uipc_socket2.c revision 1.8
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34 *	$Id: uipc_socket2.c,v 1.8 1994/05/13 06:01:40 mycroft Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/proc.h>
40#include <sys/file.h>
41#include <sys/buf.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/protosw.h>
45#include <sys/socket.h>
46#include <sys/socketvar.h>
47
48/*
49 * Primitive routines for operating on sockets and socket buffers
50 */
51
52/* strings for sleep message: */
53char	netio[] = "netio";
54char	netcon[] = "netcon";
55char	netcls[] = "netcls";
56
57u_long	sb_max = SB_MAX;		/* patchable */
58
59/*
60 * Procedures to manipulate state flags of socket
61 * and do appropriate wakeups.  Normal sequence from the
62 * active (originating) side is that soisconnecting() is
63 * called during processing of connect() call,
64 * resulting in an eventual call to soisconnected() if/when the
65 * connection is established.  When the connection is torn down
66 * soisdisconnecting() is called during processing of disconnect() call,
67 * and soisdisconnected() is called when the connection to the peer
68 * is totally severed.  The semantics of these routines are such that
69 * connectionless protocols can call soisconnected() and soisdisconnected()
70 * only, bypassing the in-progress calls when setting up a ``connection''
71 * takes no time.
72 *
73 * From the passive side, a socket is created with
74 * two queues of sockets: so_q0 for connections in progress
75 * and so_q for connections already made and awaiting user acceptance.
76 * As a protocol is preparing incoming connections, it creates a socket
77 * structure queued on so_q0 by calling sonewconn().  When the connection
78 * is established, soisconnected() is called, and transfers the
79 * socket structure to so_q, making it available to accept().
80 *
81 * If a socket is closed with sockets on either
82 * so_q0 or so_q, these sockets are dropped.
83 *
84 * If higher level protocols are implemented in
85 * the kernel, the wakeups done here will sometimes
86 * cause software-interrupt process scheduling.
87 */
88
89void
90soisconnecting(so)
91	register struct socket *so;
92{
93
94	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
95	so->so_state |= SS_ISCONNECTING;
96}
97
98void
99soisconnected(so)
100	register struct socket *so;
101{
102	register struct socket *head = so->so_head;
103
104	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
105	so->so_state |= SS_ISCONNECTED;
106	if (head && soqremque(so, 0)) {
107		soqinsque(head, so, 1);
108		sorwakeup(head);
109		wakeup((caddr_t)&head->so_timeo);
110	} else {
111		wakeup((caddr_t)&so->so_timeo);
112		sorwakeup(so);
113		sowwakeup(so);
114	}
115}
116
117void
118soisdisconnecting(so)
119	register struct socket *so;
120{
121
122	so->so_state &= ~SS_ISCONNECTING;
123	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
124	wakeup((caddr_t)&so->so_timeo);
125	sowwakeup(so);
126	sorwakeup(so);
127}
128
129void
130soisdisconnected(so)
131	register struct socket *so;
132{
133
134	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
135	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
136	wakeup((caddr_t)&so->so_timeo);
137	sowwakeup(so);
138	sorwakeup(so);
139}
140
141/*
142 * When an attempt at a new connection is noted on a socket
143 * which accepts connections, sonewconn is called.  If the
144 * connection is possible (subject to space constraints, etc.)
145 * then we allocate a new structure, propoerly linked into the
146 * data structure of the original socket, and return this.
147 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
148 *
149 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
150 * to catch calls that are missing the (new) second parameter.
