vfs_bio.c revision 1.120
1/*	$NetBSD: vfs_bio.c,v 1.120 2004/03/25 08:22:31 simonb Exp $	*/
2
3/*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
37 */
38
39/*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 *    notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in the
49 *    documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 *    must display the following acknowledgement:
52 *	This product includes software developed by the University of
53 *	California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 *    may be used to endorse or promote products derived from this software
56 *    without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
71 */
72
73/*
74 * Some references:
75 *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 *	Leffler, et al.: The Design and Implementation of the 4.3BSD
77 *		UNIX Operating System (Addison Welley, 1989)
78 */
79
80#include "opt_bufcache.h"
81#include "opt_softdep.h"
82
83#include <sys/cdefs.h>
84__KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.120 2004/03/25 08:22:31 simonb Exp $");
85
86#include <sys/param.h>
87#include <sys/systm.h>
88#include <sys/kernel.h>
89#include <sys/proc.h>
90#include <sys/buf.h>
91#include <sys/vnode.h>
92#include <sys/mount.h>
93#include <sys/malloc.h>
94#include <sys/resourcevar.h>
95#include <sys/sysctl.h>
96#include <sys/conf.h>
97
98#include <uvm/uvm.h>
99
100#include <miscfs/specfs/specdev.h>
101
102#ifndef	BUFPAGES
103# define BUFPAGES 0
104#endif
105
106#ifdef BUFCACHE
107# if (BUFCACHE < 5) || (BUFCACHE > 95)
108#  error BUFCACHE is not between 5 and 95
109# endif
110#else
111# define BUFCACHE 15
112#endif
113
114u_int	nbuf;			/* XXX - for softdep_lockedbufs */
115u_int	bufpages = BUFPAGES;	/* optional hardwired count */
116u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
117
118
119/* Macros to clear/set/test flags. */
120#define	SET(t, f)	(t) |= (f)
121#define	CLR(t, f)	(t) &= ~(f)
122#define	ISSET(t, f)	((t) & (f))
123
124/*
125 * Definitions for the buffer hash lists.
126 */
127#define	BUFHASH(dvp, lbn)	\
128	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
129LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
130u_long	bufhash;
131#ifndef SOFTDEP
132struct bio_ops bioops;	/* I/O operation notification */
133#endif
134
135/*
136 * Insq/Remq for the buffer hash lists.
137 */
138#define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
139#define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
140
141/*
142 * Definitions for the buffer free lists.
143 */
144#define	BQUEUES		3		/* number of free buffer queues */
145
146#define	BQ_LOCKED	0		/* super-blocks &c */
147#define	BQ_LRU		1		/* lru, useful buffers */
148#define	BQ_AGE		2		/* rubbish */
149
150TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
151int needbuffer;
152
153/*
154 * Buffer queue lock.
155 * Take this lock first if also taking some buffer's b_interlock.
156 */
157struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
158
159/*
160 * Buffer pool for I/O buffers.
161 */
162struct pool bufpool;
163
164/* XXX - somewhat gross.. */
165#if MAXBSIZE == 0x2000
166#define NMEMPOOLS 4
167#elif MAXBSIZE == 0x4000
168#define NMEMPOOLS 5
169#elif MAXBSIZE == 0x8000
170#define NMEMPOOLS 6
171#else
172#define NMEMPOOLS 7
173#endif
174
175#define MEMPOOL_INDEX_OFFSET 10		/* smallest pool is 1k */
176#if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
177#error update vfs_bio buffer memory parameters
178#endif
179
180/* Buffer memory pools */
181static struct pool bmempools[NMEMPOOLS];
182
183struct vm_map *buf_map;
184
185/*
186 * Buffer memory pool allocator.
187 */
188static void *
189bufpool_page_alloc(struct pool *pp, int flags)
190{
191
192	return (void *)uvm_km_kmemalloc1(buf_map,
193	    uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET,
194	    (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
195}
196
197static void
198bufpool_page_free(struct pool *pp, void *v)
199{
200	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE);
201}
202
203static struct pool_allocator bufmempool_allocator = {
204	bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
205};
206
207/* Buffer memory management variables */
208u_long bufmem_valimit;
209u_long bufmem_hiwater;
210u_long bufmem_lowater;
211u_long bufmem;
212
213/*
214 * MD code can call this to set a hard limit on the amount
215 * of virtual memory used by the buffer cache.
216 */
217int
218buf_setvalimit(vsize_t sz)
219{
220
221	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
222	if (sz < NMEMPOOLS * MAXBSIZE)
223		return EINVAL;
224
225	bufmem_valimit = sz;
226	return 0;
227}
228
229static int buf_trim(void);
230
231/*
232 * bread()/breadn() helper.
233 */
234static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
235					struct ucred *, int);
236int count_lock_queue(void);
237
238/*
239 * Insq/Remq for the buffer free lists.
240 * Call with buffer queue locked.
241 */
242#define	binsheadfree(bp, dp)	TAILQ_INSERT_HEAD(dp, bp, b_freelist)
243#define	binstailfree(bp, dp)	TAILQ_INSERT_TAIL(dp, bp, b_freelist)
244
245#ifdef DEBUG
246int debug_verify_freelist = 0;
247static int checkfreelist(struct buf *bp, struct bqueues *dp)
248{
249	struct buf *b;
250	TAILQ_FOREACH(b, dp, b_freelist) {
251		if (b == bp)
252			return 1;
253	}
254	return 0;
255}
256#endif
257
258void
259bremfree(struct buf *bp)
260{
261	struct bqueues *dp = NULL;
262
263	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
264
265	KDASSERT(!debug_verify_freelist ||
266		checkfreelist(bp, &bufqueues[BQ_AGE]) ||
267		checkfreelist(bp, &bufqueues[BQ_LRU]) ||
268		checkfreelist(bp, &bufqueues[BQ_LOCKED]) );
269
270	/*
271	 * We only calculate the head of the freelist when removing
272	 * the last element of the list as that is the only time that
273	 * it is needed (e.g. to reset the tail pointer).
