uipc_socket2.c revision 1.92
1/*	$NetBSD: uipc_socket2.c,v 1.92 2008/04/28 20:24:05 martin Exp $	*/
2
3/*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 *    may be used to endorse or promote products derived from this software
43 *    without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58 */
59
60#include <sys/cdefs.h>
61__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.92 2008/04/28 20:24:05 martin Exp $");
62
63#include "opt_mbuftrace.h"
64#include "opt_sb_max.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/proc.h>
69#include <sys/file.h>
70#include <sys/buf.h>
71#include <sys/malloc.h>
72#include <sys/mbuf.h>
73#include <sys/protosw.h>
74#include <sys/domain.h>
75#include <sys/poll.h>
76#include <sys/socket.h>
77#include <sys/socketvar.h>
78#include <sys/signalvar.h>
79#include <sys/kauth.h>
80#include <sys/pool.h>
81
82/*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Locking rules and assumptions:
86 *
87 * o socket::so_lock can change on the fly.  The low level routines used
88 *   to lock sockets are aware of this.  When so_lock is acquired, the
89 *   routine locking must check to see if so_lock still points to the
90 *   lock that was acquired.  If so_lock has changed in the meantime, the
91 *   now irellevant lock that was acquired must be dropped and the lock
92 *   operation retried.  Although not proven here, this is completely safe
93 *   on a multiprocessor system, even with relaxed memory ordering, given
94 *   the next two rules:
95 *
96 * o In order to mutate so_lock, the lock pointed to by the current value
97 *   of so_lock must be held: i.e., the socket must be held locked by the
98 *   changing thread.  The thread must issue membar_exit() to prevent
99 *   memory accesses being reordered, and can set so_lock to the desired
100 *   value.  If the lock pointed to by the new value of so_lock is not
101 *   held by the changing thread, the socket must then be considered
102 *   unlocked.
103 *
104 * o If so_lock is mutated, and the previous lock referred to by so_lock
105 *   could still be visible to other threads in the system (e.g. via file
106 *   descriptor or protocol-internal reference), then the old lock must
107 *   remain valid until the socket and/or protocol control block has been
108 *   torn down.
109 *
110 * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 *   connecting), then locking the socket must also lock the socket pointed
112 *   to by so_head: their lock pointers must match.
113 *
114 * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 *   locking the socket must also lock the sockets attached to both queues.
116 *   Again, their lock pointers must match.
117 *
118 * o Beyond the initial lock assigment in socreate(), assigning locks to
119 *   sockets is the responsibility of the individual protocols / protocol
120 *   domains.
121 */
122
123static POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
124    IPL_SOFTNET);
125
126u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
127static u_long sb_max_adj;	/* adjusted sb_max */
128
129/*
130 * Procedures to manipulate state flags of socket
131 * and do appropriate wakeups.  Normal sequence from the
132 * active (originating) side is that soisconnecting() is
133 * called during processing of connect() call,
134 * resulting in an eventual call to soisconnected() if/when the
135 * connection is established.  When the connection is torn down
136 * soisdisconnecting() is called during processing of disconnect() call,
137 * and soisdisconnected() is called when the connection to the peer
138 * is totally severed.  The semantics of these routines are such that
139 * connectionless protocols can call soisconnected() and soisdisconnected()
140 * only, bypassing the in-progress calls when setting up a ``connection''
141 * takes no time.
142 *
143 * From the passive side, a socket is created with
144 * two queues of sockets: so_q0 for connections in progress
145 * and so_q for connections already made and awaiting user acceptance.
146 * As a protocol is preparing incoming connections, it creates a socket
147 * structure queued on so_q0 by calling sonewconn().  When the connection
148 * is established, soisconnected() is called, and transfers the
149 * socket structure to so_q, making it available to accept().
150 *
151 * If a socket is closed with sockets on either
152 * so_q0 or so_q, these sockets are dropped.
153 *
154 * If higher level protocols are implemented in
155 * the kernel, the wakeups done here will sometimes
156 * cause software-interrupt process scheduling.
157 */
158
159void
160soisconnecting(struct socket *so)
161{
162
163	KASSERT(solocked(so));
164
165	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
166	so->so_state |= SS_ISCONNECTING;
167}
168
169void
170soisconnected(struct socket *so)
171{
172	struct socket	*head;
173
174	head = so->so_head;
175
176	KASSERT(solocked(so));
177	KASSERT(head == NULL || solocked2(so, head));
178
179	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
180	so->so_state |= SS_ISCONNECTED;
181	if (head && soqremque(so, 0)) {
182		soqinsque(head, so, 1);
183		sorwakeup(head);
184		cv_broadcast(&head->so_cv);
185	} else {
186		cv_broadcast(&so->so_cv);
187		sorwakeup(so);
188		sowwakeup(so);
189	}
190}
191
192void
193soisdisconnecting(struct socket *so)
194{
195
196	KASSERT(solocked(so));
197
198	so->so_state &= ~SS_ISCONNECTING;
199	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
200	cv_broadcast(&so->so_cv);
201	sowwakeup(so);
202	sorwakeup(so);
203}
204
205void
206soisdisconnected(struct socket *so)
207{
208
209	KASSERT(solocked(so));
210
211	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
212	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
213	cv_broadcast(&so->so_cv);
214	sowwakeup(so);
215	sorwakeup(so);
216}
217
218/*
219 * When an attempt at a new connection is noted on a socket
220 * which accepts connections, sonewconn is called.  If the
221 * connection is possible (subject to space constraints, etc.)
