uipc_socket2.c revision 1.96
1/*	$NetBSD: uipc_socket2.c,v 1.96 2008/06/18 09:06:27 yamt Exp $	*/
2
3/*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 *    may be used to endorse or promote products derived from this software
43 *    without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58 */
59
60#include <sys/cdefs.h>
61__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.96 2008/06/18 09:06:27 yamt Exp $");
62
63#include "opt_mbuftrace.h"
64#include "opt_sb_max.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/proc.h>
69#include <sys/file.h>
70#include <sys/buf.h>
71#include <sys/malloc.h>
72#include <sys/mbuf.h>
73#include <sys/protosw.h>
74#include <sys/domain.h>
75#include <sys/poll.h>
76#include <sys/socket.h>
77#include <sys/socketvar.h>
78#include <sys/signalvar.h>
79#include <sys/kauth.h>
80#include <sys/pool.h>
81
82/*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Locking rules and assumptions:
86 *
87 * o socket::so_lock can change on the fly.  The low level routines used
88 *   to lock sockets are aware of this.  When so_lock is acquired, the
89 *   routine locking must check to see if so_lock still points to the
90 *   lock that was acquired.  If so_lock has changed in the meantime, the
91 *   now irellevant lock that was acquired must be dropped and the lock
92 *   operation retried.  Although not proven here, this is completely safe
93 *   on a multiprocessor system, even with relaxed memory ordering, given
94 *   the next two rules:
95 *
96 * o In order to mutate so_lock, the lock pointed to by the current value
97 *   of so_lock must be held: i.e., the socket must be held locked by the
98 *   changing thread.  The thread must issue membar_exit() to prevent
99 *   memory accesses being reordered, and can set so_lock to the desired
100 *   value.  If the lock pointed to by the new value of so_lock is not
101 *   held by the changing thread, the socket must then be considered
102 *   unlocked.
103 *
104 * o If so_lock is mutated, and the previous lock referred to by so_lock
105 *   could still be visible to other threads in the system (e.g. via file
106 *   descriptor or protocol-internal reference), then the old lock must
107 *   remain valid until the socket and/or protocol control block has been
108 *   torn down.
109 *
110 * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 *   connecting), then locking the socket must also lock the socket pointed
112 *   to by so_head: their lock pointers must match.
113 *
114 * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 *   locking the socket must also lock the sockets attached to both queues.
116 *   Again, their lock pointers must match.
117 *
118 * o Beyond the initial lock assigment in socreate(), assigning locks to
119 *   sockets is the responsibility of the individual protocols / protocol
120 *   domains.
121 */
122
123static pool_cache_t socket_cache;
124
125u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
126static u_long sb_max_adj;	/* adjusted sb_max */
127
128/*
129 * Procedures to manipulate state flags of socket
130 * and do appropriate wakeups.  Normal sequence from the
131 * active (originating) side is that soisconnecting() is
132 * called during processing of connect() call,
133 * resulting in an eventual call to soisconnected() if/when the
134 * connection is established.  When the connection is torn down
135 * soisdisconnecting() is called during processing of disconnect() call,
136 * and soisdisconnected() is called when the connection to the peer
137 * is totally severed.  The semantics of these routines are such that
138 * connectionless protocols can call soisconnected() and soisdisconnected()
139 * only, bypassing the in-progress calls when setting up a ``connection''
140 * takes no time.
141 *
142 * From the passive side, a socket is created with
143 * two queues of sockets: so_q0 for connections in progress
144 * and so_q for connections already made and awaiting user acceptance.
145 * As a protocol is preparing incoming connections, it creates a socket
146 * structure queued on so_q0 by calling sonewconn().  When the connection
147 * is established, soisconnected() is called, and transfers the
148 * socket structure to so_q, making it available to accept().
149 *
150 * If a socket is closed with sockets on either
151 * so_q0 or so_q, these sockets are dropped.
152 *
153 * If higher level protocols are implemented in
154 * the kernel, the wakeups done here will sometimes
155 * cause software-interrupt process scheduling.
156 */
157
158void
159soisconnecting(struct socket *so)
160{
161
162	KASSERT(solocked(so));
163
164	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165	so->so_state |= SS_ISCONNECTING;
166}
167
168void
169soisconnected(struct socket *so)
170{
171	struct socket	*head;
172
173	head = so->so_head;
174
175	KASSERT(solocked(so));
176	KASSERT(head == NULL || solocked2(so, head));
177
178	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179	so->so_state |= SS_ISCONNECTED;
180	if (head && soqremque(so, 0)) {
181		soqinsque(head, so, 1);
182		sorwakeup(head);
183		cv_broadcast(&head->so_cv);
184	} else {
185		cv_broadcast(&so->so_cv);
186		sorwakeup(so);
187		sowwakeup(so);
188	}
189}
190
191void
192soisdisconnecting(struct socket *so)
193{
194
195	KASSERT(solocked(so));
196
197	so->so_state &= ~SS_ISCONNECTING;
198	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
199	cv_broadcast(&so->so_cv);
200	sowwakeup(so);
201	sorwakeup(so);
202}
203
204void
205soisdisconnected(struct socket *so)
206{
207
208	KASSERT(solocked(so));
209
210	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
211	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
212	cv_broadcast(&so->so_cv);
213	sowwakeup(so);
214	sorwakeup(so);
215}
216
217void
218soinit2(void)
219{
220
221	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
222	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
223}
224
225/*
226 * When an attempt at a new connection is noted on a socket
227 * which accepts connections, sonewconn is called.  If the
228 * connection is possible (subject to space constraints, etc.)
