759vn_bwrite(void *v)
760{
761	struct vop_bwrite_args *ap = v;
762
763	return (bwrite(ap->a_bp));
764}
765
766/*
767 * Delayed write.
768 *
769 * The buffer is marked dirty, but is not queued for I/O.
770 * This routine should be used when the buffer is expected
771 * to be modified again soon, typically a small write that
772 * partially fills a buffer.
773 *
774 * NB: magnetic tapes cannot be delayed; they must be
775 * written in the order that the writes are requested.
776 *
777 * Described in Leffler, et al. (pp. 208-213).
778 */
779void
780bdwrite(struct buf *bp)
781{
782	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
783	struct proc *p = l->l_proc;
784	const struct bdevsw *bdev;
785	int s;
786
787	/* If this is a tape block, write the block now. */
788	bdev = bdevsw_lookup(bp->b_dev);
789	if (bdev != NULL && bdev->d_type == D_TAPE) {
790		bawrite(bp);
791		return;
792	}
793
794	/*
795	 * If the block hasn't been seen before:
796	 *	(1) Mark it as having been seen,
797	 *	(2) Charge for the write,
798	 *	(3) Make sure it's on its vnode's correct block list.
799	 */
800	s = splbio();
801	simple_lock(&bp->b_interlock);
802
803	KASSERT(ISSET(bp->b_flags, B_BUSY));
804
805	if (!ISSET(bp->b_flags, B_DELWRI)) {
806		SET(bp->b_flags, B_DELWRI);
807		p->p_stats->p_ru.ru_oublock++;
808		reassignbuf(bp, bp->b_vp);
809	}
810
811	/* Otherwise, the "write" is done, so mark and release the buffer. */
812	CLR(bp->b_flags, B_DONE);
813	simple_unlock(&bp->b_interlock);
814	splx(s);
815
816	brelse(bp);
817}
818
819/*
820 * Asynchronous block write; just an asynchronous bwrite().
821 */
822void
823bawrite(struct buf *bp)
824{
825	int s;
826
827	s = splbio();
828	simple_lock(&bp->b_interlock);
829
830	KASSERT(ISSET(bp->b_flags, B_BUSY));
831
832	SET(bp->b_flags, B_ASYNC);
833	simple_unlock(&bp->b_interlock);
834	splx(s);
835	VOP_BWRITE(bp);
836}
837
838/*
839 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
840 * Call at splbio() and with the buffer interlock locked.
841 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
842 */
843void
844bdirty(struct buf *bp)
845{
846	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
847	struct proc *p = l->l_proc;
848
849	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
850	KASSERT(ISSET(bp->b_flags, B_BUSY));
851
852	CLR(bp->b_flags, B_AGE);
853
854	if (!ISSET(bp->b_flags, B_DELWRI)) {
855		SET(bp->b_flags, B_DELWRI);
856		p->p_stats->p_ru.ru_oublock++;
857		reassignbuf(bp, bp->b_vp);
858	}
859}
860
861/*
862 * Release a buffer on to the free lists.
863 * Described in Bach (p. 46).
864 */
865void
866brelse(struct buf *bp)
867{
868	struct bqueue *bufq;
869	int s;
870
871	/* Block disk interrupts. */
872	s = splbio();
873	simple_lock(&bqueue_slock);
874	simple_lock(&bp->b_interlock);
875
876	KASSERT(ISSET(bp->b_flags, B_BUSY));
877	KASSERT(!ISSET(bp->b_flags, B_CALL));
878
879	/* Wake up any processes waiting for any buffer to become free. */
880	if (needbuffer) {
881		needbuffer = 0;
882		wakeup(&needbuffer);
883	}
884
885	/* Wake up any proceeses waiting for _this_ buffer to become free. */
886	if (ISSET(bp->b_flags, B_WANTED)) {
887		CLR(bp->b_flags, B_WANTED|B_AGE);
888		wakeup(bp);
889	}
890
891	/*
892	 * Determine which queue the buffer should be on, then put it there.
893	 */
894
895	/* If it's locked, don't report an error; try again later. */
896	if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
897		CLR(bp->b_flags, B_ERROR);
898
899	/* If it's not cacheable, or an error, mark it invalid. */
900	if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
901		SET(bp->b_flags, B_INVAL);
902
903	if (ISSET(bp->b_flags, B_VFLUSH)) {
904		/*
905		 * This is a delayed write buffer that was just flushed to
906		 * disk.  It is still on the LRU queue.  If it's become
907		 * invalid, then we need to move it to a different queue;
908		 * otherwise leave it in its current position.
