uipc_socket2.c revision 1.95
1/*	$NetBSD: uipc_socket2.c,v 1.95 2008/06/10 11:49:11 ad Exp $	*/
2
3/*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 *    may be used to endorse or promote products derived from this software
43 *    without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58 */
59
60#include <sys/cdefs.h>
61__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.95 2008/06/10 11:49:11 ad Exp $");
62
63#include "opt_mbuftrace.h"
64#include "opt_sb_max.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/proc.h>
69#include <sys/file.h>
70#include <sys/buf.h>
71#include <sys/malloc.h>
72#include <sys/mbuf.h>
73#include <sys/protosw.h>
74#include <sys/domain.h>
75#include <sys/poll.h>
76#include <sys/socket.h>
77#include <sys/socketvar.h>
78#include <sys/signalvar.h>
79#include <sys/kauth.h>
80#include <sys/pool.h>
81
82/*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Locking rules and assumptions:
86 *
87 * o socket::so_lock can change on the fly.  The low level routines used
88 *   to lock sockets are aware of this.  When so_lock is acquired, the
89 *   routine locking must check to see if so_lock still points to the
90 *   lock that was acquired.  If so_lock has changed in the meantime, the
91 *   now irellevant lock that was acquired must be dropped and the lock
92 *   operation retried.  Although not proven here, this is completely safe
93 *   on a multiprocessor system, even with relaxed memory ordering, given
94 *   the next two rules:
95 *
96 * o In order to mutate so_lock, the lock pointed to by the current value
97 *   of so_lock must be held: i.e., the socket must be held locked by the
98 *   changing thread.  The thread must issue membar_exit() to prevent
99 *   memory accesses being reordered, and can set so_lock to the desired
100 *   value.  If the lock pointed to by the new value of so_lock is not
101 *   held by the changing thread, the socket must then be considered
102 *   unlocked.
103 *
104 * o If so_lock is mutated, and the previous lock referred to by so_lock
105 *   could still be visible to other threads in the system (e.g. via file
106 *   descriptor or protocol-internal reference), then the old lock must
107 *   remain valid until the socket and/or protocol control block has been
108 *   torn down.
109 *
110 * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 *   connecting), then locking the socket must also lock the socket pointed
112 *   to by so_head: their lock pointers must match.
113 *
114 * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 *   locking the socket must also lock the sockets attached to both queues.
116 *   Again, their lock pointers must match.
117 *
118 * o Beyond the initial lock assigment in socreate(), assigning locks to
119 *   sockets is the responsibility of the individual protocols / protocol
120 *   domains.
121 */
122
123static pool_cache_t socket_cache;
124
125u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
126static u_long sb_max_adj;	/* adjusted sb_max */
127
128/*
129 * Procedures to manipulate state flags of socket
130 * and do appropriate wakeups.  Normal sequence from the
131 * active (originating) side is that soisconnecting() is
132 * called during processing of connect() call,
133 * resulting in an eventual call to soisconnected() if/when the
134 * connection is established.  When the connection is torn down
135 * soisdisconnecting() is called during processing of disconnect() call,
136 * and soisdisconnected() is called when the connection to the peer
137 * is totally severed.  The semantics of these routines are such that
138 * connectionless protocols can call soisconnected() and soisdisconnected()
139 * only, bypassing the in-progress calls when setting up a ``connection''
140 * takes no time.
141 *
142 * From the passive side, a socket is created with
143 * two queues of sockets: so_q0 for connections in progress
144 * and so_q for connections already made and awaiting user acceptance.
145 * As a protocol is preparing incoming connections, it creates a socket
146 * structure queued on so_q0 by calling sonewconn().  When the connection
147 * is established, soisconnected() is called, and transfers the
148 * socket structure to so_q, making it available to accept().
149 *
150 * If a socket is closed with sockets on either
151 * so_q0 or so_q, these sockets are dropped.
152 *
153 * If higher level protocols are implemented in
154 * the kernel, the wakeups done here will sometimes
155 * cause software-interrupt process scheduling.
156 */
157
158void
159soisconnecting(struct socket *so)
160{
161
162	KASSERT(solocked(so));
163
164	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165	so->so_state |= SS_ISCONNECTING;
166}
167
168void
169soisconnected(struct socket *so)
170{
171	struct socket	*head;
172
173	head = so->so_head;
174
175	KASSERT(solocked(so));
176	KASSERT(head == NULL || solocked2(so, head));
177
178	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179	so->so_state |= SS_ISCONNECTED;
180	if (head && soqremque(so, 0)) {
181		soqinsque(head, so, 1);
182		sorwakeup(head);
183		cv_broadcast(&head->so_cv);
184	} else {
185		cv_broadcast(&so->so_cv);
186		sorwakeup(so);
187		sowwakeup(so);
188	}
189}
190
191void
192soisdisconnecting(struct socket *so)
193{
194
195	KASSERT(solocked(so));
196
197	so->so_state &= ~SS_ISCONNECTING;
198	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
199	cv_broadcast(&so->so_cv);
200	sowwakeup(so);
201	sorwakeup(so);
202}
203
204void
205soisdisconnected(struct socket *so)
206{
207
208	KASSERT(solocked(so));
209
210	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
211	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
212	cv_broadcast(&so->so_cv);
213	sowwakeup(so);
214	sorwakeup(so);
215}
216
217void
218soinit2(void)
219{
220
221	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
222	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
223}
224
225/*
226 * When an attempt at a new connection is noted on a socket
227 * which accepts connections, sonewconn is called.  If the
228 * connection is possible (subject to space constraints, etc.)