229 * then we allocate a new structure, propoerly linked into the
230 * data structure of the original socket, and return this.
231 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
232 */
233struct socket *
234sonewconn(struct socket *head, int connstatus)
235{
236	struct socket	*so;
237	int		soqueue, error;
238
239	KASSERT(solocked(head));
240
241	soqueue = connstatus ? 1 : 0;
242	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
243		return ((struct socket *)0);
244	so = soget(false);
245	if (so == NULL)
246		return (NULL);
247	mutex_obj_hold(head->so_lock);
248	so->so_lock = head->so_lock;
249	so->so_type = head->so_type;
250	so->so_options = head->so_options &~ SO_ACCEPTCONN;
251	so->so_linger = head->so_linger;
252	so->so_state = head->so_state | SS_NOFDREF;
253	so->so_nbio = head->so_nbio;
254	so->so_proto = head->so_proto;
255	so->so_timeo = head->so_timeo;
256	so->so_pgid = head->so_pgid;
257	so->so_send = head->so_send;
258	so->so_receive = head->so_receive;
259	so->so_uidinfo = head->so_uidinfo;
260	so->so_egid = head->so_egid;
261	so->so_cpid = head->so_cpid;
262#ifdef MBUFTRACE
263	so->so_mowner = head->so_mowner;
264	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
265	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
266#endif
267	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
268	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
269	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
270	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
271	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
272	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
273	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
274	soqinsque(head, so, soqueue);
275	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
276	    NULL, NULL);
277	KASSERT(solocked(so));
278	if (error != 0) {
279		(void) soqremque(so, soqueue);
280		soput(so);
281		return (NULL);
282	}
283	if (connstatus) {
284		sorwakeup(head);
285		cv_broadcast(&head->so_cv);
286		so->so_state |= connstatus;
287	}
288	return (so);
289}
290
291struct socket *
292soget(bool waitok)
293{
294	struct socket *so;
295
296	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
297	if (__predict_false(so == NULL))
298		return (NULL);
299	memset(so, 0, sizeof(*so));
300	TAILQ_INIT(&so->so_q0);
301	TAILQ_INIT(&so->so_q);
302	cv_init(&so->so_cv, "socket");
303	cv_init(&so->so_rcv.sb_cv, "netio");
304	cv_init(&so->so_snd.sb_cv, "netio");
305	selinit(&so->so_rcv.sb_sel);
306	selinit(&so->so_snd.sb_sel);
307	so->so_rcv.sb_so = so;
308	so->so_snd.sb_so = so;
309	return so;
310}
311
312void
313soput(struct socket *so)
314{
315
316	KASSERT(!cv_has_waiters(&so->so_cv));
317	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
318	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
319	seldestroy(&so->so_rcv.sb_sel);
320	seldestroy(&so->so_snd.sb_sel);
321	mutex_obj_free(so->so_lock);
322	cv_destroy(&so->so_cv);
323	cv_destroy(&so->so_rcv.sb_cv);
324	cv_destroy(&so->so_snd.sb_cv);
325	pool_cache_put(socket_cache, so);
326}
327
328void
329soqinsque(struct socket *head, struct socket *so, int q)
330{
331
332	KASSERT(solocked2(head, so));
333
334#ifdef DIAGNOSTIC
335	if (so->so_onq != NULL)
336		panic("soqinsque");
337#endif
338
339	so->so_head = head;
340	if (q == 0) {
341		head->so_q0len++;
342		so->so_onq = &head->so_q0;
343	} else {
344		head->so_qlen++;
345		so->so_onq = &head->so_q;
346	}
347	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
348}
349
350int
351soqremque(struct socket *so, int q)
352{
353	struct socket	*head;
354
355	head = so->so_head;
356
357	KASSERT(solocked(so));
358	if (q == 0) {
359		if (so->so_onq != &head->so_q0)
360			return (0);
361		head->so_q0len--;
362	} else {
363		if (so->so_onq != &head->so_q)
364			return (0);
365		head->so_qlen--;
366	}
367	KASSERT(solocked2(so, head));
368	TAILQ_REMOVE(so->so_onq, so, so_qe);
369	so->so_onq = NULL;
370	so->so_head = NULL;
371	return (1);
372}
373
374/*
375 * Socantsendmore indicates that no more data will be sent on the
376 * socket; it would normally be applied to a socket when the user
377 * informs the system that no more data is to be sent, by the protocol
378 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
379 * will be received, and will normally be applied to the socket by a
380 * protocol when it detects that the peer will send no more data.
381 * Data queued for reading in the socket may yet be read.