909		 */
910		CLR(bp->b_flags, B_VFLUSH);
911		if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
912			KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
913			goto already_queued;
914		} else {
915			bremfree(bp);
916		}
917	}
918
919  KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
920  KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
921  KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
922
923	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
924		/*
925		 * If it's invalid or empty, dissociate it from its vnode
926		 * and put on the head of the appropriate queue.
927		 */
928		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
929			(*bioops.io_deallocate)(bp);
930		CLR(bp->b_flags, B_DONE|B_DELWRI);
931		if (bp->b_vp) {
932			reassignbuf(bp, bp->b_vp);
933			brelvp(bp);
934		}
935		if (bp->b_bufsize <= 0)
936			/* no data */
937			goto already_queued;
938		else
939			/* invalid data */
940			bufq = &bufqueues[BQ_AGE];
941		binsheadfree(bp, bufq);
942	} else {
943		/*
944		 * It has valid data.  Put it on the end of the appropriate
945		 * queue, so that it'll stick around for as long as possible.
946		 * If buf is AGE, but has dependencies, must put it on last
947		 * bufqueue to be scanned, ie LRU. This protects against the
948		 * livelock where BQ_AGE only has buffers with dependencies,
949		 * and we thus never get to the dependent buffers in BQ_LRU.
950		 */
951		if (ISSET(bp->b_flags, B_LOCKED))
952			/* locked in core */
953			bufq = &bufqueues[BQ_LOCKED];
954		else if (!ISSET(bp->b_flags, B_AGE))
955			/* valid data */
956			bufq = &bufqueues[BQ_LRU];
957		else {
958			/* stale but valid data */
959			int has_deps;
960
961			if (LIST_FIRST(&bp->b_dep) != NULL &&
962			    bioops.io_countdeps)
963				has_deps = (*bioops.io_countdeps)(bp, 0);
964			else
965				has_deps = 0;
966			bufq = has_deps ? &bufqueues[BQ_LRU] :
967			    &bufqueues[BQ_AGE];
968		}
969		binstailfree(bp, bufq);
970	}
971
972already_queued:
973	/* Unlock the buffer. */
974	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
975	SET(bp->b_flags, B_CACHE);
976
977	/* Allow disk interrupts. */
978	simple_unlock(&bp->b_interlock);
979	simple_unlock(&bqueue_slock);
980	if (bp->b_bufsize <= 0) {
981#ifdef DEBUG
982		memset((char *)bp, 0, sizeof(*bp));
983#endif
984		pool_put(&bufpool, bp);
985	}
986	splx(s);
987}
988
989/*
990 * Determine if a block is in the cache.
991 * Just look on what would be its hash chain.  If it's there, return
992 * a pointer to it, unless it's marked invalid.  If it's marked invalid,
993 * we normally don't return the buffer, unless the caller explicitly
994 * wants us to.
995 */
996struct buf *
997incore(struct vnode *vp, daddr_t blkno)
998{
999	struct buf *bp;
1000
1001	/* Search hash chain */
1002	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1003		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1004		    !ISSET(bp->b_flags, B_INVAL))
1005		return (bp);
1006	}
1007
1008	return (NULL);
1009}
1010
1011/*
1012 * Get a block of requested size that is associated with
1013 * a given vnode and block offset. If it is found in the
1014 * block cache, mark it as having been found, make it busy
1015 * and return it. Otherwise, return an empty block of the
1016 * correct size. It is up to the caller to insure that the
1017 * cached blocks be of the correct size.