274	 *
275	 * NB: This makes an assumption about how tailq's are implemented.
276	 *
277	 * We break the TAILQ abstraction in order to efficiently remove a
278	 * buffer from its freelist without having to know exactly which
279	 * freelist it is on.
280	 */
281	if (TAILQ_NEXT(bp, b_freelist) == NULL) {
282		for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
283			if (dp->tqh_last == &bp->b_freelist.tqe_next)
284				break;
285		if (dp == &bufqueues[BQUEUES])
286			panic("bremfree: lost tail");
287	}
288	TAILQ_REMOVE(dp, bp, b_freelist);
289}
290
291u_long
292buf_memcalc(void)
293{
294	u_long n;
295
296	/*
297	 * Determine the upper bound of memory to use for buffers.
298	 *
299	 *	- If bufpages is specified, use that as the number
300	 *	  pages.
301	 *
302	 *	- Otherwise, use bufcache as the percentage of
303	 *	  physical memory.
304	 */
305	if (bufpages != 0) {
306		n = bufpages;
307	} else {
308		if (bufcache < 5) {
309			printf("forcing bufcache %d -> 5", bufcache);
310			bufcache = 5;
311		}
312		if (bufcache > 95) {
313			printf("forcing bufcache %d -> 95", bufcache);
314			bufcache = 95;
315		}
316		n = physmem / 100 * bufcache;
317	}
318
319	n <<= PAGE_SHIFT;
320	if (bufmem_valimit != 0 && n > bufmem_valimit)
321		n = bufmem_valimit;
322
323	return (n);
324}
325
326/*
327 * Initialize buffers and hash links for buffers.
328 */
329void
330bufinit(void)
331{
332	struct bqueues *dp;
333	int smallmem;
334	u_int i;
335
336	/*
337	 * Initialize buffer cache memory parameters.
338	 */
339	bufmem = 0;
340	bufmem_hiwater = buf_memcalc();
341	/* lowater is approx. 2% of memory (with bufcache=15) */
342	bufmem_lowater = (bufmem_hiwater >> 3);
343	if (bufmem_lowater < 64 * 1024)
344		/* Ensure a reasonable minimum value */
345		bufmem_lowater = 64 * 1024;
346
347	if (bufmem_valimit != 0) {
348		vaddr_t minaddr = 0, maxaddr;
349		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
350					  bufmem_valimit, VM_MAP_PAGEABLE,
351					  FALSE, 0);
352		if (buf_map == NULL)
353			panic("bufinit: cannot allocate submap");
354	} else
355		buf_map = kernel_map;
356
357	/*
358	 * Initialize the buffer pools.
359	 */
360	pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
361
362	/* On "small" machines use small pool page sizes where possible */
363	smallmem = (physmem < atop(16*1024*1024));
364
365	for (i = 0; i < NMEMPOOLS; i++) {
366		struct pool_allocator *pa;
367		struct pool *pp = &bmempools[i];
368		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
369		char *name = malloc(8, M_TEMP, M_WAITOK);
370		snprintf(name, 8, "buf%dk", 1 << i);
371		pa = (size <= PAGE_SIZE && smallmem)
372			? &pool_allocator_nointr
373			: &bufmempool_allocator;
374		pool_init(pp, size, 0, 0, PR_IMMEDRELEASE, name, pa);
375		pool_setlowat(pp, 1);
376	}
377
378	/* Initialize the buffer queues */
379	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
380		TAILQ_INIT(dp);
381
382	/*
383	 * Estimate hash table size based on the amount of memory we
384	 * intend to use for the buffer cache. The average buffer
385	 * size is dependent on our clients (i.e. filesystems).
386	 *
387	 * For now, use an empirical 3K per buffer.
388	 */
389	nbuf = (bufmem_hiwater / 1024) / 3;
390	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
391}
392
393static int
394buf_lotsfree(void)
395{
396	int try, thresh;
397
398	if (bufmem < bufmem_lowater) {
399		return 1;
400	}
401
402	/* If there's anything on the AGE list, it should be eaten. */
403
404	if (TAILQ_FIRST(&bufqueues[BQ_AGE]) != NULL)
405		return 0;
406
407	try = random() & 0x0000000fL;
408
409	thresh = (16 * bufmem) / bufmem_hiwater;
410
411	if ((try > thresh) && (uvmexp.free > ( 2 * uvmexp.freetarg))) {
412		return 1;
413	}
414
415	return 0;
416}
417
418/*
419 * Return estimate of bytes we think need to be
420 * released to help resolve low memory conditions.
421 *
422 * => called at splbio.
423 * => called with bqueue_slock held.