222 * then we allocate a new structure, propoerly linked into the
223 * data structure of the original socket, and return this.
224 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
225 */
226struct socket *
227sonewconn(struct socket *head, int connstatus)
228{
229	struct socket	*so;
230	int		soqueue, error;
231
232	KASSERT(solocked(head));
233
234	soqueue = connstatus ? 1 : 0;
235	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
236		return ((struct socket *)0);
237	so = soget(false);
238	if (so == NULL)
239		return (NULL);
240	mutex_obj_hold(head->so_lock);
241	so->so_lock = head->so_lock;
242	so->so_type = head->so_type;
243	so->so_options = head->so_options &~ SO_ACCEPTCONN;
244	so->so_linger = head->so_linger;
245	so->so_state = head->so_state | SS_NOFDREF;
246	so->so_nbio = head->so_nbio;
247	so->so_proto = head->so_proto;
248	so->so_timeo = head->so_timeo;
249	so->so_pgid = head->so_pgid;
250	so->so_send = head->so_send;
251	so->so_receive = head->so_receive;
252	so->so_uidinfo = head->so_uidinfo;
253#ifdef MBUFTRACE
254	so->so_mowner = head->so_mowner;
255	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
256	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
257#endif
258	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
259	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
260	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
261	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
262	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
263	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
264	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
265	soqinsque(head, so, soqueue);
266	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
267	    NULL, NULL);
268	KASSERT(solocked(so));
269	if (error != 0) {
270		(void) soqremque(so, soqueue);
271		soput(so);
272		return (NULL);
273	}
274	if (connstatus) {
275		sorwakeup(head);
276		cv_broadcast(&head->so_cv);
277		so->so_state |= connstatus;
278	}
279	return (so);
280}
281
282struct socket *
283soget(bool waitok)
284{
285	struct socket *so;
286
287	so = pool_get(&socket_pool, (waitok ? PR_WAITOK : PR_NOWAIT));
288	if (__predict_false(so == NULL))
289		return (NULL);
290	memset(so, 0, sizeof(*so));
291	TAILQ_INIT(&so->so_q0);
292	TAILQ_INIT(&so->so_q);
293	cv_init(&so->so_cv, "socket");
294	cv_init(&so->so_rcv.sb_cv, "netio");
295	cv_init(&so->so_snd.sb_cv, "netio");
296	selinit(&so->so_rcv.sb_sel);
297	selinit(&so->so_snd.sb_sel);
298	so->so_rcv.sb_so = so;
299	so->so_snd.sb_so = so;
300	return so;
301}
302
303void
304soput(struct socket *so)
305{
306
307	KASSERT(!cv_has_waiters(&so->so_cv));
308	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
309	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
310	seldestroy(&so->so_rcv.sb_sel);
311	seldestroy(&so->so_snd.sb_sel);
312	mutex_obj_free(so->so_lock);
313	cv_destroy(&so->so_cv);
314	cv_destroy(&so->so_rcv.sb_cv);
315	cv_destroy(&so->so_snd.sb_cv);
316	pool_put(&socket_pool, so);
317}
318
319void
320soqinsque(struct socket *head, struct socket *so, int q)
321{
322
323	KASSERT(solocked2(head, so));
324
325#ifdef DIAGNOSTIC
326	if (so->so_onq != NULL)
327		panic("soqinsque");
328#endif
329
330	so->so_head = head;
331	if (q == 0) {
332		head->so_q0len++;
333		so->so_onq = &head->so_q0;
334	} else {
335		head->so_qlen++;
336		so->so_onq = &head->so_q;
337	}
338	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
339}
340
341int
342soqremque(struct socket *so, int q)
343{
344	struct socket	*head;
345
346	head = so->so_head;
347
348	KASSERT(solocked(so));
349	if (q == 0) {
350		if (so->so_onq != &head->so_q0)
351			return (0);
352		head->so_q0len--;
353	} else {
354		if (so->so_onq != &head->so_q)
355			return (0);
356		head->so_qlen--;
357	}
358	KASSERT(solocked2(so, head));
359	TAILQ_REMOVE(so->so_onq, so, so_qe);
360	so->so_onq = NULL;
361	so->so_head = NULL;
362	return (1);
363}
364
365/*
366 * Socantsendmore indicates that no more data will be sent on the
367 * socket; it would normally be applied to a socket when the user
368 * informs the system that no more data is to be sent, by the protocol
369 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
370 * will be received, and will normally be applied to the socket by a
371 * protocol when it detects that the peer will send no more data.
372 * Data queued for reading in the socket may yet be read.