1018 */
1019struct buf *
1020getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1021{
1022	struct buf *bp;
1023	int s, err;
1024	int preserve;
1025
1026start:
1027	s = splbio();
1028	simple_lock(&bqueue_slock);
1029	bp = incore(vp, blkno);
1030	if (bp != NULL) {
1031		simple_lock(&bp->b_interlock);
1032		if (ISSET(bp->b_flags, B_BUSY)) {
1033			simple_unlock(&bqueue_slock);
1034			if (curproc == uvm.pagedaemon_proc) {
1035				simple_unlock(&bp->b_interlock);
1036				splx(s);
1037				return NULL;
1038			}
1039			SET(bp->b_flags, B_WANTED);
1040			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1041					"getblk", slptimeo, &bp->b_interlock);
1042			splx(s);
1043			if (err)
1044				return (NULL);
1045			goto start;
1046		}
1047#ifdef DIAGNOSTIC
1048		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1049		    bp->b_bcount < size && vp->v_type != VBLK)
1050			panic("getblk: block size invariant failed");
1051#endif
1052		SET(bp->b_flags, B_BUSY);
1053		bremfree(bp);
1054		preserve = 1;
1055	} else {
1056		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1057			simple_unlock(&bqueue_slock);
1058			splx(s);
1059			goto start;
1060		}
1061
1062		binshash(bp, BUFHASH(vp, blkno));
1063		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1064		bgetvp(vp, bp);
1065		preserve = 0;
1066	}
1067	simple_unlock(&bp->b_interlock);
1068	simple_unlock(&bqueue_slock);
1069	splx(s);
1070	/*
1071	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1072	 * if we re-size buffers here.
1073	 */
1074	if (ISSET(bp->b_flags, B_LOCKED)) {
1075		KASSERT(bp->b_bufsize >= size);
1076	} else {
1077		allocbuf(bp, size, preserve);
1078	}
1079	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1080	return (bp);
1081}
1082
1083/*
1084 * Get an empty, disassociated buffer of given size.
1085 */
1086struct buf *
1087geteblk(int size)
1088{
1089	struct buf *bp;
1090	int s;
1091
1092	s = splbio();
1093	simple_lock(&bqueue_slock);
1094	while ((bp = getnewbuf(0, 0, 0)) == 0)
1095		;
1096
1097	SET(bp->b_flags, B_INVAL);
1098	binshash(bp, &invalhash);
1099	simple_unlock(&bqueue_slock);
1100	simple_unlock(&bp->b_interlock);
1101	splx(s);
1102	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1103	allocbuf(bp, size, 0);
1104	return (bp);
1105}
1106
1107/*
1108 * Expand or contract the actual memory allocated to a buffer.
1109 *
1110 * If the buffer shrinks, data is lost, so it's up to the
1111 * caller to have written it out *first*; this routine will not
1112 * start a write.  If the buffer grows, it's the callers
1113 * responsibility to fill out the buffer's additional contents.
1114 */
1115void
1116allocbuf(struct buf *bp, int size, int preserve)
1117{
1118	vsize_t oldsize, desired_size;
1119	caddr_t addr;
1120	int s, delta;
1121
1122	desired_size = buf_roundsize(size);
1123	if (desired_size > MAXBSIZE)
1124		printf("allocbuf: buffer larger than MAXBSIZE requested");
1125
1126	bp->b_bcount = size;
1127
1128	oldsize = bp->b_bufsize;
1129	if (oldsize == desired_size)
1130		return;
1131
1132	/*
1133	 * If we want a buffer of a different size, re-allocate the
1134	 * buffer's memory; copy old content only if needed.
1135	 */
1136	addr = buf_malloc(desired_size);
1137	if (preserve)
1138		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1139	if (bp->b_data != NULL)
1140		buf_mrelease(bp->b_data, oldsize);
1141	bp->b_data = addr;
1142	bp->b_bufsize = desired_size;
1143
1144	/*
1145	 * Update overall buffer memory counter (protected by bqueue_slock)
1146	 */
1147	delta = (long)desired_size - (long)oldsize;
1148
1149	s = splbio();
1150	simple_lock(&bqueue_slock);
1151	if ((bufmem += delta) > bufmem_hiwater) {
1152		/*
1153		 * Need to trim overall memory usage.
1154		 */
1155		while (buf_canrelease()) {
1156			if (buf_trim() == 0)
1157				break;
1158		}
1159	}
1160
1161	simple_unlock(&bqueue_slock);
1162	splx(s);
1163}
1164
1165/*
1166 * Find a buffer which is available for use.
1167 * Select something from a free list.
1168 * Preference is to AGE list, then LRU list.
1169 *
1170 * Called at splbio and with buffer queues locked.
1171 * Return buffer locked.