151 */
152struct socket *
153sonewconn1(head, connstatus)
154	register struct socket *head;
155	int connstatus;
156{
157	register struct socket *so;
158	int soqueue = connstatus ? 1 : 0;
159
160	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
161		return ((struct socket *)0);
162	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
163	if (so == NULL)
164		return ((struct socket *)0);
165	bzero((caddr_t)so, sizeof(*so));
166	so->so_type = head->so_type;
167	so->so_options = head->so_options &~ SO_ACCEPTCONN;
168	so->so_linger = head->so_linger;
169	so->so_state = head->so_state | SS_NOFDREF;
170	so->so_proto = head->so_proto;
171	so->so_timeo = head->so_timeo;
172	so->so_pgid = head->so_pgid;
173	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
174	soqinsque(head, so, soqueue);
175	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
176	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
177		(void) soqremque(so, soqueue);
178		(void) free((caddr_t)so, M_SOCKET);
179		return ((struct socket *)0);
180	}
181	if (connstatus) {
182		sorwakeup(head);
183		wakeup((caddr_t)&head->so_timeo);
184		so->so_state |= connstatus;
185	}
186	return (so);
187}
188
189void
190soqinsque(head, so, q)
191	register struct socket *head, *so;
192	int q;
193{
194
195	register struct socket **prev;
196	so->so_head = head;
197	if (q == 0) {
198		head->so_q0len++;
199		so->so_q0 = 0;
200		for (prev = &(head->so_q0); *prev; )
201			prev = &((*prev)->so_q0);
202	} else {
203		head->so_qlen++;
204		so->so_q = 0;
205		for (prev = &(head->so_q); *prev; )
206			prev = &((*prev)->so_q);
207	}
208	*prev = so;
209}
210
211int
212soqremque(so, q)
213	register struct socket *so;
214	int q;
215{
216	register struct socket *head, *prev, *next;
217
218	head = so->so_head;
219	prev = head;
220	for (;;) {
221		next = q ? prev->so_q : prev->so_q0;
222		if (next == so)
223			break;
224		if (next == 0)
225			return (0);
226		prev = next;
227	}
228	if (q == 0) {
229		prev->so_q0 = next->so_q0;
230		head->so_q0len--;
231	} else {
232		prev->so_q = next->so_q;
233		head->so_qlen--;
234	}
235	next->so_q0 = next->so_q = 0;
236	next->so_head = 0;
237	return (1);
238}
239
240/*
241 * Socantsendmore indicates that no more data will be sent on the
242 * socket; it would normally be applied to a socket when the user
243 * informs the system that no more data is to be sent, by the protocol
244 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
245 * will be received, and will normally be applied to the socket by a
246 * protocol when it detects that the peer will send no more data.
247 * Data queued for reading in the socket may yet be read.
248 */
249
250void
251socantsendmore(so)
252	struct socket *so;
253{
254
255	so->so_state |= SS_CANTSENDMORE;
256	sowwakeup(so);
257}
258
259void
260socantrcvmore(so)
261	struct socket *so;
262{
263
264	so->so_state |= SS_CANTRCVMORE;
265	sorwakeup(so);
266}
267
268/*
269 * Wait for data to arrive at/drain from a socket buffer.
270 */
271int
272sbwait(sb)
273	struct sockbuf *sb;
274{
275
276	sb->sb_flags |= SB_WAIT;
277	return (tsleep((caddr_t)&sb->sb_cc,
278	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
279	    sb->sb_timeo));
280}
281
282/*
283 * Lock a sockbuf already known to be locked;
284 * return any error returned from sleep (EINTR).
285 */
286int
287sb_lock(sb)
288	register struct sockbuf *sb;
289{
290	int error;
291
292	while (sb->sb_flags & SB_LOCK) {
293		sb->sb_flags |= SB_WANT;
294		if (error = tsleep((caddr_t)&sb->sb_flags,
295		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
296		    netio, 0))
297			return (error);
298	}
299	sb->sb_flags |= SB_LOCK;
300	return (0);
301}
302
303/*
304 * Wakeup processes waiting on a socket buffer.
305 * Do asynchronous notification via SIGIO
306 * if the socket has the SS_ASYNC flag set.
307 */
308void
309sowakeup(so, sb)
310	register struct socket *so;
311	register struct sockbuf *sb;
312{
313	struct proc *p;
314
315	selwakeup(&sb->sb_sel);
316	sb->sb_flags &= ~SB_SEL;
317	if (sb->sb_flags & SB_WAIT) {
318		sb->sb_flags &= ~SB_WAIT;
319		wakeup((caddr_t)&sb->sb_cc);
320	}
321	if (so->so_state & SS_ASYNC) {
322		if (so->so_pgid < 0)
323			gsignal(-so->so_pgid, SIGIO);
324		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
325			psignal(p, SIGIO);
326	}
327}
328
329/*
330 * Socket buffer (struct sockbuf) utility routines.
331 *
332 * Each socket contains two socket buffers: one for sending data and
333 * one for receiving data.  Each buffer contains a queue of mbufs,
334 * information about the number of mbufs and amount of data in the
335 * queue, and other fields allowing select() statements and notification
336 * on data availability to be implemented.
337 *
338 * Data stored in a socket buffer is maintained as a list of records.