373 */
374
375void
376socantsendmore(struct socket *so)
377{
378
379	KASSERT(solocked(so));
380
381	so->so_state |= SS_CANTSENDMORE;
382	sowwakeup(so);
383}
384
385void
386socantrcvmore(struct socket *so)
387{
388
389	KASSERT(solocked(so));
390
391	so->so_state |= SS_CANTRCVMORE;
392	sorwakeup(so);
393}
394
395/*
396 * Wait for data to arrive at/drain from a socket buffer.
397 */
398int
399sbwait(struct sockbuf *sb)
400{
401	struct socket *so;
402	kmutex_t *lock;
403	int error;
404
405	so = sb->sb_so;
406
407	KASSERT(solocked(so));
408
409	sb->sb_flags |= SB_NOTIFY;
410	lock = so->so_lock;
411	if ((sb->sb_flags & SB_NOINTR) != 0)
412		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
413	else
414		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
415	if (__predict_false(lock != so->so_lock))
416		solockretry(so, lock);
417	return error;
418}
419
420/*
421 * Wakeup processes waiting on a socket buffer.
422 * Do asynchronous notification via SIGIO
423 * if the socket buffer has the SB_ASYNC flag set.
424 */
425void
426sowakeup(struct socket *so, struct sockbuf *sb, int code)
427{
428	int band;
429
430	KASSERT(solocked(so));
431	KASSERT(sb->sb_so == so);
432
433	if (code == POLL_IN)
434		band = POLLIN|POLLRDNORM;
435	else
436		band = POLLOUT|POLLWRNORM;
437	sb->sb_flags &= ~SB_NOTIFY;
438	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
439	cv_broadcast(&sb->sb_cv);
440	if (sb->sb_flags & SB_ASYNC)
441		fownsignal(so->so_pgid, SIGIO, code, band, so);
442	if (sb->sb_flags & SB_UPCALL)
443		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
444}
445
446/*
447 * Socket buffer (struct sockbuf) utility routines.
448 *
449 * Each socket contains two socket buffers: one for sending data and
450 * one for receiving data.  Each buffer contains a queue of mbufs,
451 * information about the number of mbufs and amount of data in the
452 * queue, and other fields allowing poll() statements and notification
453 * on data availability to be implemented.
454 *
455 * Data stored in a socket buffer is maintained as a list of records.
456 * Each record is a list of mbufs chained together with the m_next
457 * field.  Records are chained together with the m_nextpkt field. The upper
458 * level routine soreceive() expects the following conventions to be
459 * observed when placing information in the receive buffer:
460 *
461 * 1. If the protocol requires each message be preceded by the sender's
462 *    name, then a record containing that name must be present before
463 *    any associated data (mbuf's must be of type MT_SONAME).
464 * 2. If the protocol supports the exchange of ``access rights'' (really
465 *    just additional data associated with the message), and there are
466 *    ``rights'' to be received, then a record containing this data
467 *    should be present (mbuf's must be of type MT_CONTROL).
468 * 3. If a name or rights record exists, then it must be followed by
469 *    a data record, perhaps of zero length.
470 *
471 * Before using a new socket structure it is first necessary to reserve
472 * buffer space to the socket, by calling sbreserve().  This should commit
473 * some of the available buffer space in the system buffer pool for the
474 * socket (currently, it does nothing but enforce limits).  The space
475 * should be released by calling sbrelease() when the socket is destroyed.
476 */
477
478int
479sb_max_set(u_long new_sbmax)
480{
481	int s;
482
483	if (new_sbmax < (16 * 1024))
484		return (EINVAL);
485
486	s = splsoftnet();
487	sb_max = new_sbmax;
488	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
489	splx(s);
490
491	return (0);
492}
493
494int
495soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
496{
497
498	KASSERT(so->so_lock == NULL || solocked(so));
499
500	/*
501	 * there's at least one application (a configure script of screen)
502	 * which expects a fifo is writable even if it has "some" bytes
503	 * in its buffer.
504	 * so we want to make sure (hiwat - lowat) >= (some bytes).
505	 *
506	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
507	 * we expect it's large enough for such applications.
508	 */
509	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
510	u_long  hiwat = lowat + PIPE_BUF;
511
512	if (sndcc < hiwat)
513		sndcc = hiwat;
514	if (sbreserve(&so->so_snd, sndcc, so) == 0)
515		goto bad;
516	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
517		goto bad2;
518	if (so->so_rcv.sb_lowat == 0)
519		so->so_rcv.sb_lowat = 1;
520	if (so->so_snd.sb_lowat == 0)
521		so->so_snd.sb_lowat = lowat;
522	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
523		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
524	return (0);
525 bad2:
526	sbrelease(&so->so_snd, so);
527 bad:
528	return (ENOBUFS);
529}
530
531/*
532 * Allot mbufs to a sockbuf.
533 * Attempt to scale mbmax so that mbcnt doesn't become limiting
534 * if buffering efficiency is near the normal case.