229 * then we allocate a new structure, propoerly linked into the
230 * data structure of the original socket, and return this.
231 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
232 */
233struct socket *
234sonewconn(struct socket *head, int connstatus)
235{
236	struct socket	*so;
237	int		soqueue, error;
238
239	KASSERT(solocked(head));
240
241	soqueue = connstatus ? 1 : 0;
242	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
243		return ((struct socket *)0);
244	so = soget(false);
245	if (so == NULL)
246		return (NULL);
247	mutex_obj_hold(head->so_lock);
248	so->so_lock = head->so_lock;
249	so->so_type = head->so_type;
250	so->so_options = head->so_options &~ SO_ACCEPTCONN;
251	so->so_linger = head->so_linger;
252	so->so_state = head->so_state | SS_NOFDREF;
253	so->so_nbio = head->so_nbio;
254	so->so_proto = head->so_proto;
255	so->so_timeo = head->so_timeo;
256	so->so_pgid = head->so_pgid;
257	so->so_send = head->so_send;
258	so->so_receive = head->so_receive;
259	so->so_uidinfo = head->so_uidinfo;
260#ifdef MBUFTRACE
261	so->so_mowner = head->so_mowner;
262	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
263	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
264#endif
265	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
266	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
267	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
268	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
269	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
270	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
271	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
272	soqinsque(head, so, soqueue);
273	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
274	    NULL, NULL);
275	KASSERT(solocked(so));
276	if (error != 0) {
277		(void) soqremque(so, soqueue);
278		soput(so);
279		return (NULL);
280	}
281	if (connstatus) {
282		sorwakeup(head);
283		cv_broadcast(&head->so_cv);
284		so->so_state |= connstatus;
285	}
286	return (so);
287}
288
289struct socket *
290soget(bool waitok)
291{
292	struct socket *so;
293
294	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
295	if (__predict_false(so == NULL))
296		return (NULL);
297	memset(so, 0, sizeof(*so));
298	TAILQ_INIT(&so->so_q0);
299	TAILQ_INIT(&so->so_q);
300	cv_init(&so->so_cv, "socket");
301	cv_init(&so->so_rcv.sb_cv, "netio");
302	cv_init(&so->so_snd.sb_cv, "netio");
303	selinit(&so->so_rcv.sb_sel);
304	selinit(&so->so_snd.sb_sel);
305	so->so_rcv.sb_so = so;
306	so->so_snd.sb_so = so;
307	return so;
308}
309
310void
311soput(struct socket *so)
312{
313
314	KASSERT(!cv_has_waiters(&so->so_cv));
315	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
316	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
317	seldestroy(&so->so_rcv.sb_sel);
318	seldestroy(&so->so_snd.sb_sel);
319	mutex_obj_free(so->so_lock);
320	cv_destroy(&so->so_cv);
321	cv_destroy(&so->so_rcv.sb_cv);
322	cv_destroy(&so->so_snd.sb_cv);
323	pool_cache_put(socket_cache, so);
324}
325
326void
327soqinsque(struct socket *head, struct socket *so, int q)
328{
329
330	KASSERT(solocked2(head, so));
331
332#ifdef DIAGNOSTIC
333	if (so->so_onq != NULL)
334		panic("soqinsque");
335#endif
336
337	so->so_head = head;
338	if (q == 0) {
339		head->so_q0len++;
340		so->so_onq = &head->so_q0;
341	} else {
342		head->so_qlen++;
343		so->so_onq = &head->so_q;
344	}
345	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
346}
347
348int
349soqremque(struct socket *so, int q)
350{
351	struct socket	*head;
352
353	head = so->so_head;
354
355	KASSERT(solocked(so));
356	if (q == 0) {
357		if (so->so_onq != &head->so_q0)
358			return (0);
359		head->so_q0len--;
360	} else {
361		if (so->so_onq != &head->so_q)
362			return (0);
363		head->so_qlen--;
364	}
365	KASSERT(solocked2(so, head));
366	TAILQ_REMOVE(so->so_onq, so, so_qe);
367	so->so_onq = NULL;
368	so->so_head = NULL;
369	return (1);
370}
371
372/*
373 * Socantsendmore indicates that no more data will be sent on the
374 * socket; it would normally be applied to a socket when the user
375 * informs the system that no more data is to be sent, by the protocol
376 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
377 * will be received, and will normally be applied to the socket by a
378 * protocol when it detects that the peer will send no more data.
379 * Data queued for reading in the socket may yet be read.
380 */
381
382void
383socantsendmore(struct socket *so)
384{
385
386	KASSERT(solocked(so));
387
388	so->so_state |= SS_CANTSENDMORE;
389	sowwakeup(so);
390}
391
392void
393socantrcvmore(struct socket *so)
394{
395
396	KASSERT(solocked(so));
397
398	so->so_state |= SS_CANTRCVMORE;
399	sorwakeup(so);
400}
401
402/*
403 * Wait for data to arrive at/drain from a socket buffer.