424 */
425static int
426buf_canrelease(void)
427{
428	int pagedemand, ninvalid = 0;
429	struct buf *bp;
430
431	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
432
433	if (bufmem < bufmem_lowater)
434		return 0;
435
436	TAILQ_FOREACH(bp, &bufqueues[BQ_AGE], b_freelist)
437		ninvalid += bp->b_bufsize;
438
439	pagedemand = uvmexp.freetarg - uvmexp.free;
440	if (pagedemand < 0)
441		return ninvalid;
442	return MAX(ninvalid, MIN(2 * MAXBSIZE,
443	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
444}
445
446/*
447 * Buffer memory allocation helper functions
448 */
449static __inline u_long
450buf_mempoolidx(u_long size)
451{
452	u_int n = 0;
453
454	size -= 1;
455	size >>= MEMPOOL_INDEX_OFFSET;
456	while (size) {
457		size >>= 1;
458		n += 1;
459	}
460	if (n >= NMEMPOOLS)
461		panic("buf mem pool index %d", n);
462	return n;
463}
464
465static __inline u_long
466buf_roundsize(u_long size)
467{
468	/* Round up to nearest power of 2 */
469	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
470}
471
472static __inline caddr_t
473buf_malloc(size_t size)
474{
475	u_int n = buf_mempoolidx(size);
476	caddr_t addr;
477	int s;
478
479	while (1) {
480		addr = pool_get(&bmempools[n], PR_NOWAIT);
481		if (addr != NULL)
482			break;
483
484		/* No memory, see if we can free some. If so, try again */
485		if (buf_drain(1) > 0)
486			continue;
487
488		/* Wait for buffers to arrive on the LRU queue */
489		s = splbio();
490		simple_lock(&bqueue_slock);
491		needbuffer = 1;
492		ltsleep(&needbuffer, PNORELOCK | (PRIBIO+1),
493			"buf_malloc", 0, &bqueue_slock);
494		splx(s);
495	}
496
497	return addr;
498}
499
500static void
501buf_mrelease(caddr_t addr, size_t size)
502{
503
504	pool_put(&bmempools[buf_mempoolidx(size)], addr);
505}
506
507
508static __inline struct buf *
509bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
510    int async)
511{
512	struct buf *bp;
513	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
514	struct proc *p = l->l_proc;
515
516	bp = getblk(vp, blkno, size, 0, 0);
517
518#ifdef DIAGNOSTIC
519	if (bp == NULL) {
520		panic("bio_doread: no such buf");
521	}
522#endif
523
524	/*
525	 * If buffer does not have data valid, start a read.
526	 * Note that if buffer is B_INVAL, getblk() won't return it.
527	 * Therefore, it's valid if its I/O has completed or been delayed.
528	 */
529	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
530		/* Start I/O for the buffer. */
531		SET(bp->b_flags, B_READ | async);
532		if (async)
533			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
534		else
535			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
536		VOP_STRATEGY(vp, bp);
537
538		/* Pay for the read. */
539		p->p_stats->p_ru.ru_inblock++;
540	} else if (async) {
541		brelse(bp);
542	}
543
544	return (bp);
545}
546
547/*
548 * Read a disk block.
549 * This algorithm described in Bach (p.54).
550 */
551int
552bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
553    struct buf **bpp)
554{
555	struct buf *bp;
556
557	/* Get buffer for block. */
558	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
559
560	/* Wait for the read to complete, and return result. */
561	return (biowait(bp));
562}
563
564/*
565 * Read-ahead multiple disk blocks. The first is sync, the rest async.
566 * Trivial modification to the breada algorithm presented in Bach (p.55).
567 */
568int
569breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
570    int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
571{
572	struct buf *bp;
573	int i;
574
575	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
576
577	/*
578	 * For each of the read-ahead blocks, start a read, if necessary.
579	 */
580	for (i = 0; i < nrablks; i++) {
581		/* If it's in the cache, just go on to next one. */
582		if (incore(vp, rablks[i]))
583			continue;
584
585		/* Get a buffer for the read-ahead block */
586		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
587	}
588
589	/* Otherwise, we had to start a read for it; wait until it's valid. */
590	return (biowait(bp));
591}
592
593/*
594 * Read with single-block read-ahead.  Defined in Bach (p.55), but
595 * implemented as a call to breadn().
596 * XXX for compatibility with old file systems.
597 */
598int
599breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
600    int rabsize, struct ucred *cred, struct buf **bpp)
601{
602
603	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
604}
605
606/*
607 * Block write.  Described in Bach (p.56)
608 */
609int
610bwrite(struct buf *bp)
611{
612	int rv, sync, wasdelayed, s;
613	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
614	struct proc *p = l->l_proc;
615	struct vnode *vp;
616	struct mount *mp;
617
618	KASSERT(ISSET(bp->b_flags, B_BUSY));
619
620	vp = bp->b_vp;
621	if (vp != NULL) {
622		if (vp->v_type == VBLK)
623			mp = vp->v_specmountpoint;
624		else
625			mp = vp->v_mount;
626	} else {
627		mp = NULL;
628	}
629
630	/*
631	 * Remember buffer type, to switch on it later.  If the write was
632	 * synchronous, but the file system was mounted with MNT_ASYNC,
633	 * convert it to a delayed write.
634	 * XXX note that this relies on delayed tape writes being converted
635	 * to async, not sync writes (which is safe, but ugly).
636	 */
637	sync = !ISSET(bp->b_flags, B_ASYNC);
638	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
639		bdwrite(bp);
640		return (0);
641	}
642
643	/*
644	 * Collect statistics on synchronous and asynchronous writes.
645	 * Writes to block devices are charged to their associated
646	 * filesystem (if any).
647	 */
648	if (mp != NULL) {
649		if (sync)
650			mp->mnt_stat.f_syncwrites++;
651		else
652			mp->mnt_stat.f_asyncwrites++;
653	}
654
655	s = splbio();
656	simple_lock(&bp->b_interlock);
657
658	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
659
660	CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
661
662	/*
663	 * Pay for the I/O operation and make sure the buf is on the correct
664	 * vnode queue.
665	 */
666	if (wasdelayed)
667		reassignbuf(bp, bp->b_vp);
668	else
669		p->p_stats->p_ru.ru_oublock++;
670
671	/* Initiate disk write.  Make sure the appropriate party is charged. */
672	V_INCR_NUMOUTPUT(bp->b_vp);
673	simple_unlock(&bp->b_interlock);
674	splx(s);
675
676	if (sync)
677		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
678	else
679		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
680
681	VOP_STRATEGY(vp, bp);
682
683	if (sync) {
684		/* If I/O was synchronous, wait for it to complete. */
685		rv = biowait(bp);
686
687		/* Release the buffer. */
688		brelse(bp);
689
690		return (rv);
691	} else {
692		return (0);
693	}
694}
695
696int
697vn_bwrite(void *v)
698{
699	struct vop_bwrite_args *ap = v;
700
701	return (bwrite(ap->a_bp));
702}
703
704/*
705 * Delayed write.