535 */
536int
537sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
538{
539	struct lwp *l = curlwp; /* XXX */
540	rlim_t maxcc;
541	struct uidinfo *uidinfo;
542
543	KASSERT(so->so_lock == NULL || solocked(so));
544	KASSERT(sb->sb_so == so);
545	KASSERT(sb_max_adj != 0);
546
547	if (cc == 0 || cc > sb_max_adj)
548		return (0);
549	if (so) {
550		if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
551			maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
552		else
553			maxcc = RLIM_INFINITY;
554		uidinfo = so->so_uidinfo;
555	} else {
556		uidinfo = uid_find(0);	/* XXX: nothing better */
557		maxcc = RLIM_INFINITY;
558	}
559	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
560		return 0;
561	sb->sb_mbmax = min(cc * 2, sb_max);
562	if (sb->sb_lowat > sb->sb_hiwat)
563		sb->sb_lowat = sb->sb_hiwat;
564	return (1);
565}
566
567/*
568 * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
569 * that the socket is held locked here: see sorflush().
570 */
571void
572sbrelease(struct sockbuf *sb, struct socket *so)
573{
574
575	KASSERT(sb->sb_so == so);
576
577	sbflush(sb);
578	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
579	sb->sb_mbmax = 0;
580}
581
582/*
583 * Routines to add and remove
584 * data from an mbuf queue.
585 *
586 * The routines sbappend() or sbappendrecord() are normally called to
587 * append new mbufs to a socket buffer, after checking that adequate
588 * space is available, comparing the function sbspace() with the amount
589 * of data to be added.  sbappendrecord() differs from sbappend() in
590 * that data supplied is treated as the beginning of a new record.
591 * To place a sender's address, optional access rights, and data in a
592 * socket receive buffer, sbappendaddr() should be used.  To place
593 * access rights and data in a socket receive buffer, sbappendrights()
594 * should be used.  In either case, the new data begins a new record.
595 * Note that unlike sbappend() and sbappendrecord(), these routines check
596 * for the caller that there will be enough space to store the data.
597 * Each fails if there is not enough space, or if it cannot find mbufs
598 * to store additional information in.
599 *
600 * Reliable protocols may use the socket send buffer to hold data
601 * awaiting acknowledgement.  Data is normally copied from a socket
602 * send buffer in a protocol with m_copy for output to a peer,
603 * and then removing the data from the socket buffer with sbdrop()
604 * or sbdroprecord() when the data is acknowledged by the peer.
605 */
606
607#ifdef SOCKBUF_DEBUG
608void
609sblastrecordchk(struct sockbuf *sb, const char *where)
610{
611	struct mbuf *m = sb->sb_mb;
612
613	KASSERT(solocked(sb->sb_so));
614
615	while (m && m->m_nextpkt)
616		m = m->m_nextpkt;
617
618	if (m != sb->sb_lastrecord) {
619		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
620		    sb->sb_mb, sb->sb_lastrecord, m);
621		printf("packet chain:\n");
622		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
623			printf("\t%p\n", m);
624		panic("sblastrecordchk from %s", where);
625	}
626}
627
628void
629sblastmbufchk(struct sockbuf *sb, const char *where)
630{
631	struct mbuf *m = sb->sb_mb;
632	struct mbuf *n;
633
634	KASSERT(solocked(sb->sb_so));
635
636	while (m && m->m_nextpkt)
637		m = m->m_nextpkt;
638
639	while (m && m->m_next)
640		m = m->m_next;
641
642	if (m != sb->sb_mbtail) {
643		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
644		    sb->sb_mb, sb->sb_mbtail, m);
645		printf("packet tree:\n");
646		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
647			printf("\t");
648			for (n = m; n != NULL; n = n->m_next)
649				printf("%p ", n);
650			printf("\n");
651		}
652		panic("sblastmbufchk from %s", where);
653	}
654}
655#endif /* SOCKBUF_DEBUG */
656
657/*
658 * Link a chain of records onto a socket buffer
659 */
660#define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
661do {									\
662	if ((sb)->sb_lastrecord != NULL)				\
663		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
664	else								\
665		(sb)->sb_mb = (m0);					\
666	(sb)->sb_lastrecord = (mlast);					\
667} while (/*CONSTCOND*/0)
668
669
670#define	SBLINKRECORD(sb, m0)						\
671    SBLINKRECORDCHAIN(sb, m0, m0)
672
673/*
674 * Append mbuf chain m to the last record in the
675 * socket buffer sb.  The additional space associated
676 * the mbuf chain is recorded in sb.  Empty mbufs are
677 * discarded and mbufs are compacted where possible.
678 */
679void
680sbappend(struct sockbuf *sb, struct mbuf *m)
681{
682	struct mbuf	*n;
683
684	KASSERT(solocked(sb->sb_so));
685
686	if (m == 0)
687		return;
688
689#ifdef MBUFTRACE
690	m_claimm(m, sb->sb_mowner);
691#endif
692
693	SBLASTRECORDCHK(sb, "sbappend 1");
694
695	if ((n = sb->sb_lastrecord) != NULL) {
696		/*
697		 * XXX Would like to simply use sb_mbtail here, but
698		 * XXX I need to verify that I won't miss an EOR that
699		 * XXX way.
700		 */
701		do {
702			if (n->m_flags & M_EOR) {
703				sbappendrecord(sb, m); /* XXXXXX!!!! */
704				return;
705			}
706		} while (n->m_next && (n = n->m_next));
707	} else {
708		/*
709		 * If this is the first record in the socket buffer, it's
710		 * also the last record.