404 */
405int
406sbwait(struct sockbuf *sb)
407{
408	struct socket *so;
409	kmutex_t *lock;
410	int error;
411
412	so = sb->sb_so;
413
414	KASSERT(solocked(so));
415
416	sb->sb_flags |= SB_NOTIFY;
417	lock = so->so_lock;
418	if ((sb->sb_flags & SB_NOINTR) != 0)
419		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
420	else
421		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
422	if (__predict_false(lock != so->so_lock))
423		solockretry(so, lock);
424	return error;
425}
426
427/*
428 * Wakeup processes waiting on a socket buffer.
429 * Do asynchronous notification via SIGIO
430 * if the socket buffer has the SB_ASYNC flag set.
431 */
432void
433sowakeup(struct socket *so, struct sockbuf *sb, int code)
434{
435	int band;
436
437	KASSERT(solocked(so));
438	KASSERT(sb->sb_so == so);
439
440	if (code == POLL_IN)
441		band = POLLIN|POLLRDNORM;
442	else
443		band = POLLOUT|POLLWRNORM;
444	sb->sb_flags &= ~SB_NOTIFY;
445	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
446	cv_broadcast(&sb->sb_cv);
447	if (sb->sb_flags & SB_ASYNC)
448		fownsignal(so->so_pgid, SIGIO, code, band, so);
449	if (sb->sb_flags & SB_UPCALL)
450		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
451}
452
453/*
454 * Reset a socket's lock pointer.  Wake all threads waiting on the
455 * socket's condition variables so that they can restart their waits
456 * using the new lock.  The existing lock must be held.
457 */
458void
459solockreset(struct socket *so, kmutex_t *lock)
460{
461
462	KASSERT(solocked(so));
463
464	so->so_lock = lock;
465	cv_broadcast(&so->so_snd.sb_cv);
466	cv_broadcast(&so->so_rcv.sb_cv);
467	cv_broadcast(&so->so_cv);
468}
469
470/*
471 * Socket buffer (struct sockbuf) utility routines.
472 *
473 * Each socket contains two socket buffers: one for sending data and
474 * one for receiving data.  Each buffer contains a queue of mbufs,
475 * information about the number of mbufs and amount of data in the
476 * queue, and other fields allowing poll() statements and notification
477 * on data availability to be implemented.
478 *
479 * Data stored in a socket buffer is maintained as a list of records.
480 * Each record is a list of mbufs chained together with the m_next
481 * field.  Records are chained together with the m_nextpkt field. The upper
482 * level routine soreceive() expects the following conventions to be
483 * observed when placing information in the receive buffer:
484 *
485 * 1. If the protocol requires each message be preceded by the sender's
486 *    name, then a record containing that name must be present before
487 *    any associated data (mbuf's must be of type MT_SONAME).
488 * 2. If the protocol supports the exchange of ``access rights'' (really
489 *    just additional data associated with the message), and there are
490 *    ``rights'' to be received, then a record containing this data
491 *    should be present (mbuf's must be of type MT_CONTROL).
492 * 3. If a name or rights record exists, then it must be followed by
493 *    a data record, perhaps of zero length.
494 *
495 * Before using a new socket structure it is first necessary to reserve
496 * buffer space to the socket, by calling sbreserve().  This should commit
497 * some of the available buffer space in the system buffer pool for the
498 * socket (currently, it does nothing but enforce limits).  The space
499 * should be released by calling sbrelease() when the socket is destroyed.
500 */
501
502int
503sb_max_set(u_long new_sbmax)
504{
505	int s;
506
507	if (new_sbmax < (16 * 1024))
508		return (EINVAL);
509
510	s = splsoftnet();
511	sb_max = new_sbmax;
512	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
513	splx(s);
514
515	return (0);
516}
517
518int
519soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
520{
521
522	KASSERT(so->so_lock == NULL || solocked(so));
523
524	/*
525	 * there's at least one application (a configure script of screen)
526	 * which expects a fifo is writable even if it has "some" bytes
527	 * in its buffer.
528	 * so we want to make sure (hiwat - lowat) >= (some bytes).
529	 *
530	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
531	 * we expect it's large enough for such applications.
532	 */
533	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
534	u_long  hiwat = lowat + PIPE_BUF;
535
536	if (sndcc < hiwat)
537		sndcc = hiwat;
538	if (sbreserve(&so->so_snd, sndcc, so) == 0)
539		goto bad;
540	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
541		goto bad2;
542	if (so->so_rcv.sb_lowat == 0)
543		so->so_rcv.sb_lowat = 1;
544	if (so->so_snd.sb_lowat == 0)
545		so->so_snd.sb_lowat = lowat;
546	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
547		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
548	return (0);
549 bad2:
550	sbrelease(&so->so_snd, so);
551 bad:
552	return (ENOBUFS);
553}
554
555/*
556 * Allot mbufs to a sockbuf.
557 * Attempt to scale mbmax so that mbcnt doesn't become limiting
558 * if buffering efficiency is near the normal case.