706 *
707 * The buffer is marked dirty, but is not queued for I/O.
708 * This routine should be used when the buffer is expected
709 * to be modified again soon, typically a small write that
710 * partially fills a buffer.
711 *
712 * NB: magnetic tapes cannot be delayed; they must be
713 * written in the order that the writes are requested.
714 *
715 * Described in Leffler, et al. (pp. 208-213).
716 */
717void
718bdwrite(struct buf *bp)
719{
720	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
721	struct proc *p = l->l_proc;
722	const struct bdevsw *bdev;
723	int s;
724
725	/* If this is a tape block, write the block now. */
726	bdev = bdevsw_lookup(bp->b_dev);
727	if (bdev != NULL && bdev->d_type == D_TAPE) {
728		bawrite(bp);
729		return;
730	}
731
732	/*
733	 * If the block hasn't been seen before:
734	 *	(1) Mark it as having been seen,
735	 *	(2) Charge for the write,
736	 *	(3) Make sure it's on its vnode's correct block list.
737	 */
738	s = splbio();
739	simple_lock(&bp->b_interlock);
740
741	KASSERT(ISSET(bp->b_flags, B_BUSY));
742
743	if (!ISSET(bp->b_flags, B_DELWRI)) {
744		SET(bp->b_flags, B_DELWRI);
745		p->p_stats->p_ru.ru_oublock++;
746		reassignbuf(bp, bp->b_vp);
747	}
748
749	/* Otherwise, the "write" is done, so mark and release the buffer. */
750	CLR(bp->b_flags, B_DONE);
751	simple_unlock(&bp->b_interlock);
752	splx(s);
753
754	brelse(bp);
755}
756
757/*
758 * Asynchronous block write; just an asynchronous bwrite().
759 */
760void
761bawrite(struct buf *bp)
762{
763	int s;
764
765	s = splbio();
766	simple_lock(&bp->b_interlock);
767
768	KASSERT(ISSET(bp->b_flags, B_BUSY));
769
770	SET(bp->b_flags, B_ASYNC);
771	simple_unlock(&bp->b_interlock);
772	splx(s);
773	VOP_BWRITE(bp);
774}
775
776/*
777 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
778 * Call at splbio() and with the buffer interlock locked.
779 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
780 */
781void
782bdirty(struct buf *bp)
783{
784	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
785	struct proc *p = l->l_proc;
786
787	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
788	KASSERT(ISSET(bp->b_flags, B_BUSY));
789
790	CLR(bp->b_flags, B_AGE);
791
792	if (!ISSET(bp->b_flags, B_DELWRI)) {
793		SET(bp->b_flags, B_DELWRI);
794		p->p_stats->p_ru.ru_oublock++;
795		reassignbuf(bp, bp->b_vp);
796	}
797}
798
799/*
800 * Release a buffer on to the free lists.
801 * Described in Bach (p. 46).
802 */
803void
804brelse(struct buf *bp)
805{
806	struct bqueues *bufq;
807	int s;
808
809	/* Block disk interrupts. */
810	s = splbio();
811	simple_lock(&bqueue_slock);
812	simple_lock(&bp->b_interlock);
813
814	KASSERT(ISSET(bp->b_flags, B_BUSY));
815	KASSERT(!ISSET(bp->b_flags, B_CALL));
816
817	/* Wake up any processes waiting for any buffer to become free. */
818	if (needbuffer) {
819		needbuffer = 0;
820		wakeup(&needbuffer);
821	}
822
823	/* Wake up any proceeses waiting for _this_ buffer to become free. */
824	if (ISSET(bp->b_flags, B_WANTED)) {
825		CLR(bp->b_flags, B_WANTED|B_AGE);
826		wakeup(bp);
827	}
828
829	/*
830	 * Determine which queue the buffer should be on, then put it there.
831	 */
832
833	/* If it's locked, don't report an error; try again later. */
834	if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
835		CLR(bp->b_flags, B_ERROR);
836
837	/* If it's not cacheable, or an error, mark it invalid. */
838	if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
839		SET(bp->b_flags, B_INVAL);
840
841	if (ISSET(bp->b_flags, B_VFLUSH)) {
842		/*
843		 * This is a delayed write buffer that was just flushed to
844		 * disk.  It is still on the LRU queue.  If it's become
845		 * invalid, then we need to move it to a different queue;
846		 * otherwise leave it in its current position.
847		 */
848		CLR(bp->b_flags, B_VFLUSH);
849		if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
850			KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
851			goto already_queued;
852		} else {
853			bremfree(bp);
854		}
855	}
856
857  KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
858  KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
859  KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
860
861	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
862		/*
863		 * If it's invalid or empty, dissociate it from its vnode
864		 * and put on the head of the appropriate queue.
865		 */
866		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
867			(*bioops.io_deallocate)(bp);
868		CLR(bp->b_flags, B_DONE|B_DELWRI);
869		if (bp->b_vp) {
870			reassignbuf(bp, bp->b_vp);
871			brelvp(bp);
872		}
873		if (bp->b_bufsize <= 0)
874			/* no data */
875			goto already_queued;
876		else
877			/* invalid data */
878			bufq = &bufqueues[BQ_AGE];
879		binsheadfree(bp, bufq);
880	} else {
881		/*
882		 * It has valid data.  Put it on the end of the appropriate
883		 * queue, so that it'll stick around for as long as possible.
884		 * If buf is AGE, but has dependencies, must put it on last
885		 * bufqueue to be scanned, ie LRU. This protects against the
886		 * livelock where BQ_AGE only has buffers with dependencies,
887		 * and we thus never get to the dependent buffers in BQ_LRU.