382 */
383
384void
385socantsendmore(struct socket *so)
386{
387
388	KASSERT(solocked(so));
389
390	so->so_state |= SS_CANTSENDMORE;
391	sowwakeup(so);
392}
393
394void
395socantrcvmore(struct socket *so)
396{
397
398	KASSERT(solocked(so));
399
400	so->so_state |= SS_CANTRCVMORE;
401	sorwakeup(so);
402}
403
404/*
405 * Wait for data to arrive at/drain from a socket buffer.
406 */
407int
408sbwait(struct sockbuf *sb)
409{
410	struct socket *so;
411	kmutex_t *lock;
412	int error;
413
414	so = sb->sb_so;
415
416	KASSERT(solocked(so));
417
418	sb->sb_flags |= SB_NOTIFY;
419	lock = so->so_lock;
420	if ((sb->sb_flags & SB_NOINTR) != 0)
421		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
422	else
423		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
424	if (__predict_false(lock != so->so_lock))
425		solockretry(so, lock);
426	return error;
427}
428
429/*
430 * Wakeup processes waiting on a socket buffer.
431 * Do asynchronous notification via SIGIO
432 * if the socket buffer has the SB_ASYNC flag set.
433 */
434void
435sowakeup(struct socket *so, struct sockbuf *sb, int code)
436{
437	int band;
438
439	KASSERT(solocked(so));
440	KASSERT(sb->sb_so == so);
441
442	if (code == POLL_IN)
443		band = POLLIN|POLLRDNORM;
444	else
445		band = POLLOUT|POLLWRNORM;
446	sb->sb_flags &= ~SB_NOTIFY;
447	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
448	cv_broadcast(&sb->sb_cv);
449	if (sb->sb_flags & SB_ASYNC)
450		fownsignal(so->so_pgid, SIGIO, code, band, so);
451	if (sb->sb_flags & SB_UPCALL)
452		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
453}
454
455/*
456 * Reset a socket's lock pointer.  Wake all threads waiting on the
457 * socket's condition variables so that they can restart their waits
458 * using the new lock.  The existing lock must be held.
459 */
460void
461solockreset(struct socket *so, kmutex_t *lock)
462{
463
464	KASSERT(solocked(so));
465
466	so->so_lock = lock;
467	cv_broadcast(&so->so_snd.sb_cv);
468	cv_broadcast(&so->so_rcv.sb_cv);
469	cv_broadcast(&so->so_cv);
470}
471
472/*
473 * Socket buffer (struct sockbuf) utility routines.
474 *
475 * Each socket contains two socket buffers: one for sending data and
476 * one for receiving data.  Each buffer contains a queue of mbufs,
477 * information about the number of mbufs and amount of data in the
478 * queue, and other fields allowing poll() statements and notification
479 * on data availability to be implemented.
480 *
481 * Data stored in a socket buffer is maintained as a list of records.
482 * Each record is a list of mbufs chained together with the m_next
483 * field.  Records are chained together with the m_nextpkt field. The upper
484 * level routine soreceive() expects the following conventions to be
485 * observed when placing information in the receive buffer:
486 *
487 * 1. If the protocol requires each message be preceded by the sender's
488 *    name, then a record containing that name must be present before
489 *    any associated data (mbuf's must be of type MT_SONAME).
490 * 2. If the protocol supports the exchange of ``access rights'' (really
491 *    just additional data associated with the message), and there are
492 *    ``rights'' to be received, then a record containing this data
493 *    should be present (mbuf's must be of type MT_CONTROL).
494 * 3. If a name or rights record exists, then it must be followed by
495 *    a data record, perhaps of zero length.
496 *
497 * Before using a new socket structure it is first necessary to reserve
498 * buffer space to the socket, by calling sbreserve().  This should commit
499 * some of the available buffer space in the system buffer pool for the
500 * socket (currently, it does nothing but enforce limits).  The space
501 * should be released by calling sbrelease() when the socket is destroyed.
502 */
503
504int
505sb_max_set(u_long new_sbmax)
506{
507	int s;
508
509	if (new_sbmax < (16 * 1024))
510		return (EINVAL);
511
512	s = splsoftnet();
513	sb_max = new_sbmax;
514	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
515	splx(s);
516
517	return (0);
518}
519
520int
521soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
522{
523
524	KASSERT(so->so_lock == NULL || solocked(so));
525
526	/*
527	 * there's at least one application (a configure script of screen)
528	 * which expects a fifo is writable even if it has "some" bytes
529	 * in its buffer.
530	 * so we want to make sure (hiwat - lowat) >= (some bytes).
531	 *
532	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
533	 * we expect it's large enough for such applications.
534	 */
535	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
536	u_long  hiwat = lowat + PIPE_BUF;
537
538	if (sndcc < hiwat)
539		sndcc = hiwat;
540	if (sbreserve(&so->so_snd, sndcc, so) == 0)
541		goto bad;
542	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
543		goto bad2;
544	if (so->so_rcv.sb_lowat == 0)
545		so->so_rcv.sb_lowat = 1;
546	if (so->so_snd.sb_lowat == 0)
547		so->so_snd.sb_lowat = lowat;
548	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
549		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
550	return (0);
551 bad2:
552	sbrelease(&so->so_snd, so);
553 bad:
554	return (ENOBUFS);
555}
556
557/*
558 * Allot mbufs to a sockbuf.