711		 */
712		sb->sb_lastrecord = m;
713	}
714	sbcompress(sb, m, n);
715	SBLASTRECORDCHK(sb, "sbappend 2");
716}
717
718/*
719 * This version of sbappend() should only be used when the caller
720 * absolutely knows that there will never be more than one record
721 * in the socket buffer, that is, a stream protocol (such as TCP).
722 */
723void
724sbappendstream(struct sockbuf *sb, struct mbuf *m)
725{
726
727	KASSERT(solocked(sb->sb_so));
728	KDASSERT(m->m_nextpkt == NULL);
729	KASSERT(sb->sb_mb == sb->sb_lastrecord);
730
731	SBLASTMBUFCHK(sb, __func__);
732
733#ifdef MBUFTRACE
734	m_claimm(m, sb->sb_mowner);
735#endif
736
737	sbcompress(sb, m, sb->sb_mbtail);
738
739	sb->sb_lastrecord = sb->sb_mb;
740	SBLASTRECORDCHK(sb, __func__);
741}
742
743#ifdef SOCKBUF_DEBUG
744void
745sbcheck(struct sockbuf *sb)
746{
747	struct mbuf	*m, *m2;
748	u_long		len, mbcnt;
749
750	KASSERT(solocked(sb->sb_so));
751
752	len = 0;
753	mbcnt = 0;
754	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
755		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
756			len += m2->m_len;
757			mbcnt += MSIZE;
758			if (m2->m_flags & M_EXT)
759				mbcnt += m2->m_ext.ext_size;
760			if (m2->m_nextpkt != NULL)
761				panic("sbcheck nextpkt");
762		}
763	}
764	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
765		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
766		    mbcnt, sb->sb_mbcnt);
767		panic("sbcheck");
768	}
769}
770#endif
771
772/*
773 * As above, except the mbuf chain
774 * begins a new record.
775 */
776void
777sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
778{
779	struct mbuf	*m;
780
781	KASSERT(solocked(sb->sb_so));
782
783	if (m0 == 0)
784		return;
785
786#ifdef MBUFTRACE
787	m_claimm(m0, sb->sb_mowner);
788#endif
789	/*
790	 * Put the first mbuf on the queue.
791	 * Note this permits zero length records.
792	 */
793	sballoc(sb, m0);
794	SBLASTRECORDCHK(sb, "sbappendrecord 1");
795	SBLINKRECORD(sb, m0);
796	m = m0->m_next;
797	m0->m_next = 0;
798	if (m && (m0->m_flags & M_EOR)) {
799		m0->m_flags &= ~M_EOR;
800		m->m_flags |= M_EOR;
801	}
802	sbcompress(sb, m, m0);
803	SBLASTRECORDCHK(sb, "sbappendrecord 2");
804}
805
806/*
807 * As above except that OOB data
808 * is inserted at the beginning of the sockbuf,
809 * but after any other OOB data.
810 */
811void
812sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
813{
814	struct mbuf	*m, **mp;
815
816	KASSERT(solocked(sb->sb_so));
817
818	if (m0 == 0)
819		return;
820
821	SBLASTRECORDCHK(sb, "sbinsertoob 1");
822
823	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
824	    again:
825		switch (m->m_type) {
826
827		case MT_OOBDATA:
828			continue;		/* WANT next train */
829
830		case MT_CONTROL:
831			if ((m = m->m_next) != NULL)
832				goto again;	/* inspect THIS train further */
833		}
834		break;
835	}
836	/*
837	 * Put the first mbuf on the queue.
838	 * Note this permits zero length records.
839	 */
840	sballoc(sb, m0);
841	m0->m_nextpkt = *mp;
842	if (*mp == NULL) {
843		/* m0 is actually the new tail */
844		sb->sb_lastrecord = m0;
845	}
846	*mp = m0;
847	m = m0->m_next;
848	m0->m_next = 0;
849	if (m && (m0->m_flags & M_EOR)) {
850		m0->m_flags &= ~M_EOR;
851		m->m_flags |= M_EOR;
852	}
853	sbcompress(sb, m, m0);
854	SBLASTRECORDCHK(sb, "sbinsertoob 2");
855}
856
857/*
858 * Append address and data, and optionally, control (ancillary) data
859 * to the receive queue of a socket.  If present,
860 * m0 must include a packet header with total length.
861 * Returns 0 if no space in sockbuf or insufficient mbufs.
862 */
863int
864sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
865	struct mbuf *control)
866{
867	struct mbuf	*m, *n, *nlast;
868	int		space, len;
869
870	KASSERT(solocked(sb->sb_so));
871
872	space = asa->sa_len;
873
874	if (m0 != NULL) {
875		if ((m0->m_flags & M_PKTHDR) == 0)
876			panic("sbappendaddr");
877		space += m0->m_pkthdr.len;
878#ifdef MBUFTRACE
879		m_claimm(m0, sb->sb_mowner);
880#endif
881	}
882	for (n = control; n; n = n->m_next) {
883		space += n->m_len;
884		MCLAIM(n, sb->sb_mowner);
885		if (n->m_next == 0)	/* keep pointer to last control buf */
886			break;
887	}
888	if (space > sbspace(sb))
889		return (0);
890	MGET(m, M_DONTWAIT, MT_SONAME);
891	if (m == 0)
892		return (0);
893	MCLAIM(m, sb->sb_mowner);
894	/*
895	 * XXX avoid 'comparison always true' warning which isn't easily
896	 * avoided.