559 */
560int
561sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
562{
563	struct lwp *l = curlwp; /* XXX */
564	rlim_t maxcc;
565	struct uidinfo *uidinfo;
566
567	KASSERT(so->so_lock == NULL || solocked(so));
568	KASSERT(sb->sb_so == so);
569	KASSERT(sb_max_adj != 0);
570
571	if (cc == 0 || cc > sb_max_adj)
572		return (0);
573
574	if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
575		maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
576	else
577		maxcc = RLIM_INFINITY;
578
579	uidinfo = so->so_uidinfo;
580	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
581		return 0;
582	sb->sb_mbmax = min(cc * 2, sb_max);
583	if (sb->sb_lowat > sb->sb_hiwat)
584		sb->sb_lowat = sb->sb_hiwat;
585	return (1);
586}
587
588/*
589 * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
590 * that the socket is held locked here: see sorflush().
591 */
592void
593sbrelease(struct sockbuf *sb, struct socket *so)
594{
595
596	KASSERT(sb->sb_so == so);
597
598	sbflush(sb);
599	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
600	sb->sb_mbmax = 0;
601}
602
603/*
604 * Routines to add and remove
605 * data from an mbuf queue.
606 *
607 * The routines sbappend() or sbappendrecord() are normally called to
608 * append new mbufs to a socket buffer, after checking that adequate
609 * space is available, comparing the function sbspace() with the amount
610 * of data to be added.  sbappendrecord() differs from sbappend() in
611 * that data supplied is treated as the beginning of a new record.
612 * To place a sender's address, optional access rights, and data in a
613 * socket receive buffer, sbappendaddr() should be used.  To place
614 * access rights and data in a socket receive buffer, sbappendrights()
615 * should be used.  In either case, the new data begins a new record.
616 * Note that unlike sbappend() and sbappendrecord(), these routines check
617 * for the caller that there will be enough space to store the data.
618 * Each fails if there is not enough space, or if it cannot find mbufs
619 * to store additional information in.
620 *
621 * Reliable protocols may use the socket send buffer to hold data
622 * awaiting acknowledgement.  Data is normally copied from a socket
623 * send buffer in a protocol with m_copy for output to a peer,
624 * and then removing the data from the socket buffer with sbdrop()
625 * or sbdroprecord() when the data is acknowledged by the peer.
626 */
627
628#ifdef SOCKBUF_DEBUG
629void
630sblastrecordchk(struct sockbuf *sb, const char *where)
631{
632	struct mbuf *m = sb->sb_mb;
633
634	KASSERT(solocked(sb->sb_so));
635
636	while (m && m->m_nextpkt)
637		m = m->m_nextpkt;
638
639	if (m != sb->sb_lastrecord) {
640		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
641		    sb->sb_mb, sb->sb_lastrecord, m);
642		printf("packet chain:\n");
643		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
644			printf("\t%p\n", m);
645		panic("sblastrecordchk from %s", where);
646	}
647}
648
649void
650sblastmbufchk(struct sockbuf *sb, const char *where)
651{
652	struct mbuf *m = sb->sb_mb;
653	struct mbuf *n;
654
655	KASSERT(solocked(sb->sb_so));
656
657	while (m && m->m_nextpkt)
658		m = m->m_nextpkt;
659
660	while (m && m->m_next)
661		m = m->m_next;
662
663	if (m != sb->sb_mbtail) {
664		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
665		    sb->sb_mb, sb->sb_mbtail, m);
666		printf("packet tree:\n");
667		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
668			printf("\t");
669			for (n = m; n != NULL; n = n->m_next)
670				printf("%p ", n);
671			printf("\n");
672		}
673		panic("sblastmbufchk from %s", where);
674	}
675}
676#endif /* SOCKBUF_DEBUG */
677
678/*
679 * Link a chain of records onto a socket buffer
680 */
681#define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
682do {									\
683	if ((sb)->sb_lastrecord != NULL)				\
684		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
685	else								\
686		(sb)->sb_mb = (m0);					\
687	(sb)->sb_lastrecord = (mlast);					\
688} while (/*CONSTCOND*/0)
689
690
691#define	SBLINKRECORD(sb, m0)						\
692    SBLINKRECORDCHAIN(sb, m0, m0)
693
694/*
695 * Append mbuf chain m to the last record in the
696 * socket buffer sb.  The additional space associated
697 * the mbuf chain is recorded in sb.  Empty mbufs are
698 * discarded and mbufs are compacted where possible.
699 */
700void
701sbappend(struct sockbuf *sb, struct mbuf *m)
702{
703	struct mbuf	*n;
704
705	KASSERT(solocked(sb->sb_so));
706
707	if (m == 0)
708		return;
709
710#ifdef MBUFTRACE
711	m_claimm(m, sb->sb_mowner);
712#endif
713
714	SBLASTRECORDCHK(sb, "sbappend 1");
715
716	if ((n = sb->sb_lastrecord) != NULL) {
717		/*
718		 * XXX Would like to simply use sb_mbtail here, but
719		 * XXX I need to verify that I won't miss an EOR that
720		 * XXX way.