339 * Each record is a list of mbufs chained together with the m_next
340 * field.  Records are chained together with the m_nextpkt field. The upper
341 * level routine soreceive() expects the following conventions to be
342 * observed when placing information in the receive buffer:
343 *
344 * 1. If the protocol requires each message be preceded by the sender's
345 *    name, then a record containing that name must be present before
346 *    any associated data (mbuf's must be of type MT_SONAME).
347 * 2. If the protocol supports the exchange of ``access rights'' (really
348 *    just additional data associated with the message), and there are
349 *    ``rights'' to be received, then a record containing this data
350 *    should be present (mbuf's must be of type MT_RIGHTS).
351 * 3. If a name or rights record exists, then it must be followed by
352 *    a data record, perhaps of zero length.
353 *
354 * Before using a new socket structure it is first necessary to reserve
355 * buffer space to the socket, by calling sbreserve().  This should commit
356 * some of the available buffer space in the system buffer pool for the
357 * socket (currently, it does nothing but enforce limits).  The space
358 * should be released by calling sbrelease() when the socket is destroyed.
359 */
360
361int
362soreserve(so, sndcc, rcvcc)
363	register struct socket *so;
364	u_long sndcc, rcvcc;
365{
366
367	if (sbreserve(&so->so_snd, sndcc) == 0)
368		goto bad;
369	if (sbreserve(&so->so_rcv, rcvcc) == 0)
370		goto bad2;
371	if (so->so_rcv.sb_lowat == 0)
372		so->so_rcv.sb_lowat = 1;
373	if (so->so_snd.sb_lowat == 0)
374		so->so_snd.sb_lowat = MCLBYTES;
375	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
376		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
377	return (0);
378bad2:
379	sbrelease(&so->so_snd);
380bad:
381	return (ENOBUFS);
382}
383
384/*
385 * Allot mbufs to a sockbuf.
386 * Attempt to scale mbmax so that mbcnt doesn't become limiting
387 * if buffering efficiency is near the normal case.
388 */
389int
390sbreserve(sb, cc)
391	struct sockbuf *sb;
392	u_long cc;
393{
394
395	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
396		return (0);
397	sb->sb_hiwat = cc;
398	sb->sb_mbmax = min(cc * 2, sb_max);
399	if (sb->sb_lowat > sb->sb_hiwat)
400		sb->sb_lowat = sb->sb_hiwat;
401	return (1);
402}
403
404/*
405 * Free mbufs held by a socket, and reserved mbuf space.
406 */
407void
408sbrelease(sb)
409	struct sockbuf *sb;
410{
411
412	sbflush(sb);
413	sb->sb_hiwat = sb->sb_mbmax = 0;
414}
415
416/*
417 * Routines to add and remove
418 * data from an mbuf queue.
419 *
420 * The routines sbappend() or sbappendrecord() are normally called to
421 * append new mbufs to a socket buffer, after checking that adequate
422 * space is available, comparing the function sbspace() with the amount
423 * of data to be added.  sbappendrecord() differs from sbappend() in
424 * that data supplied is treated as the beginning of a new record.
425 * To place a sender's address, optional access rights, and data in a
426 * socket receive buffer, sbappendaddr() should be used.  To place
427 * access rights and data in a socket receive buffer, sbappendrights()
428 * should be used.  In either case, the new data begins a new record.
429 * Note that unlike sbappend() and sbappendrecord(), these routines check
430 * for the caller that there will be enough space to store the data.
431 * Each fails if there is not enough space, or if it cannot find mbufs
432 * to store additional information in.
433 *
434 * Reliable protocols may use the socket send buffer to hold data
435 * awaiting acknowledgement.  Data is normally copied from a socket
436 * send buffer in a protocol with m_copy for output to a peer,
437 * and then removing the data from the socket buffer with sbdrop()
438 * or sbdroprecord() when the data is acknowledged by the peer.
439 */
440
441/*
442 * Append mbuf chain m to the last record in the
443 * socket buffer sb.  The additional space associated
444 * the mbuf chain is recorded in sb.  Empty mbufs are
445 * discarded and mbufs are compacted where possible.