897	 */
898	len = asa->sa_len;
899	if (len > MLEN) {
900		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
901		if ((m->m_flags & M_EXT) == 0) {
902			m_free(m);
903			return (0);
904		}
905	}
906	m->m_len = asa->sa_len;
907	memcpy(mtod(m, void *), asa, asa->sa_len);
908	if (n)
909		n->m_next = m0;		/* concatenate data to control */
910	else
911		control = m0;
912	m->m_next = control;
913
914	SBLASTRECORDCHK(sb, "sbappendaddr 1");
915
916	for (n = m; n->m_next != NULL; n = n->m_next)
917		sballoc(sb, n);
918	sballoc(sb, n);
919	nlast = n;
920	SBLINKRECORD(sb, m);
921
922	sb->sb_mbtail = nlast;
923	SBLASTMBUFCHK(sb, "sbappendaddr");
924	SBLASTRECORDCHK(sb, "sbappendaddr 2");
925
926	return (1);
927}
928
929/*
930 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
931 * an mbuf chain.
932 */
933static inline struct mbuf *
934m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
935		   const struct sockaddr *asa)
936{
937	struct mbuf *m;
938	const int salen = asa->sa_len;
939
940	KASSERT(solocked(sb->sb_so));
941
942	/* only the first in each chain need be a pkthdr */
943	MGETHDR(m, M_DONTWAIT, MT_SONAME);
944	if (m == 0)
945		return (0);
946	MCLAIM(m, sb->sb_mowner);
947#ifdef notyet
948	if (salen > MHLEN) {
949		MEXTMALLOC(m, salen, M_NOWAIT);
950		if ((m->m_flags & M_EXT) == 0) {
951			m_free(m);
952			return (0);
953		}
954	}
955#else
956	KASSERT(salen <= MHLEN);
957#endif
958	m->m_len = salen;
959	memcpy(mtod(m, void *), asa, salen);
960	m->m_next = m0;
961	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
962
963	return m;
964}
965
966int
967sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
968		  struct mbuf *m0, int sbprio)
969{
970	int space;
971	struct mbuf *m, *n, *n0, *nlast;
972	int error;
973
974	KASSERT(solocked(sb->sb_so));
975
976	/*
977	 * XXX sbprio reserved for encoding priority of this* request:
978	 *  SB_PRIO_NONE --> honour normal sb limits
979	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
980	 *	take whole chain. Intended for large requests
981	 *      that should be delivered atomically (all, or none).
982	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
983	 *       over normal socket limits, for messages indicating
984	 *       buffer overflow in earlier normal/lower-priority messages
985	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
986	 *       Intended for  kernel-generated messages only.
987	 *        Up to generator to avoid total mbuf resource exhaustion.
988	 */
989	(void)sbprio;
990
991	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
992		panic("sbappendaddrchain");
993
994	space = sbspace(sb);
995
996#ifdef notyet
997	/*
998	 * Enforce SB_PRIO_* limits as described above.
999	 */
1000#endif
1001
1002	n0 = NULL;
1003	nlast = NULL;
1004	for (m = m0; m; m = m->m_nextpkt) {
1005		struct mbuf *np;
1006
1007#ifdef MBUFTRACE
1008		m_claimm(m, sb->sb_mowner);
1009#endif
1010
1011		/* Prepend sockaddr to this record (m) of input chain m0 */
1012	  	n = m_prepend_sockaddr(sb, m, asa);
1013		if (n == NULL) {
1014			error = ENOBUFS;
1015			goto bad;
1016		}
1017
1018		/* Append record (asa+m) to end of new chain n0 */
1019		if (n0 == NULL) {
1020			n0 = n;
1021		} else {
1022			nlast->m_nextpkt = n;
1023		}
1024		/* Keep track of last record on new chain */
1025		nlast = n;
1026
1027		for (np = n; np; np = np->m_next)
1028			sballoc(sb, np);
1029	}
1030
1031	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1032
1033	/* Drop the entire chain of (asa+m) records onto the socket */
1034	SBLINKRECORDCHAIN(sb, n0, nlast);
1035
1036	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1037
1038	for (m = nlast; m->m_next; m = m->m_next)
1039		;
1040	sb->sb_mbtail = m;
1041	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1042
1043	return (1);
1044
1045bad:
1046	/*
1047	 * On error, free the prepended addreseses. For consistency
1048	 * with sbappendaddr(), leave it to our caller to free
1049	 * the input record chain passed to us as m0.