721		 */
722		do {
723			if (n->m_flags & M_EOR) {
724				sbappendrecord(sb, m); /* XXXXXX!!!! */
725				return;
726			}
727		} while (n->m_next && (n = n->m_next));
728	} else {
729		/*
730		 * If this is the first record in the socket buffer, it's
731		 * also the last record.
732		 */
733		sb->sb_lastrecord = m;
734	}
735	sbcompress(sb, m, n);
736	SBLASTRECORDCHK(sb, "sbappend 2");
737}
738
739/*
740 * This version of sbappend() should only be used when the caller
741 * absolutely knows that there will never be more than one record
742 * in the socket buffer, that is, a stream protocol (such as TCP).
743 */
744void
745sbappendstream(struct sockbuf *sb, struct mbuf *m)
746{
747
748	KASSERT(solocked(sb->sb_so));
749	KDASSERT(m->m_nextpkt == NULL);
750	KASSERT(sb->sb_mb == sb->sb_lastrecord);
751
752	SBLASTMBUFCHK(sb, __func__);
753
754#ifdef MBUFTRACE
755	m_claimm(m, sb->sb_mowner);
756#endif
757
758	sbcompress(sb, m, sb->sb_mbtail);
759
760	sb->sb_lastrecord = sb->sb_mb;
761	SBLASTRECORDCHK(sb, __func__);
762}
763
764#ifdef SOCKBUF_DEBUG
765void
766sbcheck(struct sockbuf *sb)
767{
768	struct mbuf	*m, *m2;
769	u_long		len, mbcnt;
770
771	KASSERT(solocked(sb->sb_so));
772
773	len = 0;
774	mbcnt = 0;
775	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
776		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
777			len += m2->m_len;
778			mbcnt += MSIZE;
779			if (m2->m_flags & M_EXT)
780				mbcnt += m2->m_ext.ext_size;
781			if (m2->m_nextpkt != NULL)
782				panic("sbcheck nextpkt");
783		}
784	}
785	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
786		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
787		    mbcnt, sb->sb_mbcnt);
788		panic("sbcheck");
789	}
790}
791#endif
792
793/*
794 * As above, except the mbuf chain
795 * begins a new record.
796 */
797void
798sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
799{
800	struct mbuf	*m;
801
802	KASSERT(solocked(sb->sb_so));
803
804	if (m0 == 0)
805		return;
806
807#ifdef MBUFTRACE
808	m_claimm(m0, sb->sb_mowner);
809#endif
810	/*
811	 * Put the first mbuf on the queue.
812	 * Note this permits zero length records.
813	 */
814	sballoc(sb, m0);
815	SBLASTRECORDCHK(sb, "sbappendrecord 1");
816	SBLINKRECORD(sb, m0);
817	m = m0->m_next;
818	m0->m_next = 0;
819	if (m && (m0->m_flags & M_EOR)) {
820		m0->m_flags &= ~M_EOR;
821		m->m_flags |= M_EOR;
822	}
823	sbcompress(sb, m, m0);
824	SBLASTRECORDCHK(sb, "sbappendrecord 2");
825}
826
827/*
828 * As above except that OOB data
829 * is inserted at the beginning of the sockbuf,
830 * but after any other OOB data.
831 */
832void
833sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
834{
835	struct mbuf	*m, **mp;
836
837	KASSERT(solocked(sb->sb_so));
838
839	if (m0 == 0)
840		return;
841
842	SBLASTRECORDCHK(sb, "sbinsertoob 1");
843
844	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
845	    again:
846		switch (m->m_type) {
847
848		case MT_OOBDATA:
849			continue;		/* WANT next train */
850
851		case MT_CONTROL:
852			if ((m = m->m_next) != NULL)
853				goto again;	/* inspect THIS train further */
854		}
855		break;
856	}
857	/*
858	 * Put the first mbuf on the queue.
859	 * Note this permits zero length records.
860	 */
861	sballoc(sb, m0);
862	m0->m_nextpkt = *mp;
863	if (*mp == NULL) {
864		/* m0 is actually the new tail */
865		sb->sb_lastrecord = m0;
866	}
867	*mp = m0;
868	m = m0->m_next;
869	m0->m_next = 0;
870	if (m && (m0->m_flags & M_EOR)) {
871		m0->m_flags &= ~M_EOR;
872		m->m_flags |= M_EOR;
873	}
874	sbcompress(sb, m, m0);
875	SBLASTRECORDCHK(sb, "sbinsertoob 2");
876}
877
878/*
879 * Append address and data, and optionally, control (ancillary) data
880 * to the receive queue of a socket.  If present,
881 * m0 must include a packet header with total length.
882 * Returns 0 if no space in sockbuf or insufficient mbufs.