1172 */
1173struct buf *
1174getnewbuf(int slpflag, int slptimeo, int from_bufq)
1175{
1176	struct buf *bp;
1177
1178start:
1179	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1180
1181	/*
1182	 * Get a new buffer from the pool; but use NOWAIT because
1183	 * we have the buffer queues locked.
1184	 */
1185	if (!from_bufq && buf_lotsfree() &&
1186	    (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1187		memset((char *)bp, 0, sizeof(*bp));
1188		BUF_INIT(bp);
1189		bp->b_dev = NODEV;
1190		bp->b_vnbufs.le_next = NOLIST;
1191		bp->b_flags = B_BUSY;
1192		simple_lock(&bp->b_interlock);
1193#if defined(DIAGNOSTIC)
1194		bp->b_freelistindex = -1;
1195#endif /* defined(DIAGNOSTIC) */
1196		return (bp);
1197	}
1198
1199	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1200	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1201		simple_lock(&bp->b_interlock);
1202		bremfree(bp);
1203	} else {
1204		/* wait for a free buffer of any kind */
1205		needbuffer = 1;
1206		ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1207			"getnewbuf", slptimeo, &bqueue_slock);
1208		return (NULL);
1209	}
1210
1211#ifdef DIAGNOSTIC
1212	if (bp->b_bufsize <= 0)
1213		panic("buffer %p: on queue but empty", bp);
1214#endif
1215
1216	if (ISSET(bp->b_flags, B_VFLUSH)) {
1217		/*
1218		 * This is a delayed write buffer being flushed to disk.  Make
1219		 * sure it gets aged out of the queue when it's finished, and
1220		 * leave it off the LRU queue.
1221		 */
1222		CLR(bp->b_flags, B_VFLUSH);
1223		SET(bp->b_flags, B_AGE);
1224		simple_unlock(&bp->b_interlock);
1225		goto start;
1226	}
1227
1228	/* Buffer is no longer on free lists. */
1229	SET(bp->b_flags, B_BUSY);
1230
1231	/*
1232	 * If buffer was a delayed write, start it and return NULL
1233	 * (since we might sleep while starting the write).
1234	 */
1235	if (ISSET(bp->b_flags, B_DELWRI)) {
1236		/*
1237		 * This buffer has gone through the LRU, so make sure it gets
1238		 * reused ASAP.
1239		 */
1240		SET(bp->b_flags, B_AGE);
1241		simple_unlock(&bp->b_interlock);
1242		simple_unlock(&bqueue_slock);
1243		bawrite(bp);
1244		simple_lock(&bqueue_slock);
1245		return (NULL);
1246	}
1247
1248	/* disassociate us from our vnode, if we had one... */
1249	if (bp->b_vp)
1250		brelvp(bp);
1251
1252	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1253		(*bioops.io_deallocate)(bp);
1254
1255	/* clear out various other fields */
1256	bp->b_flags = B_BUSY;
1257	bp->b_dev = NODEV;
1258	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1259	bp->b_iodone = 0;
1260	bp->b_error = 0;
1261	bp->b_resid = 0;
1262	bp->b_bcount = 0;
1263
1264	bremhash(bp);
1265	return (bp);
1266}
1267
1268/*
1269 * Attempt to free an aged buffer off the queues.
1270 * Called at splbio and with queue lock held.
1271 * Returns the amount of buffer memory freed.
1272 */
1273static int
1274buf_trim(void)
1275{
1276	struct buf *bp;
1277	long size = 0;
1278
1279	/* Instruct getnewbuf() to get buffers off the queues */
1280	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1281		return 0;
1282
1283	KASSERT(!ISSET(bp->b_flags, B_WANTED));
1284	simple_unlock(&bp->b_interlock);
1285	size = bp->b_bufsize;
1286	bufmem -= size;
1287	simple_unlock(&bqueue_slock);
1288	if (size > 0) {
1289		buf_mrelease(bp->b_data, size);
1290		bp->b_bcount = bp->b_bufsize = 0;
1291	}
1292	/* brelse() will return the buffer to the global buffer pool */
1293	brelse(bp);
1294	simple_lock(&bqueue_slock);
1295	return size;
1296}
1297
1298int
1299buf_drain(int n)
1300{
1301	int s, size = 0;
1302
1303	s = splbio();
1304	simple_lock(&bqueue_slock);
1305
1306	/* If not asked for a specific amount, make our own estimate */
1307	if (n == 0)
1308		n = buf_canrelease();
1309
1310	while (size < n && bufmem > bufmem_lowater)
1311		size += buf_trim();
1312
1313	simple_unlock(&bqueue_slock);
1314	splx(s);
1315	return size;
1316}
1317
1318/*
1319 * Wait for operations on the buffer to complete.