559 * Attempt to scale mbmax so that mbcnt doesn't become limiting
560 * if buffering efficiency is near the normal case.
561 */
562int
563sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
564{
565	struct lwp *l = curlwp; /* XXX */
566	rlim_t maxcc;
567	struct uidinfo *uidinfo;
568
569	KASSERT(so->so_lock == NULL || solocked(so));
570	KASSERT(sb->sb_so == so);
571	KASSERT(sb_max_adj != 0);
572
573	if (cc == 0 || cc > sb_max_adj)
574		return (0);
575
576	if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
577		maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
578	else
579		maxcc = RLIM_INFINITY;
580
581	uidinfo = so->so_uidinfo;
582	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
583		return 0;
584	sb->sb_mbmax = min(cc * 2, sb_max);
585	if (sb->sb_lowat > sb->sb_hiwat)
586		sb->sb_lowat = sb->sb_hiwat;
587	return (1);
588}
589
590/*
591 * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
592 * that the socket is held locked here: see sorflush().
593 */
594void
595sbrelease(struct sockbuf *sb, struct socket *so)
596{
597
598	KASSERT(sb->sb_so == so);
599
600	sbflush(sb);
601	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
602	sb->sb_mbmax = 0;
603}
604
605/*
606 * Routines to add and remove
607 * data from an mbuf queue.
608 *
609 * The routines sbappend() or sbappendrecord() are normally called to
610 * append new mbufs to a socket buffer, after checking that adequate
611 * space is available, comparing the function sbspace() with the amount
612 * of data to be added.  sbappendrecord() differs from sbappend() in
613 * that data supplied is treated as the beginning of a new record.
614 * To place a sender's address, optional access rights, and data in a
615 * socket receive buffer, sbappendaddr() should be used.  To place
616 * access rights and data in a socket receive buffer, sbappendrights()
617 * should be used.  In either case, the new data begins a new record.
618 * Note that unlike sbappend() and sbappendrecord(), these routines check
619 * for the caller that there will be enough space to store the data.
620 * Each fails if there is not enough space, or if it cannot find mbufs
621 * to store additional information in.
622 *
623 * Reliable protocols may use the socket send buffer to hold data
624 * awaiting acknowledgement.  Data is normally copied from a socket
625 * send buffer in a protocol with m_copy for output to a peer,
626 * and then removing the data from the socket buffer with sbdrop()
627 * or sbdroprecord() when the data is acknowledged by the peer.
628 */
629
630#ifdef SOCKBUF_DEBUG
631void
632sblastrecordchk(struct sockbuf *sb, const char *where)
633{
634	struct mbuf *m = sb->sb_mb;
635
636	KASSERT(solocked(sb->sb_so));
637
638	while (m && m->m_nextpkt)
639		m = m->m_nextpkt;
640
641	if (m != sb->sb_lastrecord) {
642		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
643		    sb->sb_mb, sb->sb_lastrecord, m);
644		printf("packet chain:\n");
645		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
646			printf("\t%p\n", m);
647		panic("sblastrecordchk from %s", where);
648	}
649}
650
651void
652sblastmbufchk(struct sockbuf *sb, const char *where)
653{
654	struct mbuf *m = sb->sb_mb;
655	struct mbuf *n;
656
657	KASSERT(solocked(sb->sb_so));
658
659	while (m && m->m_nextpkt)
660		m = m->m_nextpkt;
661
662	while (m && m->m_next)
663		m = m->m_next;
664
665	if (m != sb->sb_mbtail) {
666		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
667		    sb->sb_mb, sb->sb_mbtail, m);
668		printf("packet tree:\n");
669		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
670			printf("\t");
671			for (n = m; n != NULL; n = n->m_next)
672				printf("%p ", n);
673			printf("\n");
674		}
675		panic("sblastmbufchk from %s", where);
676	}
677}
678#endif /* SOCKBUF_DEBUG */
679
680/*
681 * Link a chain of records onto a socket buffer
682 */
683#define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
684do {									\
685	if ((sb)->sb_lastrecord != NULL)				\
686		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
687	else								\
688		(sb)->sb_mb = (m0);					\
689	(sb)->sb_lastrecord = (mlast);					\
690} while (/*CONSTCOND*/0)
691
692
693#define	SBLINKRECORD(sb, m0)						\
694    SBLINKRECORDCHAIN(sb, m0, m0)
695
696/*
697 * Append mbuf chain m to the last record in the
698 * socket buffer sb.  The additional space associated
699 * the mbuf chain is recorded in sb.  Empty mbufs are
700 * discarded and mbufs are compacted where possible.
701 */
702void
703sbappend(struct sockbuf *sb, struct mbuf *m)
704{
705	struct mbuf	*n;
706
707	KASSERT(solocked(sb->sb_so));
708
709	if (m == 0)
710		return;
711
712#ifdef MBUFTRACE
713	m_claimm(m, sb->sb_mowner);
714#endif
715
716	SBLASTRECORDCHK(sb, "sbappend 1");
717
718	if ((n = sb->sb_lastrecord) != NULL) {
719		/*
720		 * XXX Would like to simply use sb_mbtail here, but
721		 * XXX I need to verify that I won't miss an EOR that
722		 * XXX way.