1050	 */
1051	while ((n = n0) != NULL) {
1052	  	struct mbuf *np;
1053
1054		/* Undo the sballoc() of this record */
1055		for (np = n; np; np = np->m_next)
1056			sbfree(sb, np);
1057
1058		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1059		MFREE(n, np);		/* free prepended address (not data) */
1060	}
1061	return 0;
1062}
1063
1064
1065int
1066sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1067{
1068	struct mbuf	*m, *mlast, *n;
1069	int		space;
1070
1071	KASSERT(solocked(sb->sb_so));
1072
1073	space = 0;
1074	if (control == 0)
1075		panic("sbappendcontrol");
1076	for (m = control; ; m = m->m_next) {
1077		space += m->m_len;
1078		MCLAIM(m, sb->sb_mowner);
1079		if (m->m_next == 0)
1080			break;
1081	}
1082	n = m;			/* save pointer to last control buffer */
1083	for (m = m0; m; m = m->m_next) {
1084		MCLAIM(m, sb->sb_mowner);
1085		space += m->m_len;
1086	}
1087	if (space > sbspace(sb))
1088		return (0);
1089	n->m_next = m0;			/* concatenate data to control */
1090
1091	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1092
1093	for (m = control; m->m_next != NULL; m = m->m_next)
1094		sballoc(sb, m);
1095	sballoc(sb, m);
1096	mlast = m;
1097	SBLINKRECORD(sb, control);
1098
1099	sb->sb_mbtail = mlast;
1100	SBLASTMBUFCHK(sb, "sbappendcontrol");
1101	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1102
1103	return (1);
1104}
1105
1106/*
1107 * Compress mbuf chain m into the socket
1108 * buffer sb following mbuf n.  If n
1109 * is null, the buffer is presumed empty.
1110 */
1111void
1112sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1113{
1114	int		eor;
1115	struct mbuf	*o;
1116
1117	KASSERT(solocked(sb->sb_so));
1118
1119	eor = 0;
1120	while (m) {
1121		eor |= m->m_flags & M_EOR;
1122		if (m->m_len == 0 &&
1123		    (eor == 0 ||
1124		     (((o = m->m_next) || (o = n)) &&
1125		      o->m_type == m->m_type))) {
1126			if (sb->sb_lastrecord == m)
1127				sb->sb_lastrecord = m->m_next;
1128			m = m_free(m);
1129			continue;
1130		}
1131		if (n && (n->m_flags & M_EOR) == 0 &&
1132		    /* M_TRAILINGSPACE() checks buffer writeability */
1133		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1134		    m->m_len <= M_TRAILINGSPACE(n) &&
1135		    n->m_type == m->m_type) {
1136			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1137			    (unsigned)m->m_len);
1138			n->m_len += m->m_len;
1139			sb->sb_cc += m->m_len;
1140			m = m_free(m);
1141			continue;
1142		}
1143		if (n)
1144			n->m_next = m;
1145		else
1146			sb->sb_mb = m;
1147		sb->sb_mbtail = m;
1148		sballoc(sb, m);
1149		n = m;
1150		m->m_flags &= ~M_EOR;
1151		m = m->m_next;
1152		n->m_next = 0;
1153	}
1154	if (eor) {
1155		if (n)
1156			n->m_flags |= eor;
1157		else
1158			printf("semi-panic: sbcompress\n");
1159	}
1160	SBLASTMBUFCHK(sb, __func__);
1161}
1162
1163/*
1164 * Free all mbufs in a sockbuf.
1165 * Check that all resources are reclaimed.
1166 */
1167void
1168sbflush(struct sockbuf *sb)
1169{
1170
1171	KASSERT(solocked(sb->sb_so));
1172	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1173
1174	while (sb->sb_mbcnt)
1175		sbdrop(sb, (int)sb->sb_cc);
1176
1177	KASSERT(sb->sb_cc == 0);
1178	KASSERT(sb->sb_mb == NULL);
1179	KASSERT(sb->sb_mbtail == NULL);
1180	KASSERT(sb->sb_lastrecord == NULL);
1181}
1182
1183/*
1184 * Drop data from (the front of) a sockbuf.
1185 */
1186void
1187sbdrop(struct sockbuf *sb, int len)
1188{
1189	struct mbuf	*m, *mn, *next;
1190
1191	KASSERT(solocked(sb->sb_so));
1192
1193	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1194	while (len > 0) {
1195		if (m == 0) {
1196			if (next == 0)
1197				panic("sbdrop");
1198			m = next;
1199			next = m->m_nextpkt;
1200			continue;
1201		}
1202		if (m->m_len > len) {
1203			m->m_len -= len;
1204			m->m_data += len;
1205			sb->sb_cc -= len;
1206			break;
1207		}
1208		len -= m->m_len;
1209		sbfree(sb, m);
1210		MFREE(m, mn);
1211		m = mn;
1212	}
1213	while (m && m->m_len == 0) {
1214		sbfree(sb, m);
1215		MFREE(m, mn);
1216		m = mn;
1217	}
1218	if (m) {
1219		sb->sb_mb = m;
1220		m->m_nextpkt = next;
1221	} else
1222		sb->sb_mb = next;
1223	/*
1224	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1225	 * makes sure sb_lastrecord is up-to-date if we dropped
1226	 * part of the last record.