1320 * When they do, extract and return the I/O's error value.
1321 */
1322int
1323biowait(struct buf *bp)
1324{
1325	int s, error;
1326
1327	s = splbio();
1328	simple_lock(&bp->b_interlock);
1329	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1330		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1331
1332	/* check for interruption of I/O (e.g. via NFS), then errors. */
1333	if (ISSET(bp->b_flags, B_EINTR)) {
1334		CLR(bp->b_flags, B_EINTR);
1335		error = EINTR;
1336	} else if (ISSET(bp->b_flags, B_ERROR))
1337		error = bp->b_error ? bp->b_error : EIO;
1338	else
1339		error = 0;
1340
1341	simple_unlock(&bp->b_interlock);
1342	splx(s);
1343	return (error);
1344}
1345
1346/*
1347 * Mark I/O complete on a buffer.
1348 *
1349 * If a callback has been requested, e.g. the pageout
1350 * daemon, do so. Otherwise, awaken waiting processes.
1351 *
1352 * [ Leffler, et al., says on p.247:
1353 *	"This routine wakes up the blocked process, frees the buffer
1354 *	for an asynchronous write, or, for a request by the pagedaemon
1355 *	process, invokes a procedure specified in the buffer structure" ]
1356 *
1357 * In real life, the pagedaemon (or other system processes) wants
1358 * to do async stuff to, and doesn't want the buffer brelse()'d.
1359 * (for swap pager, that puts swap buffers on the free lists (!!!),
1360 * for the vn device, that puts malloc'd buffers on the free lists!)
1361 */
1362void
1363biodone(struct buf *bp)
1364{
1365	int s = splbio();
1366
1367	simple_lock(&bp->b_interlock);
1368	if (ISSET(bp->b_flags, B_DONE))
1369		panic("biodone already");
1370	SET(bp->b_flags, B_DONE);		/* note that it's done */
1371	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1372
1373	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1374		(*bioops.io_complete)(bp);
1375
1376	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
1377		vwakeup(bp);
1378
1379	/*
1380	 * If necessary, call out.  Unlock the buffer before calling
1381	 * iodone() as the buffer isn't valid any more when it return.
1382	 */
1383	if (ISSET(bp->b_flags, B_CALL)) {
1384		CLR(bp->b_flags, B_CALL);	/* but note callout done */
1385		simple_unlock(&bp->b_interlock);
1386		(*bp->b_iodone)(bp);
1387	} else {
1388		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
1389			simple_unlock(&bp->b_interlock);
1390			brelse(bp);
1391		} else {			/* or just wakeup the buffer */
1392			CLR(bp->b_flags, B_WANTED);
1393			wakeup(bp);
1394			simple_unlock(&bp->b_interlock);
1395		}
1396	}
1397
1398	splx(s);
1399}
1400
1401/*
1402 * Return a count of buffers on the "locked" queue.
1403 */
1404int
1405count_lock_queue(void)
1406{
1407	struct buf *bp;
1408	int n = 0;
1409
1410	simple_lock(&bqueue_slock);
1411	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1412		n++;
1413	simple_unlock(&bqueue_slock);
1414	return (n);
1415}
1416
1417/*
1418 * Wait for all buffers to complete I/O
1419 * Return the number of "stuck" buffers.
1420 */
1421int
1422buf_syncwait(void)
1423{
1424	struct buf *bp;
1425	int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1426
1427	dcount = 10000;
1428	for (iter = 0; iter < 20;) {
1429		s = splbio();
1430		simple_lock(&bqueue_slock);
1431		nbusy = 0;
1432		for (ihash = 0; ihash < bufhash+1; ihash++) {
1433		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1434			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1435				nbusy++;
1436			/*
1437			 * With soft updates, some buffers that are
1438			 * written will be remarked as dirty until other
1439			 * buffers are written.