446 */
447void
448sbappend(sb, m)
449	struct sockbuf *sb;
450	struct mbuf *m;
451{
452	register struct mbuf *n;
453
454	if (m == 0)
455		return;
456	if (n = sb->sb_mb) {
457		while (n->m_nextpkt)
458			n = n->m_nextpkt;
459		do {
460			if (n->m_flags & M_EOR) {
461				sbappendrecord(sb, m); /* XXXXXX!!!! */
462				return;
463			}
464		} while (n->m_next && (n = n->m_next));
465	}
466	sbcompress(sb, m, n);
467}
468
469#ifdef SOCKBUF_DEBUG
470void
471sbcheck(sb)
472	register struct sockbuf *sb;
473{
474	register struct mbuf *m;
475	register int len = 0, mbcnt = 0;
476
477	for (m = sb->sb_mb; m; m = m->m_next) {
478		len += m->m_len;
479		mbcnt += MSIZE;
480		if (m->m_flags & M_EXT)
481			mbcnt += m->m_ext.ext_size;
482		if (m->m_nextpkt)
483			panic("sbcheck nextpkt");
484	}
485	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
486		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
487		    mbcnt, sb->sb_mbcnt);
488		panic("sbcheck");
489	}
490}
491#endif
492
493/*
494 * As above, except the mbuf chain
495 * begins a new record.
496 */
497void
498sbappendrecord(sb, m0)
499	register struct sockbuf *sb;
500	register struct mbuf *m0;
501{
502	register struct mbuf *m;
503
504	if (m0 == 0)
505		return;
506	if (m = sb->sb_mb)
507		while (m->m_nextpkt)
508			m = m->m_nextpkt;
509	/*
510	 * Put the first mbuf on the queue.
511	 * Note this permits zero length records.
512	 */
513	sballoc(sb, m0);
514	if (m)
515		m->m_nextpkt = m0;
516	else
517		sb->sb_mb = m0;
518	m = m0->m_next;
519	m0->m_next = 0;
520	if (m && (m0->m_flags & M_EOR)) {
521		m0->m_flags &= ~M_EOR;
522		m->m_flags |= M_EOR;
523	}
524	sbcompress(sb, m, m0);
525}
526
527/*
528 * As above except that OOB data
529 * is inserted at the beginning of the sockbuf,
530 * but after any other OOB data.
531 */
532void
533sbinsertoob(sb, m0)
534	register struct sockbuf *sb;
535	register struct mbuf *m0;
536{
537	register struct mbuf *m;
538	register struct mbuf **mp;
539
540	if (m0 == 0)
541		return;
542	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
543	    again:
544		switch (m->m_type) {
545
546		case MT_OOBDATA:
547			continue;		/* WANT next train */
548
549		case MT_CONTROL:
550			if (m = m->m_next)
551				goto again;	/* inspect THIS train further */
552		}
553		break;
554	}
555	/*
556	 * Put the first mbuf on the queue.
557	 * Note this permits zero length records.
558	 */
559	sballoc(sb, m0);
560	m0->m_nextpkt = *mp;
561	*mp = m0;
562	m = m0->m_next;
563	m0->m_next = 0;
564	if (m && (m0->m_flags & M_EOR)) {
565		m0->m_flags &= ~M_EOR;
566		m->m_flags |= M_EOR;
567	}
568	sbcompress(sb, m, m0);
569}
570
571/*
572 * Append address and data, and optionally, control (ancillary) data
573 * to the receive queue of a socket.  If present,
574 * m0 must include a packet header with total length.
575 * Returns 0 if no space in sockbuf or insufficient mbufs.