883 */
884int
885sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
886	struct mbuf *control)
887{
888	struct mbuf	*m, *n, *nlast;
889	int		space, len;
890
891	KASSERT(solocked(sb->sb_so));
892
893	space = asa->sa_len;
894
895	if (m0 != NULL) {
896		if ((m0->m_flags & M_PKTHDR) == 0)
897			panic("sbappendaddr");
898		space += m0->m_pkthdr.len;
899#ifdef MBUFTRACE
900		m_claimm(m0, sb->sb_mowner);
901#endif
902	}
903	for (n = control; n; n = n->m_next) {
904		space += n->m_len;
905		MCLAIM(n, sb->sb_mowner);
906		if (n->m_next == 0)	/* keep pointer to last control buf */
907			break;
908	}
909	if (space > sbspace(sb))
910		return (0);
911	MGET(m, M_DONTWAIT, MT_SONAME);
912	if (m == 0)
913		return (0);
914	MCLAIM(m, sb->sb_mowner);
915	/*
916	 * XXX avoid 'comparison always true' warning which isn't easily
917	 * avoided.
918	 */
919	len = asa->sa_len;
920	if (len > MLEN) {
921		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
922		if ((m->m_flags & M_EXT) == 0) {
923			m_free(m);
924			return (0);
925		}
926	}
927	m->m_len = asa->sa_len;
928	memcpy(mtod(m, void *), asa, asa->sa_len);
929	if (n)
930		n->m_next = m0;		/* concatenate data to control */
931	else
932		control = m0;
933	m->m_next = control;
934
935	SBLASTRECORDCHK(sb, "sbappendaddr 1");
936
937	for (n = m; n->m_next != NULL; n = n->m_next)
938		sballoc(sb, n);
939	sballoc(sb, n);
940	nlast = n;
941	SBLINKRECORD(sb, m);
942
943	sb->sb_mbtail = nlast;
944	SBLASTMBUFCHK(sb, "sbappendaddr");
945	SBLASTRECORDCHK(sb, "sbappendaddr 2");
946
947	return (1);
948}
949
950/*
951 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
952 * an mbuf chain.
953 */
954static inline struct mbuf *
955m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
956		   const struct sockaddr *asa)
957{
958	struct mbuf *m;
959	const int salen = asa->sa_len;
960
961	KASSERT(solocked(sb->sb_so));
962
963	/* only the first in each chain need be a pkthdr */
964	MGETHDR(m, M_DONTWAIT, MT_SONAME);
965	if (m == 0)
966		return (0);
967	MCLAIM(m, sb->sb_mowner);
968#ifdef notyet
969	if (salen > MHLEN) {
970		MEXTMALLOC(m, salen, M_NOWAIT);
971		if ((m->m_flags & M_EXT) == 0) {
972			m_free(m);
973			return (0);
974		}
975	}
976#else
977	KASSERT(salen <= MHLEN);
978#endif
979	m->m_len = salen;
980	memcpy(mtod(m, void *), asa, salen);
981	m->m_next = m0;
982	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
983
984	return m;
985}
986
987int
988sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
989		  struct mbuf *m0, int sbprio)
990{
991	int space;
992	struct mbuf *m, *n, *n0, *nlast;
993	int error;
994
995	KASSERT(solocked(sb->sb_so));
996
997	/*
998	 * XXX sbprio reserved for encoding priority of this* request:
999	 *  SB_PRIO_NONE --> honour normal sb limits
1000	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1001	 *	take whole chain. Intended for large requests
1002	 *      that should be delivered atomically (all, or none).
1003	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1004	 *       over normal socket limits, for messages indicating
1005	 *       buffer overflow in earlier normal/lower-priority messages
1006	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1007	 *       Intended for  kernel-generated messages only.
1008	 *        Up to generator to avoid total mbuf resource exhaustion.
1009	 */
1010	(void)sbprio;
1011
1012	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1013		panic("sbappendaddrchain");
1014
1015	space = sbspace(sb);
1016
1017#ifdef notyet
1018	/*
1019	 * Enforce SB_PRIO_* limits as described above.
1020	 */
1021#endif
1022
1023	n0 = NULL;
1024	nlast = NULL;
1025	for (m = m0; m; m = m->m_nextpkt) {
1026		struct mbuf *np;
1027
1028#ifdef MBUFTRACE
1029		m_claimm(m, sb->sb_mowner);
1030#endif
1031
1032		/* Prepend sockaddr to this record (m) of input chain m0 */
1033	  	n = m_prepend_sockaddr(sb, m, asa);
1034		if (n == NULL) {
1035			error = ENOBUFS;
1036			goto bad;
1037		}
1038
1039		/* Append record (asa+m) to end of new chain n0 */
1040		if (n0 == NULL) {
1041			n0 = n;
1042		} else {
1043			nlast->m_nextpkt = n;
1044		}
1045		/* Keep track of last record on new chain */
1046		nlast = n;
1047
1048		for (np = n; np; np = np->m_next)
1049			sballoc(sb, np);
1050	}
1051
1052	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1053
1054	/* Drop the entire chain of (asa+m) records onto the socket */
1055	SBLINKRECORDCHAIN(sb, n0, nlast);
1056
1057	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1058
1059	for (m = nlast; m->m_next; m = m->m_next)
1060		;
1061	sb->sb_mbtail = m;
1062	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1063
1064	return (1);
1065
1066bad:
1067	/*
1068	 * On error, free the prepended addreseses. For consistency
1069	 * with sbappendaddr(), leave it to our caller to free
1070	 * the input record chain passed to us as m0.