1440			 */
1441			if (bp->b_vp && bp->b_vp->v_mount
1442			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1443			    && (bp->b_flags & B_DELWRI)) {
1444				simple_lock(&bp->b_interlock);
1445				bremfree(bp);
1446				bp->b_flags |= B_BUSY;
1447				nbusy++;
1448				simple_unlock(&bp->b_interlock);
1449				simple_unlock(&bqueue_slock);
1450				bawrite(bp);
1451				if (dcount-- <= 0) {
1452					printf("softdep ");
1453					goto fail;
1454				}
1455				simple_lock(&bqueue_slock);
1456			}
1457		    }
1458		}
1459
1460		simple_unlock(&bqueue_slock);
1461		splx(s);
1462
1463		if (nbusy == 0)
1464			break;
1465		if (nbusy_prev == 0)
1466			nbusy_prev = nbusy;
1467		printf("%d ", nbusy);
1468		tsleep(&nbusy, PRIBIO, "bflush",
1469		    (iter == 0) ? 1 : hz / 25 * iter);
1470		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1471			iter++;
1472		else
1473			nbusy_prev = nbusy;
1474	}
1475
1476	if (nbusy) {
1477fail:;
1478#if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1479		printf("giving up\nPrinting vnodes for busy buffers\n");
1480		for (ihash = 0; ihash < bufhash+1; ihash++) {
1481		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1482			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1483				vprint(NULL, bp->b_vp);
1484		    }
1485		}
1486#endif
1487	}
1488
1489	return nbusy;
1490}
1491
1492static void
1493sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1494{
1495
1496	o->b_flags = i->b_flags;
1497	o->b_error = i->b_error;
1498	o->b_prio = i->b_prio;
1499	o->b_dev = i->b_dev;
1500	o->b_bufsize = i->b_bufsize;
1501	o->b_bcount = i->b_bcount;
1502	o->b_resid = i->b_resid;
1503	o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1504	o->b_blkno = i->b_blkno;
1505	o->b_rawblkno = i->b_rawblkno;
1506	o->b_iodone = PTRTOUINT64(i->b_iodone);
1507	o->b_proc = PTRTOUINT64(i->b_proc);
1508	o->b_vp = PTRTOUINT64(i->b_vp);
1509	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1510	o->b_lblkno = i->b_lblkno;
1511}
1512
1513#define KERN_BUFSLOP 20
1514static int
1515sysctl_dobuf(SYSCTLFN_ARGS)
1516{
1517	struct buf *bp;
1518	struct buf_sysctl bs;
1519	char *dp;
1520	u_int i, op, arg;
1521	size_t len, needed, elem_size, out_size;
1522	int error, s, elem_count;
1523
1524	if (namelen == 1 && name[0] == CTL_QUERY)
1525		return (sysctl_query(SYSCTLFN_CALL(rnode)));
1526
1527	if (namelen != 4)
1528		return (EINVAL);
1529
1530	dp = oldp;
1531	len = (oldp != NULL) ? *oldlenp : 0;
1532	op = name[0];
1533	arg = name[1];
1534	elem_size = name[2];
1535	elem_count = name[3];
1536	out_size = MIN(sizeof(bs), elem_size);
1537
1538	/*
1539	 * at the moment, these are just "placeholders" to make the
1540	 * API for retrieving kern.buf data more extensible in the
1541	 * future.
1542	 *
1543	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1544	 * these will be resolved at a later point.