576 */
577int
578sbappendaddr(sb, asa, m0, control)
579	register struct sockbuf *sb;
580	struct sockaddr *asa;
581	struct mbuf *m0, *control;
582{
583	register struct mbuf *m, *n;
584	int space = asa->sa_len;
585
586if (m0 && (m0->m_flags & M_PKTHDR) == 0)
587panic("sbappendaddr");
588	if (m0)
589		space += m0->m_pkthdr.len;
590	for (n = control; n; n = n->m_next) {
591		space += n->m_len;
592		if (n->m_next == 0)	/* keep pointer to last control buf */
593			break;
594	}
595	if (space > sbspace(sb))
596		return (0);
597	if (asa->sa_len > MLEN)
598		return (0);
599	MGET(m, M_DONTWAIT, MT_SONAME);
600	if (m == 0)
601		return (0);
602	m->m_len = asa->sa_len;
603	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
604	if (n)
605		n->m_next = m0;		/* concatenate data to control */
606	else
607		control = m0;
608	m->m_next = control;
609	for (n = m; n; n = n->m_next)
610		sballoc(sb, n);
611	if (n = sb->sb_mb) {
612		while (n->m_nextpkt)
613			n = n->m_nextpkt;
614		n->m_nextpkt = m;
615	} else
616		sb->sb_mb = m;
617	return (1);
618}
619
620int
621sbappendcontrol(sb, m0, control)
622	struct sockbuf *sb;
623	struct mbuf *m0, *control;
624{
625	register struct mbuf *m, *n;
626	int space = 0;
627
628	if (control == 0)
629		panic("sbappendcontrol");
630	for (m = control; ; m = m->m_next) {
631		space += m->m_len;
632		if (m->m_next == 0)
633			break;
634	}
635	n = m;			/* save pointer to last control buffer */
636	for (m = m0; m; m = m->m_next)
637		space += m->m_len;
638	if (space > sbspace(sb))
639		return (0);
640	n->m_next = m0;			/* concatenate data to control */
641	for (m = control; m; m = m->m_next)
642		sballoc(sb, m);
643	if (n = sb->sb_mb) {
644		while (n->m_nextpkt)
645			n = n->m_nextpkt;
646		n->m_nextpkt = control;
647	} else
648		sb->sb_mb = control;
649	return (1);
650}
651
652/*
653 * Compress mbuf chain m into the socket
654 * buffer sb following mbuf n.  If n
655 * is null, the buffer is presumed empty.
656 */
657void
658sbcompress(sb, m, n)
659	register struct sockbuf *sb;
660	register struct mbuf *m, *n;
661{
662	register int eor = 0;
663	register struct mbuf *o;
664
665	while (m) {
666		eor |= m->m_flags & M_EOR;
667		if (m->m_len == 0 &&
668		    (eor == 0 ||
669		     (((o = m->m_next) || (o = n)) &&
670		      o->m_type == m->m_type))) {
671			m = m_free(m);
672			continue;
673		}
674		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
675		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
676		    n->m_type == m->m_type) {
677			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
678			    (unsigned)m->m_len);
679			n->m_len += m->m_len;
680			sb->sb_cc += m->m_len;
681			m = m_free(m);
682			continue;
683		}
684		if (n)
685			n->m_next = m;
686		else
687			sb->sb_mb = m;
688		sballoc(sb, m);
689		n = m;
690		m->m_flags &= ~M_EOR;
691		m = m->m_next;
692		n->m_next = 0;
693	}
694	if (eor) {
695		if (n)
696			n->m_flags |= eor;
697		else
698			printf("semi-panic: sbcompress\n");
699	}
700}
701
702/*
703 * Free all mbufs in a sockbuf.
704 * Check that all resources are reclaimed.
705 */
706void
707sbflush(sb)
708	register struct sockbuf *sb;
709{
710
711	if (sb->sb_flags & SB_LOCK)
712		panic("sbflush");
713	while (sb->sb_mbcnt)
714		sbdrop(sb, (int)sb->sb_cc);
715	if (sb->sb_cc || sb->sb_mb)
716		panic("sbflush 2");
717}
718
719/*
720 * Drop data from (the front of) a sockbuf.
721 */
722void
723sbdrop(sb, len)
724	register struct sockbuf *sb;
725	register int len;
726{
727	register struct mbuf *m, *mn;
728	struct mbuf *next;
729
730	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
731	while (len > 0) {
732		if (m == 0) {
733			if (next == 0)
734				panic("sbdrop");
735			m = next;
736			next = m->m_nextpkt;
737			continue;
738		}
739		if (m->m_len > len) {
740			m->m_len -= len;
741			m->m_data += len;
742			sb->sb_cc -= len;
743			break;
744		}
745		len -= m->m_len;
746		sbfree(sb, m);
747		MFREE(m, mn);
748		m = mn;
749	}
750	while (m && m->m_len == 0) {
751		sbfree(sb, m);
752		MFREE(m, mn);
753		m = mn;
754	}
755	if (m) {
756		sb->sb_mb = m;
757		m->m_nextpkt = next;
758	} else
759		sb->sb_mb = next;
760}
761
762/*
763 * Drop a record off the front of a sockbuf
764 * and move the next record to the front.
765 */
766void
767sbdroprecord(sb)
768	register struct sockbuf *sb;
769{
770	register struct mbuf *m, *mn;
771
772	m = sb->sb_mb;
773	if (m) {
774		sb->sb_mb = m->m_nextpkt;
775		do {
776			sbfree(sb, m);
777			MFREE(m, mn);
778		} while (m = mn);
779	}
780}
781