1071	 */
1072	while ((n = n0) != NULL) {
1073	  	struct mbuf *np;
1074
1075		/* Undo the sballoc() of this record */
1076		for (np = n; np; np = np->m_next)
1077			sbfree(sb, np);
1078
1079		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1080		MFREE(n, np);		/* free prepended address (not data) */
1081	}
1082	return 0;
1083}
1084
1085
1086int
1087sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1088{
1089	struct mbuf	*m, *mlast, *n;
1090	int		space;
1091
1092	KASSERT(solocked(sb->sb_so));
1093
1094	space = 0;
1095	if (control == 0)
1096		panic("sbappendcontrol");
1097	for (m = control; ; m = m->m_next) {
1098		space += m->m_len;
1099		MCLAIM(m, sb->sb_mowner);
1100		if (m->m_next == 0)
1101			break;
1102	}
1103	n = m;			/* save pointer to last control buffer */
1104	for (m = m0; m; m = m->m_next) {
1105		MCLAIM(m, sb->sb_mowner);
1106		space += m->m_len;
1107	}
1108	if (space > sbspace(sb))
1109		return (0);
1110	n->m_next = m0;			/* concatenate data to control */
1111
1112	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1113
1114	for (m = control; m->m_next != NULL; m = m->m_next)
1115		sballoc(sb, m);
1116	sballoc(sb, m);
1117	mlast = m;
1118	SBLINKRECORD(sb, control);
1119
1120	sb->sb_mbtail = mlast;
1121	SBLASTMBUFCHK(sb, "sbappendcontrol");
1122	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1123
1124	return (1);
1125}
1126
1127/*
1128 * Compress mbuf chain m into the socket
1129 * buffer sb following mbuf n.  If n
1130 * is null, the buffer is presumed empty.
1131 */
1132void
1133sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1134{
1135	int		eor;
1136	struct mbuf	*o;
1137
1138	KASSERT(solocked(sb->sb_so));
1139
1140	eor = 0;
1141	while (m) {
1142		eor |= m->m_flags & M_EOR;
1143		if (m->m_len == 0 &&
1144		    (eor == 0 ||
1145		     (((o = m->m_next) || (o = n)) &&
1146		      o->m_type == m->m_type))) {
1147			if (sb->sb_lastrecord == m)
1148				sb->sb_lastrecord = m->m_next;
1149			m = m_free(m);
1150			continue;
1151		}
1152		if (n && (n->m_flags & M_EOR) == 0 &&
1153		    /* M_TRAILINGSPACE() checks buffer writeability */
1154		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1155		    m->m_len <= M_TRAILINGSPACE(n) &&
1156		    n->m_type == m->m_type) {
1157			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1158			    (unsigned)m->m_len);
1159			n->m_len += m->m_len;
1160			sb->sb_cc += m->m_len;
1161			m = m_free(m);
1162			continue;
1163		}
1164		if (n)
1165			n->m_next = m;
1166		else
1167			sb->sb_mb = m;
1168		sb->sb_mbtail = m;
1169		sballoc(sb, m);
1170		n = m;
1171		m->m_flags &= ~M_EOR;
1172		m = m->m_next;
1173		n->m_next = 0;
1174	}
1175	if (eor) {
1176		if (n)
1177			n->m_flags |= eor;
1178		else
1179			printf("semi-panic: sbcompress\n");
1180	}
1181	SBLASTMBUFCHK(sb, __func__);
1182}
1183
1184/*
1185 * Free all mbufs in a sockbuf.
1186 * Check that all resources are reclaimed.
1187 */
1188void
1189sbflush(struct sockbuf *sb)
1190{
1191
1192	KASSERT(solocked(sb->sb_so));
1193	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1194
1195	while (sb->sb_mbcnt)
1196		sbdrop(sb, (int)sb->sb_cc);
1197
1198	KASSERT(sb->sb_cc == 0);
1199	KASSERT(sb->sb_mb == NULL);
1200	KASSERT(sb->sb_mbtail == NULL);
1201	KASSERT(sb->sb_lastrecord == NULL);
1202}
1203
1204/*
1205 * Drop data from (the front of) a sockbuf.
1206 */
1207void
1208sbdrop(struct sockbuf *sb, int len)
1209{
1210	struct mbuf	*m, *mn, *next;
1211
1212	KASSERT(solocked(sb->sb_so));
1213
1214	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1215	while (len > 0) {
1216		if (m == 0) {
1217			if (next == 0)
1218				panic("sbdrop");
1219			m = next;
1220			next = m->m_nextpkt;
1221			continue;
1222		}
1223		if (m->m_len > len) {
1224			m->m_len -= len;
1225			m->m_data += len;
1226			sb->sb_cc -= len;
1227			break;
1228		}
1229		len -= m->m_len;
1230		sbfree(sb, m);
1231		MFREE(m, mn);
1232		m = mn;
1233	}
1234	while (m && m->m_len == 0) {
1235		sbfree(sb, m);
1236		MFREE(m, mn);
1237		m = mn;
1238	}
1239	if (m) {
1240		sb->sb_mb = m;
1241		m->m_nextpkt = next;
1242	} else
1243		sb->sb_mb = next;
1244	/*
1245	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1246	 * makes sure sb_lastrecord is up-to-date if we dropped
1247	 * part of the last record.