1227	 */
1228	m = sb->sb_mb;
1229	if (m == NULL) {
1230		sb->sb_mbtail = NULL;
1231		sb->sb_lastrecord = NULL;
1232	} else if (m->m_nextpkt == NULL)
1233		sb->sb_lastrecord = m;
1234}
1235
1236/*
1237 * Drop a record off the front of a sockbuf
1238 * and move the next record to the front.
1239 */
1240void
1241sbdroprecord(struct sockbuf *sb)
1242{
1243	struct mbuf	*m, *mn;
1244
1245	KASSERT(solocked(sb->sb_so));
1246
1247	m = sb->sb_mb;
1248	if (m) {
1249		sb->sb_mb = m->m_nextpkt;
1250		do {
1251			sbfree(sb, m);
1252			MFREE(m, mn);
1253		} while ((m = mn) != NULL);
1254	}
1255	SB_EMPTY_FIXUP(sb);
1256}
1257
1258/*
1259 * Create a "control" mbuf containing the specified data
1260 * with the specified type for presentation on a socket buffer.
1261 */
1262struct mbuf *
1263sbcreatecontrol(void *p, int size, int type, int level)
1264{
1265	struct cmsghdr	*cp;
1266	struct mbuf	*m;
1267
1268	if (CMSG_SPACE(size) > MCLBYTES) {
1269		printf("sbcreatecontrol: message too large %d\n", size);
1270		return NULL;
1271	}
1272
1273	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1274		return ((struct mbuf *) NULL);
1275	if (CMSG_SPACE(size) > MLEN) {
1276		MCLGET(m, M_DONTWAIT);
1277		if ((m->m_flags & M_EXT) == 0) {
1278			m_free(m);
1279			return NULL;
1280		}
1281	}
1282	cp = mtod(m, struct cmsghdr *);
1283	memcpy(CMSG_DATA(cp), p, size);
1284	m->m_len = CMSG_SPACE(size);
1285	cp->cmsg_len = CMSG_LEN(size);
1286	cp->cmsg_level = level;
1287	cp->cmsg_type = type;
1288	return (m);
1289}
1290
1291void
1292solockretry(struct socket *so, kmutex_t *lock)
1293{
1294
1295	while (lock != so->so_lock) {
1296		mutex_exit(lock);
1297		lock = so->so_lock;
1298		mutex_enter(lock);
1299	}
1300}
1301
1302bool
1303solocked(struct socket *so)
1304{
1305
1306	return mutex_owned(so->so_lock);
1307}
1308
1309bool
1310solocked2(struct socket *so1, struct socket *so2)
1311{
1312	kmutex_t *lock;
1313
1314	lock = so1->so_lock;
1315	if (lock != so2->so_lock)
1316		return false;
1317	return mutex_owned(lock);
1318}
1319
1320/*
1321 * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
1322 * protocols that do not have special locking requirements.
1323 */
1324void
1325sosetlock(struct socket *so)
1326{
1327	kmutex_t *lock;
1328
1329	if (so->so_lock == NULL) {
1330		lock = softnet_lock;
1331		so->so_lock = lock;
1332		mutex_obj_hold(lock);
1333		mutex_enter(lock);
1334	}
1335
1336	/* In all cases, lock must be held on return from PRU_ATTACH. */
1337	KASSERT(solocked(so));
1338}
1339
1340/*
1341 * Set lock on sockbuf sb; sleep if lock is already held.
1342 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1343 * Returns error without lock if sleep is interrupted.
1344 */
1345int
1346sblock(struct sockbuf *sb, int wf)
1347{
1348	struct socket *so;
1349	kmutex_t *lock;
1350	int error;
1351
1352	KASSERT(solocked(sb->sb_so));
1353
1354	for (;;) {
1355		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1356			sb->sb_flags |= SB_LOCK;
1357			return 0;
1358		}
1359		if (wf != M_WAITOK)
1360			return EWOULDBLOCK;
1361		so = sb->sb_so;
1362		lock = so->so_lock;
1363		if ((sb->sb_flags & SB_NOINTR) != 0) {
1364			cv_wait(&so->so_cv, lock);
1365			error = 0;
1366		} else
1367			error = cv_wait_sig(&so->so_cv, lock);
1368		if (__predict_false(lock != so->so_lock))
1369			solockretry(so, lock);
1370		if (error != 0)
1371			return error;
1372	}
1373}
1374
1375void
1376sbunlock(struct sockbuf *sb)
1377{
1378	struct socket *so;
1379
1380	so = sb->sb_so;
1381
1382	KASSERT(solocked(so));
1383	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1384
1385	sb->sb_flags &= ~SB_LOCK;
1386	cv_broadcast(&so->so_cv);
1387}
1388
1389int
1390sowait(struct socket *so, int timo)
1391{
1392	kmutex_t *lock;
1393	int error;
1394
1395	KASSERT(solocked(so));
1396
1397	lock = so->so_lock;
1398	error = cv_timedwait_sig(&so->so_cv, lock, timo);
1399	if (__predict_false(lock != so->so_lock))
1400		solockretry(so, lock);
1401	return error;
1402}
1403