1545	 */
1546	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1547	    elem_size < 1 || elem_count < 0)
1548		return (EINVAL);
1549
1550	error = 0;
1551	needed = 0;
1552	s = splbio();
1553	simple_lock(&bqueue_slock);
1554	for (i = 0; i < BQUEUES; i++) {
1555		TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
1556			if (len >= elem_size && elem_count > 0) {
1557				sysctl_fillbuf(bp, &bs);
1558				error = copyout(&bs, dp, out_size);
1559				if (error)
1560					goto cleanup;
1561				dp += elem_size;
1562				len -= elem_size;
1563			}
1564			if (elem_count > 0) {
1565				needed += elem_size;
1566				if (elem_count != INT_MAX)
1567					elem_count--;
1568			}
1569		}
1570	}
1571cleanup:
1572	simple_unlock(&bqueue_slock);
1573	splx(s);
1574
1575	*oldlenp = needed;
1576	if (oldp == NULL)
1577		*oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1578
1579	return (error);
1580}
1581
1582static int
1583sysctl_bufvm_update(SYSCTLFN_ARGS)
1584{
1585	int t, error;
1586	struct sysctlnode node;
1587
1588	node = *rnode;
1589	node.sysctl_data = &t;
1590	t = *(int*)rnode->sysctl_data;
1591	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1592	if (error || newp == NULL)
1593		return (error);
1594
1595	if (rnode->sysctl_data == &bufcache) {
1596		if (t < 0 || t > 100)
1597			return (EINVAL);
1598		bufcache = t;
1599		bufmem_hiwater = buf_memcalc();
1600		bufmem_lowater = (bufmem_hiwater >> 3);
1601		if (bufmem_lowater < 64 * 1024)
1602			/* Ensure a reasonable minimum value */
1603			bufmem_lowater = 64 * 1024;
1604
1605	} else if (rnode->sysctl_data == &bufmem_lowater) {
1606		bufmem_lowater = t;
1607	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1608		bufmem_hiwater = t;
1609	} else
1610		return (EINVAL);
1611
1612	/* Drain until below new high water mark */
1613	while ((t = bufmem - bufmem_hiwater) >= 0) {
1614		if (buf_drain(t / (2*1024)) <= 0)
1615			break;
1616	}
1617
1618	return 0;
1619}
1620
1621SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1622{
1623
1624	sysctl_createv(clog, 0, NULL, NULL,
1625		       CTLFLAG_PERMANENT,
1626		       CTLTYPE_NODE, "kern", NULL,
1627		       NULL, 0, NULL, 0,
1628		       CTL_KERN, CTL_EOL);
1629	sysctl_createv(clog, 0, NULL, NULL,
1630		       CTLFLAG_PERMANENT,
1631		       CTLTYPE_NODE, "buf",
1632		       SYSCTL_DESCR("Kernel buffer cache information"),
1633		       sysctl_dobuf, 0, NULL, 0,
1634		       CTL_KERN, KERN_BUF, CTL_EOL);
1635}
1636
1637SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1638{
1639
1640	sysctl_createv(clog, 0, NULL, NULL,
1641		       CTLFLAG_PERMANENT,
1642		       CTLTYPE_NODE, "vm", NULL,
1643		       NULL, 0, NULL, 0,
1644		       CTL_VM, CTL_EOL);
1645
1646	sysctl_createv(clog, 0, NULL, NULL,
1647		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1648		       CTLTYPE_INT, "bufcache",
1649		       SYSCTL_DESCR("Percentage of kernel memory to use for "
1650				    "buffer cache"),
1651		       sysctl_bufvm_update, 0, &bufcache, 0,
1652		       CTL_VM, CTL_CREATE, CTL_EOL);
1653	sysctl_createv(clog, 0, NULL, NULL,
1654		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1655		       CTLTYPE_INT, "bufmem",
1656		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
1657				    "cache"),
1658		       NULL, 0, &bufmem, 0,
1659		       CTL_VM, CTL_CREATE, CTL_EOL);
1660	sysctl_createv(clog, 0, NULL, NULL,
1661		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1662		       CTLTYPE_INT, "bufmem_lowater",
1663		       SYSCTL_DESCR("Minimum amount of kernel memory to "
1664				    "reserve for buffer cache"),
1665		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1666		       CTL_VM, CTL_CREATE, CTL_EOL);
1667	sysctl_createv(clog, 0, NULL, NULL,
1668		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1669		       CTLTYPE_INT, "bufmem_hiwater",
1670		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
1671				    "for buffer cache"),
1672		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1673		       CTL_VM, CTL_CREATE, CTL_EOL);
1674}
1675
1676#ifdef DEBUG
1677/*
1678 * Print out statistics on the current allocation of the buffer pool.
1679 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1680 * in vfs_syscalls.c using sysctl.
1681 */
1682void
1683vfs_bufstats(void)
1684{
1685	int s, i, j, count;
1686	struct buf *bp;
1687	struct bqueue *dp;
1688	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1689	static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1690
1691	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1692		count = 0;
1693		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1694			counts[j] = 0;
1695		s = splbio();
1696		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1697			counts[bp->b_bufsize/PAGE_SIZE]++;
1698			count++;
1699		}
1700		splx(s);
1701		printf("%s: total-%d", bname[i], count);
1702		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1703			if (counts[j] != 0)
1704				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1705		printf("\n");
1706	}
1707}
1708#endif /* DEBUG */
1709