888		 */
889		if (ISSET(bp->b_flags, B_LOCKED))
890			/* locked in core */
891			bufq = &bufqueues[BQ_LOCKED];
892		else if (!ISSET(bp->b_flags, B_AGE))
893			/* valid data */
894			bufq = &bufqueues[BQ_LRU];
895		else {
896			/* stale but valid data */
897			int has_deps;
898
899			if (LIST_FIRST(&bp->b_dep) != NULL &&
900			    bioops.io_countdeps)
901				has_deps = (*bioops.io_countdeps)(bp, 0);
902			else
903				has_deps = 0;
904			bufq = has_deps ? &bufqueues[BQ_LRU] :
905			    &bufqueues[BQ_AGE];
906		}
907		binstailfree(bp, bufq);
908	}
909
910already_queued:
911	/* Unlock the buffer. */
912	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
913	SET(bp->b_flags, B_CACHE);
914
915	/* Allow disk interrupts. */
916	simple_unlock(&bp->b_interlock);
917	simple_unlock(&bqueue_slock);
918	if (bp->b_bufsize <= 0) {
919#ifdef DEBUG
920		memset((char *)bp, 0, sizeof(*bp));
921#endif
922		pool_put(&bufpool, bp);
923	}
924	splx(s);
925}
926
927/*
928 * Determine if a block is in the cache.
929 * Just look on what would be its hash chain.  If it's there, return
930 * a pointer to it, unless it's marked invalid.  If it's marked invalid,
931 * we normally don't return the buffer, unless the caller explicitly
932 * wants us to.
933 */
934struct buf *
935incore(struct vnode *vp, daddr_t blkno)
936{
937	struct buf *bp;
938
939	/* Search hash chain */
940	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
941		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
942		    !ISSET(bp->b_flags, B_INVAL))
943		return (bp);
944	}
945
946	return (NULL);
947}
948
949/*
950 * Get a block of requested size that is associated with
951 * a given vnode and block offset. If it is found in the
952 * block cache, mark it as having been found, make it busy
953 * and return it. Otherwise, return an empty block of the
954 * correct size. It is up to the caller to insure that the
955 * cached blocks be of the correct size.
956 */
957struct buf *
958getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
959{
960	struct buf *bp;
961	int s, err;
962	int preserve;
963
964start:
965	s = splbio();
966	simple_lock(&bqueue_slock);
967	bp = incore(vp, blkno);
968	if (bp != NULL) {
969		simple_lock(&bp->b_interlock);
970		if (ISSET(bp->b_flags, B_BUSY)) {
971			simple_unlock(&bqueue_slock);
972			if (curproc == uvm.pagedaemon_proc) {
973				simple_unlock(&bp->b_interlock);
974				splx(s);
975				return NULL;
976			}
977			SET(bp->b_flags, B_WANTED);
978			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
979					"getblk", slptimeo, &bp->b_interlock);
980			splx(s);
981			if (err)
982				return (NULL);
983			goto start;
984		}
985#ifdef DIAGNOSTIC
986		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
987		    bp->b_bcount < size && vp->v_type != VBLK)
988			panic("getblk: block size invariant failed");
989#endif
990		SET(bp->b_flags, B_BUSY);
991		bremfree(bp);
992		preserve = 1;
993	} else {
994		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
995			simple_unlock(&bqueue_slock);
996			splx(s);
997			goto start;
998		}
999
1000		binshash(bp, BUFHASH(vp, blkno));
1001		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1002		bgetvp(vp, bp);
1003		preserve = 0;
1004	}
1005	simple_unlock(&bp->b_interlock);
1006	simple_unlock(&bqueue_slock);
1007	splx(s);
1008	/*
1009	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1010	 * if we re-size buffers here.
1011	 */
1012	if (ISSET(bp->b_flags, B_LOCKED)) {
1013		KASSERT(bp->b_bufsize >= size);
1014	} else {
1015		allocbuf(bp, size, preserve);
1016	}
1017	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1018	return (bp);
1019}
1020
1021/*
1022 * Get an empty, disassociated buffer of given size.
1023 */
1024struct buf *
1025geteblk(int size)
1026{
1027	struct buf *bp;
1028	int s;
1029
1030	s = splbio();
1031	simple_lock(&bqueue_slock);
1032	while ((bp = getnewbuf(0, 0, 0)) == 0)
1033		;
1034
1035	SET(bp->b_flags, B_INVAL);
1036	binshash(bp, &invalhash);
1037	simple_unlock(&bqueue_slock);
1038	simple_unlock(&bp->b_interlock);
1039	splx(s);
1040	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1041	allocbuf(bp, size, 0);
1042	return (bp);
1043}
1044
1045/*
1046 * Expand or contract the actual memory allocated to a buffer.
1047 *
1048 * If the buffer shrinks, data is lost, so it's up to the
1049 * caller to have written it out *first*; this routine will not
1050 * start a write.  If the buffer grows, it's the callers
1051 * responsibility to fill out the buffer's additional contents.
1052 */
1053void
1054allocbuf(struct buf *bp, int size, int preserve)
1055{
1056	vsize_t oldsize, desired_size;
1057	caddr_t addr;
1058	int s, delta;
1059
1060	desired_size = buf_roundsize(size);
1061	if (desired_size > MAXBSIZE)
1062		printf("allocbuf: buffer larger than MAXBSIZE requested");
1063
1064	bp->b_bcount = size;
1065
1066	oldsize = bp->b_bufsize;
1067	if (oldsize == desired_size)
1068		return;
1069
1070	/*
1071	 * If we want a buffer of a different size, re-allocate the
1072	 * buffer's memory; copy old content only if needed.
1073	 */
1074	addr = buf_malloc(desired_size);
1075	if (preserve)
1076		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1077	if (bp->b_data != NULL)
1078		buf_mrelease(bp->b_data, oldsize);
1079	bp->b_data = addr;
1080	bp->b_bufsize = desired_size;
1081
1082	/*
1083	 * Update overall buffer memory counter (protected by bqueue_slock)
1084	 */
1085	delta = (long)desired_size - (long)oldsize;
1086
1087	s = splbio();
1088	simple_lock(&bqueue_slock);
1089	if ((bufmem += delta) > bufmem_hiwater) {
1090		/*
1091		 * Need to trim overall memory usage.