723		 */
724		do {
725			if (n->m_flags & M_EOR) {
726				sbappendrecord(sb, m); /* XXXXXX!!!! */
727				return;
728			}
729		} while (n->m_next && (n = n->m_next));
730	} else {
731		/*
732		 * If this is the first record in the socket buffer, it's
733		 * also the last record.
734		 */
735		sb->sb_lastrecord = m;
736	}
737	sbcompress(sb, m, n);
738	SBLASTRECORDCHK(sb, "sbappend 2");
739}
740
741/*
742 * This version of sbappend() should only be used when the caller
743 * absolutely knows that there will never be more than one record
744 * in the socket buffer, that is, a stream protocol (such as TCP).
745 */
746void
747sbappendstream(struct sockbuf *sb, struct mbuf *m)
748{
749
750	KASSERT(solocked(sb->sb_so));
751	KDASSERT(m->m_nextpkt == NULL);
752	KASSERT(sb->sb_mb == sb->sb_lastrecord);
753
754	SBLASTMBUFCHK(sb, __func__);
755
756#ifdef MBUFTRACE
757	m_claimm(m, sb->sb_mowner);
758#endif
759
760	sbcompress(sb, m, sb->sb_mbtail);
761
762	sb->sb_lastrecord = sb->sb_mb;
763	SBLASTRECORDCHK(sb, __func__);
764}
765
766#ifdef SOCKBUF_DEBUG
767void
768sbcheck(struct sockbuf *sb)
769{
770	struct mbuf	*m, *m2;
771	u_long		len, mbcnt;
772
773	KASSERT(solocked(sb->sb_so));
774
775	len = 0;
776	mbcnt = 0;
777	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
778		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
779			len += m2->m_len;
780			mbcnt += MSIZE;
781			if (m2->m_flags & M_EXT)
782				mbcnt += m2->m_ext.ext_size;
783			if (m2->m_nextpkt != NULL)
784				panic("sbcheck nextpkt");
785		}
786	}
787	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
788		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
789		    mbcnt, sb->sb_mbcnt);
790		panic("sbcheck");
791	}
792}
793#endif
794
795/*
796 * As above, except the mbuf chain
797 * begins a new record.
798 */
799void
800sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
801{
802	struct mbuf	*m;
803
804	KASSERT(solocked(sb->sb_so));
805
806	if (m0 == 0)
807		return;
808
809#ifdef MBUFTRACE
810	m_claimm(m0, sb->sb_mowner);
811#endif
812	/*
813	 * Put the first mbuf on the queue.
814	 * Note this permits zero length records.
815	 */
816	sballoc(sb, m0);
817	SBLASTRECORDCHK(sb, "sbappendrecord 1");
818	SBLINKRECORD(sb, m0);
819	m = m0->m_next;
820	m0->m_next = 0;
821	if (m && (m0->m_flags & M_EOR)) {
822		m0->m_flags &= ~M_EOR;
823		m->m_flags |= M_EOR;
824	}
825	sbcompress(sb, m, m0);
826	SBLASTRECORDCHK(sb, "sbappendrecord 2");
827}
828
829/*
830 * As above except that OOB data
831 * is inserted at the beginning of the sockbuf,
832 * but after any other OOB data.
833 */
834void
835sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
836{
837	struct mbuf	*m, **mp;
838
839	KASSERT(solocked(sb->sb_so));
840
841	if (m0 == 0)
842		return;
843
844	SBLASTRECORDCHK(sb, "sbinsertoob 1");
845
846	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
847	    again:
848		switch (m->m_type) {
849
850		case MT_OOBDATA:
851			continue;		/* WANT next train */
852
853		case MT_CONTROL:
854			if ((m = m->m_next) != NULL)
855				goto again;	/* inspect THIS train further */
856		}
857		break;
858	}
859	/*
860	 * Put the first mbuf on the queue.
861	 * Note this permits zero length records.
862	 */
863	sballoc(sb, m0);
864	m0->m_nextpkt = *mp;
865	if (*mp == NULL) {
866		/* m0 is actually the new tail */
867		sb->sb_lastrecord = m0;
868	}
869	*mp = m0;
870	m = m0->m_next;
871	m0->m_next = 0;
872	if (m && (m0->m_flags & M_EOR)) {
873		m0->m_flags &= ~M_EOR;
874		m->m_flags |= M_EOR;
875	}
876	sbcompress(sb, m, m0);
877	SBLASTRECORDCHK(sb, "sbinsertoob 2");
878}
879
880/*
881 * Append address and data, and optionally, control (ancillary) data
882 * to the receive queue of a socket.  If present,
883 * m0 must include a packet header with total length.
884 * Returns 0 if no space in sockbuf or insufficient mbufs.