1248	 */
1249	m = sb->sb_mb;
1250	if (m == NULL) {
1251		sb->sb_mbtail = NULL;
1252		sb->sb_lastrecord = NULL;
1253	} else if (m->m_nextpkt == NULL)
1254		sb->sb_lastrecord = m;
1255}
1256
1257/*
1258 * Drop a record off the front of a sockbuf
1259 * and move the next record to the front.
1260 */
1261void
1262sbdroprecord(struct sockbuf *sb)
1263{
1264	struct mbuf	*m, *mn;
1265
1266	KASSERT(solocked(sb->sb_so));
1267
1268	m = sb->sb_mb;
1269	if (m) {
1270		sb->sb_mb = m->m_nextpkt;
1271		do {
1272			sbfree(sb, m);
1273			MFREE(m, mn);
1274		} while ((m = mn) != NULL);
1275	}
1276	SB_EMPTY_FIXUP(sb);
1277}
1278
1279/*
1280 * Create a "control" mbuf containing the specified data
1281 * with the specified type for presentation on a socket buffer.
1282 */
1283struct mbuf *
1284sbcreatecontrol(void *p, int size, int type, int level)
1285{
1286	struct cmsghdr	*cp;
1287	struct mbuf	*m;
1288
1289	if (CMSG_SPACE(size) > MCLBYTES) {
1290		printf("sbcreatecontrol: message too large %d\n", size);
1291		return NULL;
1292	}
1293
1294	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1295		return ((struct mbuf *) NULL);
1296	if (CMSG_SPACE(size) > MLEN) {
1297		MCLGET(m, M_DONTWAIT);
1298		if ((m->m_flags & M_EXT) == 0) {
1299			m_free(m);
1300			return NULL;
1301		}
1302	}
1303	cp = mtod(m, struct cmsghdr *);
1304	memcpy(CMSG_DATA(cp), p, size);
1305	m->m_len = CMSG_SPACE(size);
1306	cp->cmsg_len = CMSG_LEN(size);
1307	cp->cmsg_level = level;
1308	cp->cmsg_type = type;
1309	return (m);
1310}
1311
1312void
1313solockretry(struct socket *so, kmutex_t *lock)
1314{
1315
1316	while (lock != so->so_lock) {
1317		mutex_exit(lock);
1318		lock = so->so_lock;
1319		mutex_enter(lock);
1320	}
1321}
1322
1323bool
1324solocked(struct socket *so)
1325{
1326
1327	return mutex_owned(so->so_lock);
1328}
1329
1330bool
1331solocked2(struct socket *so1, struct socket *so2)
1332{
1333	kmutex_t *lock;
1334
1335	lock = so1->so_lock;
1336	if (lock != so2->so_lock)
1337		return false;
1338	return mutex_owned(lock);
1339}
1340
1341/*
1342 * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
1343 * protocols that do not have special locking requirements.
1344 */
1345void
1346sosetlock(struct socket *so)
1347{
1348	kmutex_t *lock;
1349
1350	if (so->so_lock == NULL) {
1351		lock = softnet_lock;
1352		so->so_lock = lock;
1353		mutex_obj_hold(lock);
1354		mutex_enter(lock);
1355	}
1356
1357	/* In all cases, lock must be held on return from PRU_ATTACH. */
1358	KASSERT(solocked(so));
1359}
1360
1361/*
1362 * Set lock on sockbuf sb; sleep if lock is already held.
1363 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1364 * Returns error without lock if sleep is interrupted.
1365 */
1366int
1367sblock(struct sockbuf *sb, int wf)
1368{
1369	struct socket *so;
1370	kmutex_t *lock;
1371	int error;
1372
1373	KASSERT(solocked(sb->sb_so));
1374
1375	for (;;) {
1376		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1377			sb->sb_flags |= SB_LOCK;
1378			return 0;
1379		}
1380		if (wf != M_WAITOK)
1381			return EWOULDBLOCK;
1382		so = sb->sb_so;
1383		lock = so->so_lock;
1384		if ((sb->sb_flags & SB_NOINTR) != 0) {
1385			cv_wait(&so->so_cv, lock);
1386			error = 0;
1387		} else
1388			error = cv_wait_sig(&so->so_cv, lock);
1389		if (__predict_false(lock != so->so_lock))
1390			solockretry(so, lock);
1391		if (error != 0)
1392			return error;
1393	}
1394}
1395
1396void
1397sbunlock(struct sockbuf *sb)
1398{
1399	struct socket *so;
1400
1401	so = sb->sb_so;
1402
1403	KASSERT(solocked(so));
1404	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1405
1406	sb->sb_flags &= ~SB_LOCK;
1407	cv_broadcast(&so->so_cv);
1408}
1409
1410int
1411sowait(struct socket *so, int timo)
1412{
1413	kmutex_t *lock;
1414	int error;
1415
1416	KASSERT(solocked(so));
1417
1418	lock = so->so_lock;
1419	error = cv_timedwait_sig(&so->so_cv, lock, timo);
1420	if (__predict_false(lock != so->so_lock))
1421		solockretry(so, lock);
1422	return error;
1423}
1424