1092		 */
1093		while (buf_canrelease()) {
1094			if (buf_trim() == 0)
1095				break;
1096		}
1097	}
1098
1099	simple_unlock(&bqueue_slock);
1100	splx(s);
1101}
1102
1103/*
1104 * Find a buffer which is available for use.
1105 * Select something from a free list.
1106 * Preference is to AGE list, then LRU list.
1107 *
1108 * Called at splbio and with buffer queues locked.
1109 * Return buffer locked.
1110 */
1111struct buf *
1112getnewbuf(int slpflag, int slptimeo, int from_bufq)
1113{
1114	struct buf *bp;
1115
1116start:
1117	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1118
1119	/*
1120	 * Get a new buffer from the pool; but use NOWAIT because
1121	 * we have the buffer queues locked.
1122	 */
1123	if (buf_lotsfree() && !from_bufq &&
1124	    (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1125		memset((char *)bp, 0, sizeof(*bp));
1126		BUF_INIT(bp);
1127		bp->b_dev = NODEV;
1128		bp->b_vnbufs.le_next = NOLIST;
1129		bp->b_flags = B_BUSY;
1130		simple_lock(&bp->b_interlock);
1131		return (bp);
1132	}
1133
1134	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL ||
1135	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) {
1136		simple_lock(&bp->b_interlock);
1137		bremfree(bp);
1138	} else {
1139		/* wait for a free buffer of any kind */
1140		needbuffer = 1;
1141		ltsleep(&needbuffer, slpflag|(PRIBIO+1),
1142			"getnewbuf", slptimeo, &bqueue_slock);
1143		return (NULL);
1144	}
1145
1146#ifdef DIAGNOSTIC
1147	if (bp->b_bufsize <= 0)
1148		panic("buffer %p: on queue but empty", bp);
1149#endif
1150
1151	if (ISSET(bp->b_flags, B_VFLUSH)) {
1152		/*
1153		 * This is a delayed write buffer being flushed to disk.  Make
1154		 * sure it gets aged out of the queue when it's finished, and
1155		 * leave it off the LRU queue.
1156		 */
1157		CLR(bp->b_flags, B_VFLUSH);
1158		SET(bp->b_flags, B_AGE);
1159		simple_unlock(&bp->b_interlock);
1160		goto start;
1161	}
1162
1163	/* Buffer is no longer on free lists. */
1164	SET(bp->b_flags, B_BUSY);
1165
1166	/*
1167	 * If buffer was a delayed write, start it and return NULL
1168	 * (since we might sleep while starting the write).
1169	 */
1170	if (ISSET(bp->b_flags, B_DELWRI)) {
1171		/*
1172		 * This buffer has gone through the LRU, so make sure it gets
1173		 * reused ASAP.
1174		 */
1175		SET(bp->b_flags, B_AGE);
1176		simple_unlock(&bp->b_interlock);
1177		simple_unlock(&bqueue_slock);
1178		bawrite(bp);
1179		simple_lock(&bqueue_slock);
1180		return (NULL);
1181	}
1182
1183	/* disassociate us from our vnode, if we had one... */
1184	if (bp->b_vp)
1185		brelvp(bp);
1186
1187	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1188		(*bioops.io_deallocate)(bp);
1189
1190	/* clear out various other fields */
1191	bp->b_flags = B_BUSY;
1192	bp->b_dev = NODEV;
1193	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1194	bp->b_iodone = 0;
1195	bp->b_error = 0;
1196	bp->b_resid = 0;
1197	bp->b_bcount = 0;
1198
1199	bremhash(bp);
1200	return (bp);
1201}
1202
1203/*
1204 * Attempt to free an aged buffer off the queues.
1205 * Called at splbio and with queue lock held.
1206 * Returns the amount of buffer memory freed.
1207 */
1208int
1209buf_trim(void)
1210{
1211	struct buf *bp;
1212	long size = 0;
1213	int wanted;
1214
1215	/* Instruct getnewbuf() to get buffers off the queues */
1216	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1217		return 0;
1218
1219	wanted = ISSET(bp->b_flags, B_WANTED);
1220	simple_unlock(&bp->b_interlock);
1221	if (wanted) {
1222		printf("buftrim: got WANTED buffer\n");
1223		SET(bp->b_flags, B_INVAL);
1224		binshash(bp, &invalhash);
1225		simple_unlock(&bqueue_slock);
1226		goto out;
1227	}
1228	size = bp->b_bufsize;
1229	bufmem -= size;
1230	simple_unlock(&bqueue_slock);
1231	if (size > 0) {
1232		buf_mrelease(bp->b_data, size);
1233		bp->b_bcount = bp->b_bufsize = 0;
1234	}
1235
1236out:
1237	/* brelse() will return the buffer to the global buffer pool */
1238	brelse(bp);
1239	simple_lock(&bqueue_slock);
1240	return size;
1241}
1242
1243int
1244buf_drain(int n)
1245{
1246	int s, size = 0;
1247
1248	s = splbio();
1249	simple_lock(&bqueue_slock);
1250
1251	/* If not asked for a specific amount, make our own estimate */
1252	if (n == 0)
1253		n = buf_canrelease();
1254
1255	while (size < n && bufmem > bufmem_lowater)
1256		size += buf_trim();
1257
1258	simple_unlock(&bqueue_slock);
1259	splx(s);
1260	return size;
1261}
1262
1263/*
1264 * Wait for operations on the buffer to complete.
1265 * When they do, extract and return the I/O's error value.