885 */
886int
887sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
888	struct mbuf *control)
889{
890	struct mbuf	*m, *n, *nlast;
891	int		space, len;
892
893	KASSERT(solocked(sb->sb_so));
894
895	space = asa->sa_len;
896
897	if (m0 != NULL) {
898		if ((m0->m_flags & M_PKTHDR) == 0)
899			panic("sbappendaddr");
900		space += m0->m_pkthdr.len;
901#ifdef MBUFTRACE
902		m_claimm(m0, sb->sb_mowner);
903#endif
904	}
905	for (n = control; n; n = n->m_next) {
906		space += n->m_len;
907		MCLAIM(n, sb->sb_mowner);
908		if (n->m_next == 0)	/* keep pointer to last control buf */
909			break;
910	}
911	if (space > sbspace(sb))
912		return (0);
913	MGET(m, M_DONTWAIT, MT_SONAME);
914	if (m == 0)
915		return (0);
916	MCLAIM(m, sb->sb_mowner);
917	/*
918	 * XXX avoid 'comparison always true' warning which isn't easily
919	 * avoided.
920	 */
921	len = asa->sa_len;
922	if (len > MLEN) {
923		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
924		if ((m->m_flags & M_EXT) == 0) {
925			m_free(m);
926			return (0);
927		}
928	}
929	m->m_len = asa->sa_len;
930	memcpy(mtod(m, void *), asa, asa->sa_len);
931	if (n)
932		n->m_next = m0;		/* concatenate data to control */
933	else
934		control = m0;
935	m->m_next = control;
936
937	SBLASTRECORDCHK(sb, "sbappendaddr 1");
938
939	for (n = m; n->m_next != NULL; n = n->m_next)
940		sballoc(sb, n);
941	sballoc(sb, n);
942	nlast = n;
943	SBLINKRECORD(sb, m);
944
945	sb->sb_mbtail = nlast;
946	SBLASTMBUFCHK(sb, "sbappendaddr");
947	SBLASTRECORDCHK(sb, "sbappendaddr 2");
948
949	return (1);
950}
951
952/*
953 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
954 * an mbuf chain.
955 */
956static inline struct mbuf *
957m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
958		   const struct sockaddr *asa)
959{
960	struct mbuf *m;
961	const int salen = asa->sa_len;
962
963	KASSERT(solocked(sb->sb_so));
964
965	/* only the first in each chain need be a pkthdr */
966	MGETHDR(m, M_DONTWAIT, MT_SONAME);
967	if (m == 0)
968		return (0);
969	MCLAIM(m, sb->sb_mowner);
970#ifdef notyet
971	if (salen > MHLEN) {
972		MEXTMALLOC(m, salen, M_NOWAIT);
973		if ((m->m_flags & M_EXT) == 0) {
974			m_free(m);
975			return (0);
976		}
977	}
978#else
979	KASSERT(salen <= MHLEN);
980#endif
981	m->m_len = salen;
982	memcpy(mtod(m, void *), asa, salen);
983	m->m_next = m0;
984	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
985
986	return m;
987}
988
989int
990sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
991		  struct mbuf *m0, int sbprio)
992{
993	int space;
994	struct mbuf *m, *n, *n0, *nlast;
995	int error;
996
997	KASSERT(solocked(sb->sb_so));
998
999	/*
1000	 * XXX sbprio reserved for encoding priority of this* request:
1001	 *  SB_PRIO_NONE --> honour normal sb limits
1002	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1003	 *	take whole chain. Intended for large requests
1004	 *      that should be delivered atomically (all, or none).
1005	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1006	 *       over normal socket limits, for messages indicating
1007	 *       buffer overflow in earlier normal/lower-priority messages
1008	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1009	 *       Intended for  kernel-generated messages only.
1010	 *        Up to generator to avoid total mbuf resource exhaustion.
1011	 */
1012	(void)sbprio;
1013
1014	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1015		panic("sbappendaddrchain");
1016
1017	space = sbspace(sb);
1018
1019#ifdef notyet
1020	/*
1021	 * Enforce SB_PRIO_* limits as described above.
1022	 */
1023#endif
1024
1025	n0 = NULL;
1026	nlast = NULL;
1027	for (m = m0; m; m = m->m_nextpkt) {
1028		struct mbuf *np;
1029
1030#ifdef MBUFTRACE
1031		m_claimm(m, sb->sb_mowner);
1032#endif
1033
1034		/* Prepend sockaddr to this record (m) of input chain m0 */
1035	  	n = m_prepend_sockaddr(sb, m, asa);
1036		if (n == NULL) {
1037			error = ENOBUFS;
1038			goto bad;
1039		}
1040
1041		/* Append record (asa+m) to end of new chain n0 */
1042		if (n0 == NULL) {
1043			n0 = n;
1044		} else {
1045			nlast->m_nextpkt = n;
1046		}
1047		/* Keep track of last record on new chain */
1048		nlast = n;
1049
1050		for (np = n; np; np = np->m_next)
1051			sballoc(sb, np);
1052	}
1053
1054	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1055
1056	/* Drop the entire chain of (asa+m) records onto the socket */
1057	SBLINKRECORDCHAIN(sb, n0, nlast);
1058
1059	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1060
1061	for (m = nlast; m->m_next; m = m->m_next)
1062		;
1063	sb->sb_mbtail = m;
1064	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1065
1066	return (1);
1067
1068bad:
1069	/*
1070	 * On error, free the prepended addreseses. For consistency
1071	 * with sbappendaddr(), leave it to our caller to free
1072	 * the input record chain passed to us as m0.