1266 */
1267int
1268biowait(struct buf *bp)
1269{
1270	int s, error;
1271
1272	s = splbio();
1273	simple_lock(&bp->b_interlock);
1274	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1275		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1276
1277	/* check for interruption of I/O (e.g. via NFS), then errors. */
1278	if (ISSET(bp->b_flags, B_EINTR)) {
1279		CLR(bp->b_flags, B_EINTR);
1280		error = EINTR;
1281	} else if (ISSET(bp->b_flags, B_ERROR))
1282		error = bp->b_error ? bp->b_error : EIO;
1283	else
1284		error = 0;
1285
1286	simple_unlock(&bp->b_interlock);
1287	splx(s);
1288	return (error);
1289}
1290
1291/*
1292 * Mark I/O complete on a buffer.
1293 *
1294 * If a callback has been requested, e.g. the pageout
1295 * daemon, do so. Otherwise, awaken waiting processes.
1296 *
1297 * [ Leffler, et al., says on p.247:
1298 *	"This routine wakes up the blocked process, frees the buffer
1299 *	for an asynchronous write, or, for a request by the pagedaemon
1300 *	process, invokes a procedure specified in the buffer structure" ]
1301 *
1302 * In real life, the pagedaemon (or other system processes) wants
1303 * to do async stuff to, and doesn't want the buffer brelse()'d.
1304 * (for swap pager, that puts swap buffers on the free lists (!!!),
1305 * for the vn device, that puts malloc'd buffers on the free lists!)
1306 */
1307void
1308biodone(struct buf *bp)
1309{
1310	int s = splbio();
1311
1312	simple_lock(&bp->b_interlock);
1313	if (ISSET(bp->b_flags, B_DONE))
1314		panic("biodone already");
1315	SET(bp->b_flags, B_DONE);		/* note that it's done */
1316	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1317
1318	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1319		(*bioops.io_complete)(bp);
1320
1321	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
1322		vwakeup(bp);
1323
1324	/*
1325	 * If necessary, call out.  Unlock the buffer before calling
1326	 * iodone() as the buffer isn't valid any more when it return.
1327	 */
1328	if (ISSET(bp->b_flags, B_CALL)) {
1329		CLR(bp->b_flags, B_CALL);	/* but note callout done */
1330		simple_unlock(&bp->b_interlock);
1331		(*bp->b_iodone)(bp);
1332	} else {
1333		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
1334			simple_unlock(&bp->b_interlock);
1335			brelse(bp);
1336		} else {			/* or just wakeup the buffer */
1337			CLR(bp->b_flags, B_WANTED);
1338			wakeup(bp);
1339			simple_unlock(&bp->b_interlock);
1340		}
1341	}
1342
1343	splx(s);
1344}
1345
1346/*
1347 * Return a count of buffers on the "locked" queue.
1348 */
1349int
1350count_lock_queue(void)
1351{
1352	struct buf *bp;
1353	int n = 0;
1354
1355	simple_lock(&bqueue_slock);
1356	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist)
1357		n++;
1358	simple_unlock(&bqueue_slock);
1359	return (n);
1360}
1361
1362/*
1363 * Wait for all buffers to complete I/O
1364 * Return the number of "stuck" buffers.
1365 */
1366int
1367buf_syncwait(void)
1368{
1369	struct buf *bp;
1370	int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1371
1372	dcount = 10000;
1373	for (iter = 0; iter < 20;) {
1374		s = splbio();
1375		simple_lock(&bqueue_slock);
1376		nbusy = 0;
1377		for (ihash = 0; ihash < bufhash+1; ihash++) {
1378		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1379			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1380				nbusy++;
1381			/*
1382			 * With soft updates, some buffers that are
1383			 * written will be remarked as dirty until other
1384			 * buffers are written.
1385			 */
1386			if (bp->b_vp && bp->b_vp->v_mount
1387			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1388			    && (bp->b_flags & B_DELWRI)) {
1389				simple_lock(&bp->b_interlock);
1390				bremfree(bp);
1391				bp->b_flags |= B_BUSY;
1392				nbusy++;
1393				simple_unlock(&bp->b_interlock);
1394				simple_unlock(&bqueue_slock);
1395				bawrite(bp);
1396				if (dcount-- <= 0) {
1397					printf("softdep ");
1398					goto fail;
1399				}
1400				simple_lock(&bqueue_slock);
1401			}
1402		    }
1403		}
1404
1405		simple_unlock(&bqueue_slock);
1406		splx(s);
1407
1408		if (nbusy == 0)
1409			break;
1410		if (nbusy_prev == 0)
1411			nbusy_prev = nbusy;
1412		printf("%d ", nbusy);
1413		tsleep(&nbusy, PRIBIO, "bflush",
1414		    (iter == 0) ? 1 : hz / 25 * iter);
1415		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1416			iter++;
1417		else
1418			nbusy_prev = nbusy;
1419	}
1420
1421	if (nbusy) {
1422fail:;
1423#if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1424		printf("giving up\nPrinting vnodes for busy buffers\n");
1425		for (ihash = 0; ihash < bufhash+1; ihash++) {
1426		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1427			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1428				vprint(NULL, bp->b_vp);
1429		    }
1430		}
1431#endif
1432	}
1433
1434	return nbusy;
1435}
1436
1437static void
1438sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1439{
1440
1441	o->b_flags = i->b_flags;
1442	o->b_error = i->b_error;
1443	o->b_prio = i->b_prio;
1444	o->b_dev = i->b_dev;
1445	o->b_bufsize = i->b_bufsize;
1446	o->b_bcount = i->b_bcount;
1447	o->b_resid = i->b_resid;
1448	o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1449	o->b_blkno = i->b_blkno;
1450	o->b_rawblkno = i->b_rawblkno;
1451	o->b_iodone = PTRTOUINT64(i->b_iodone);
1452	o->b_proc = PTRTOUINT64(i->b_proc);
1453	o->b_vp = PTRTOUINT64(i->b_vp);
1454	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1455	o->b_lblkno = i->b_lblkno;
1456}
1457
1458#define KERN_BUFSLOP 20
1459static int
1460sysctl_dobuf(SYSCTLFN_ARGS)
1461{
1462	struct buf *bp;
1463	struct buf_sysctl bs;
1464	char *dp;
1465	u_int i, op, arg;
1466	size_t len, needed, elem_size, out_size;
1467	int error, s, elem_count;
1468
1469	if (namelen == 1 && name[0] == CTL_QUERY)
1470		return (sysctl_query(SYSCTLFN_CALL(rnode)));
1471
1472	if (namelen != 4)
1473		return (EINVAL);
1474
1475	dp = oldp;
1476	len = (oldp != NULL) ? *oldlenp : 0;
1477	op = name[0];
1478	arg = name[1];
1479	elem_size = name[2];
1480	elem_count = name[3];
1481	out_size = MIN(sizeof(bs), elem_size);
1482
1483	/*
1484	 * at the moment, these are just "placeholders" to make the
1485	 * API for retrieving kern.buf data more extensible in the
1486	 * future.
1487	 *
1488	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1489	 * these will be resolved at a later point.
1490	 */
1491	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1492	    elem_size < 1 || elem_count < 0)
1493		return (EINVAL);
1494
1495	error = 0;
1496	needed = 0;
1497	s = splbio();
1498	simple_lock(&bqueue_slock);
1499	for (i = 0; i < BQUEUES; i++) {
1500		TAILQ_FOREACH(bp, &bufqueues[i], b_freelist) {
1501			if (len >= elem_size && elem_count > 0) {
1502				sysctl_fillbuf(bp, &bs);
1503				error = copyout(&bs, dp, out_size);
1504				if (error)
1505					goto cleanup;
1506				dp += elem_size;
1507				len -= elem_size;
1508			}
1509			if (elem_count > 0) {
1510				needed += elem_size;
1511				if (elem_count != INT_MAX)
1512					elem_count--;
1513			}
1514		}
1515	}
1516cleanup:
1517	simple_unlock(&bqueue_slock);
1518	splx(s);
1519
1520	*oldlenp = needed;
1521	if (oldp == NULL)
1522		*oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1523
1524	return (error);
1525}
1526
1527static int
1528sysctl_bufvm_update(SYSCTLFN_ARGS)
1529{
1530	int t, error;
1531	struct sysctlnode node;
1532
1533	node = *rnode;
1534	node.sysctl_data = &t;
1535	t = *(int*)rnode->sysctl_data;
1536	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1537	if (error || newp == NULL)
1538		return (error);
1539
1540	if (rnode->sysctl_data == &bufcache) {
1541		if (t < 0 || t > 100)
1542			return (EINVAL);
1543		bufcache = t;
1544		bufmem_hiwater = buf_memcalc();
1545		bufmem_lowater = (bufmem_hiwater >> 3);
1546		if (bufmem_lowater < 64 * 1024)
1547			/* Ensure a reasonable minimum value */
1548			bufmem_lowater = 64 * 1024;
1549
1550	} else if (rnode->sysctl_data == &bufmem_lowater) {
1551		bufmem_lowater = t;
1552	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1553		bufmem_hiwater = t;
1554	} else
1555		return (EINVAL);
1556
1557	/* Drain until below new high water mark */
1558	while ((t = bufmem - bufmem_hiwater) >= 0) {
1559		if (buf_drain(t / (2*1024)) <= 0)
1560			break;
1561	}
1562
1563	return 0;
1564}
1565
1566SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1567{
1568
1569	sysctl_createv(clog, 0, NULL, NULL,
1570		       CTLFLAG_PERMANENT,
1571		       CTLTYPE_NODE, "kern", NULL,
1572		       NULL, 0, NULL, 0,
1573		       CTL_KERN, CTL_EOL);
1574	sysctl_createv(clog, 0, NULL, NULL,
1575		       CTLFLAG_PERMANENT,
1576		       CTLTYPE_NODE, "buf", NULL,
1577		       sysctl_dobuf, 0, NULL, 0,
1578		       CTL_KERN, KERN_BUF, CTL_EOL);
1579}
1580
1581SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1582{
1583
1584	sysctl_createv(clog, 0, NULL, NULL,
1585		       CTLFLAG_PERMANENT,
1586		       CTLTYPE_NODE, "vm", NULL,
1587		       NULL, 0, NULL, 0,
1588		       CTL_VM, CTL_EOL);
1589
1590	sysctl_createv(clog, 0, NULL, NULL,
1591		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1592		       CTLTYPE_INT, "bufcache", NULL,
1593		       sysctl_bufvm_update, 0, &bufcache, 0,
1594		       CTL_VM, CTL_CREATE, CTL_EOL);
1595	sysctl_createv(clog, 0, NULL, NULL,
1596		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1597		       CTLTYPE_INT, "bufmem_lowater", NULL,
1598		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1599		       CTL_VM, CTL_CREATE, CTL_EOL);
1600	sysctl_createv(clog, 0, NULL, NULL,
1601		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1602		       CTLTYPE_INT, "bufmem_hiwater", NULL,
1603		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1604		       CTL_VM, CTL_CREATE, CTL_EOL);
1605}
1606
1607#ifdef DEBUG
1608/*
1609 * Print out statistics on the current allocation of the buffer pool.
1610 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1611 * in vfs_syscalls.c using sysctl.
1612 */
1613void
1614vfs_bufstats(void)
1615{
1616	int s, i, j, count;
1617	struct buf *bp;
1618	struct bqueues *dp;
1619	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1620	static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1621
1622	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1623		count = 0;
1624		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1625			counts[j] = 0;
1626		s = splbio();
1627		TAILQ_FOREACH(bp, dp, b_freelist) {
1628			counts[bp->b_bufsize/PAGE_SIZE]++;
1629			count++;
1630		}
1631		splx(s);
1632		printf("%s: total-%d", bname[i], count);
1633		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1634			if (counts[j] != 0)
1635				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1636		printf("\n");
1637	}
1638}
1639#endif /* DEBUG */
1640