1073	 */
1074	while ((n = n0) != NULL) {
1075	  	struct mbuf *np;
1076
1077		/* Undo the sballoc() of this record */
1078		for (np = n; np; np = np->m_next)
1079			sbfree(sb, np);
1080
1081		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1082		MFREE(n, np);		/* free prepended address (not data) */
1083	}
1084	return 0;
1085}
1086
1087
1088int
1089sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1090{
1091	struct mbuf	*m, *mlast, *n;
1092	int		space;
1093
1094	KASSERT(solocked(sb->sb_so));
1095
1096	space = 0;
1097	if (control == 0)
1098		panic("sbappendcontrol");
1099	for (m = control; ; m = m->m_next) {
1100		space += m->m_len;
1101		MCLAIM(m, sb->sb_mowner);
1102		if (m->m_next == 0)
1103			break;
1104	}
1105	n = m;			/* save pointer to last control buffer */
1106	for (m = m0; m; m = m->m_next) {
1107		MCLAIM(m, sb->sb_mowner);
1108		space += m->m_len;
1109	}
1110	if (space > sbspace(sb))
1111		return (0);
1112	n->m_next = m0;			/* concatenate data to control */
1113
1114	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1115
1116	for (m = control; m->m_next != NULL; m = m->m_next)
1117		sballoc(sb, m);
1118	sballoc(sb, m);
1119	mlast = m;
1120	SBLINKRECORD(sb, control);
1121
1122	sb->sb_mbtail = mlast;
1123	SBLASTMBUFCHK(sb, "sbappendcontrol");
1124	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1125
1126	return (1);
1127}
1128
1129/*
1130 * Compress mbuf chain m into the socket
1131 * buffer sb following mbuf n.  If n
1132 * is null, the buffer is presumed empty.
1133 */
1134void
1135sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1136{
1137	int		eor;
1138	struct mbuf	*o;
1139
1140	KASSERT(solocked(sb->sb_so));
1141
1142	eor = 0;
1143	while (m) {
1144		eor |= m->m_flags & M_EOR;
1145		if (m->m_len == 0 &&
1146		    (eor == 0 ||
1147		     (((o = m->m_next) || (o = n)) &&
1148		      o->m_type == m->m_type))) {
1149			if (sb->sb_lastrecord == m)
1150				sb->sb_lastrecord = m->m_next;
1151			m = m_free(m);
1152			continue;
1153		}
1154		if (n && (n->m_flags & M_EOR) == 0 &&
1155		    /* M_TRAILINGSPACE() checks buffer writeability */
1156		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1157		    m->m_len <= M_TRAILINGSPACE(n) &&
1158		    n->m_type == m->m_type) {
1159			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1160			    (unsigned)m->m_len);
1161			n->m_len += m->m_len;
1162			sb->sb_cc += m->m_len;
1163			m = m_free(m);
1164			continue;
1165		}
1166		if (n)
1167			n->m_next = m;
1168		else
1169			sb->sb_mb = m;
1170		sb->sb_mbtail = m;
1171		sballoc(sb, m);
1172		n = m;
1173		m->m_flags &= ~M_EOR;
1174		m = m->m_next;
1175		n->m_next = 0;
1176	}
1177	if (eor) {
1178		if (n)
1179			n->m_flags |= eor;
1180		else
1181			printf("semi-panic: sbcompress\n");
1182	}
1183	SBLASTMBUFCHK(sb, __func__);
1184}
1185
1186/*
1187 * Free all mbufs in a sockbuf.
1188 * Check that all resources are reclaimed.
1189 */
1190void
1191sbflush(struct sockbuf *sb)
1192{
1193
1194	KASSERT(solocked(sb->sb_so));
1195	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1196
1197	while (sb->sb_mbcnt)
1198		sbdrop(sb, (int)sb->sb_cc);
1199
1200	KASSERT(sb->sb_cc == 0);
1201	KASSERT(sb->sb_mb == NULL);
1202	KASSERT(sb->sb_mbtail == NULL);
1203	KASSERT(sb->sb_lastrecord == NULL);
1204}
1205
1206/*
1207 * Drop data from (the front of) a sockbuf.
1208 */
1209void
1210sbdrop(struct sockbuf *sb, int len)
1211{
1212	struct mbuf	*m, *mn, *next;
1213
1214	KASSERT(solocked(sb->sb_so));
1215
1216	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1217	while (len > 0) {
1218		if (m == 0) {
1219			if (next == 0)
1220				panic("sbdrop");
1221			m = next;
1222			next = m->m_nextpkt;
1223			continue;
1224		}
1225		if (m->m_len > len) {
1226			m->m_len -= len;
1227			m->m_data += len;
1228			sb->sb_cc -= len;
1229			break;
1230		}
1231		len -= m->m_len;
1232		sbfree(sb, m);
1233		MFREE(m, mn);
1234		m = mn;
1235	}
1236	while (m && m->m_len == 0) {
1237		sbfree(sb, m);
1238		MFREE(m, mn);
1239		m = mn;
1240	}
1241	if (m) {
1242		sb->sb_mb = m;
1243		m->m_nextpkt = next;
1244	} else
1245		sb->sb_mb = next;
1246	/*
1247	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1248	 * makes sure sb_lastrecord is up-to-date if we dropped
1249	 * part of the last record.
1250	 */
1251	m = sb->sb_mb;
1252	if (m == NULL) {
1253		sb->sb_mbtail = NULL;
1254		sb->sb_lastrecord = NULL;
1255	} else if (m->m_nextpkt == NULL)
1256		sb->sb_lastrecord = m;
1257}
1258
1259/*
1260 * Drop a record off the front of a sockbuf
1261 * and move the next record to the front.
1262 */
1263void
1264sbdroprecord(struct sockbuf *sb)
1265{
1266	struct mbuf	*m, *mn;
1267
1268	KASSERT(solocked(sb->sb_so));
1269
1270	m = sb->sb_mb;
1271	if (m) {
1272		sb->sb_mb = m->m_nextpkt;
1273		do {
1274			sbfree(sb, m);
1275			MFREE(m, mn);
1276		} while ((m = mn) != NULL);
1277	}
1278	SB_EMPTY_FIXUP(sb);
1279}
1280
1281/*
1282 * Create a "control" mbuf containing the specified data
1283 * with the specified type for presentation on a socket buffer.
1284 */
1285struct mbuf *
1286sbcreatecontrol(void *p, int size, int type, int level)
1287{
1288	struct cmsghdr	*cp;
1289	struct mbuf	*m;
1290
1291	if (CMSG_SPACE(size) > MCLBYTES) {
1292		printf("sbcreatecontrol: message too large %d\n", size);
1293		return NULL;
1294	}
1295
1296	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1297		return ((struct mbuf *) NULL);
1298	if (CMSG_SPACE(size) > MLEN) {
1299		MCLGET(m, M_DONTWAIT);
1300		if ((m->m_flags & M_EXT) == 0) {
1301			m_free(m);
1302			return NULL;
1303		}
1304	}
1305	cp = mtod(m, struct cmsghdr *);
1306	memcpy(CMSG_DATA(cp), p, size);
1307	m->m_len = CMSG_SPACE(size);
1308	cp->cmsg_len = CMSG_LEN(size);
1309	cp->cmsg_level = level;
1310	cp->cmsg_type = type;
1311	return (m);
1312}
1313
1314void
1315solockretry(struct socket *so, kmutex_t *lock)
1316{
1317
1318	while (lock != so->so_lock) {
1319		mutex_exit(lock);
1320		lock = so->so_lock;
1321		mutex_enter(lock);
1322	}
1323}
1324
1325bool
1326solocked(struct socket *so)
1327{
1328
1329	return mutex_owned(so->so_lock);
1330}
1331
1332bool
1333solocked2(struct socket *so1, struct socket *so2)
1334{
1335	kmutex_t *lock;
1336
1337	lock = so1->so_lock;
1338	if (lock != so2->so_lock)
1339		return false;
1340	return mutex_owned(lock);
1341}
1342
1343/*
1344 * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
1345 * protocols that do not have special locking requirements.
1346 */
1347void
1348sosetlock(struct socket *so)
1349{
1350	kmutex_t *lock;
1351
1352	if (so->so_lock == NULL) {
1353		lock = softnet_lock;
1354		so->so_lock = lock;
1355		mutex_obj_hold(lock);
1356		mutex_enter(lock);
1357	}
1358
1359	/* In all cases, lock must be held on return from PRU_ATTACH. */
1360	KASSERT(solocked(so));
1361}
1362
1363/*
1364 * Set lock on sockbuf sb; sleep if lock is already held.
1365 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1366 * Returns error without lock if sleep is interrupted.
1367 */
1368int
1369sblock(struct sockbuf *sb, int wf)
1370{
1371	struct socket *so;
1372	kmutex_t *lock;
1373	int error;
1374
1375	KASSERT(solocked(sb->sb_so));
1376
1377	for (;;) {
1378		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1379			sb->sb_flags |= SB_LOCK;
1380			return 0;
1381		}
1382		if (wf != M_WAITOK)
1383			return EWOULDBLOCK;
1384		so = sb->sb_so;
1385		lock = so->so_lock;
1386		if ((sb->sb_flags & SB_NOINTR) != 0) {
1387			cv_wait(&so->so_cv, lock);
1388			error = 0;
1389		} else
1390			error = cv_wait_sig(&so->so_cv, lock);
1391		if (__predict_false(lock != so->so_lock))
1392			solockretry(so, lock);
1393		if (error != 0)
1394			return error;
1395	}
1396}
1397
1398void
1399sbunlock(struct sockbuf *sb)
1400{
1401	struct socket *so;
1402
1403	so = sb->sb_so;
1404
1405	KASSERT(solocked(so));
1406	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1407
1408	sb->sb_flags &= ~SB_LOCK;
1409	cv_broadcast(&so->so_cv);
1410}
1411
1412int
1413sowait(struct socket *so, int timo)
1414{
1415	kmutex_t *lock;
1416	int error;
1417
1418	KASSERT(solocked(so));
1419
1420	lock = so->so_lock;
1421	error = cv_timedwait_sig(&so->so_cv, lock, timo);
1422	if (__predict_false(lock != so->so_lock))
1423		solockretry(so, lock);
1424	return error;
1425}
1426