uipc_socket2.c revision 1.66
1/*	$NetBSD: uipc_socket2.c,v 1.66 2005/02/26 21:34:55 perry Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
32 */
33
34#include <sys/cdefs.h>
35__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.66 2005/02/26 21:34:55 perry Exp $");
36
37#include "opt_mbuftrace.h"
38#include "opt_sb_max.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/proc.h>
43#include <sys/file.h>
44#include <sys/buf.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/protosw.h>
48#include <sys/poll.h>
49#include <sys/socket.h>
50#include <sys/socketvar.h>
51#include <sys/signalvar.h>
52
53/*
54 * Primitive routines for operating on sockets and socket buffers
55 */
56
57/* strings for sleep message: */
58const char	netcon[] = "netcon";
59const char	netcls[] = "netcls";
60const char	netio[] = "netio";
61const char	netlck[] = "netlck";
62
63u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
64static u_long sb_max_adj;	/* adjusted sb_max */
65
66/*
67 * Procedures to manipulate state flags of socket
68 * and do appropriate wakeups.  Normal sequence from the
69 * active (originating) side is that soisconnecting() is
70 * called during processing of connect() call,
71 * resulting in an eventual call to soisconnected() if/when the
72 * connection is established.  When the connection is torn down
73 * soisdisconnecting() is called during processing of disconnect() call,
74 * and soisdisconnected() is called when the connection to the peer
75 * is totally severed.  The semantics of these routines are such that
76 * connectionless protocols can call soisconnected() and soisdisconnected()
77 * only, bypassing the in-progress calls when setting up a ``connection''
78 * takes no time.
79 *
80 * From the passive side, a socket is created with
81 * two queues of sockets: so_q0 for connections in progress
82 * and so_q for connections already made and awaiting user acceptance.
83 * As a protocol is preparing incoming connections, it creates a socket
84 * structure queued on so_q0 by calling sonewconn().  When the connection
85 * is established, soisconnected() is called, and transfers the
86 * socket structure to so_q, making it available to accept().
87 *
88 * If a socket is closed with sockets on either
89 * so_q0 or so_q, these sockets are dropped.
90 *
91 * If higher level protocols are implemented in
92 * the kernel, the wakeups done here will sometimes
93 * cause software-interrupt process scheduling.
94 */
95
96void
97soisconnecting(struct socket *so)
98{
99
100	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
101	so->so_state |= SS_ISCONNECTING;
102}
103
104void
105soisconnected(struct socket *so)
106{
107	struct socket	*head;
108
109	head = so->so_head;
110	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
111	so->so_state |= SS_ISCONNECTED;
112	if (head && soqremque(so, 0)) {
113		soqinsque(head, so, 1);
114		sorwakeup(head);
115		wakeup((caddr_t)&head->so_timeo);
116	} else {
117		wakeup((caddr_t)&so->so_timeo);
118		sorwakeup(so);
119		sowwakeup(so);
120	}
121}
122
123void
124soisdisconnecting(struct socket *so)
125{
126
127	so->so_state &= ~SS_ISCONNECTING;
128	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
129	wakeup((caddr_t)&so->so_timeo);
130	sowwakeup(so);
131	sorwakeup(so);
132}
133
134void
135soisdisconnected(struct socket *so)
136{
137
138	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
139	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
140	wakeup((caddr_t)&so->so_timeo);
141	sowwakeup(so);
142	sorwakeup(so);
143}
144
145/*
146 * When an attempt at a new connection is noted on a socket
147 * which accepts connections, sonewconn is called.  If the
148 * connection is possible (subject to space constraints, etc.)
149 * then we allocate a new structure, propoerly linked into the
150 * data structure of the original socket, and return this.
151 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
152 *
153 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
154 * to catch calls that are missing the (new) second parameter.
155 */
156struct socket *
157sonewconn1(struct socket *head, int connstatus)
158{
159	struct socket	*so;
160	int		soqueue;
161
162	soqueue = connstatus ? 1 : 0;
163	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
164		return ((struct socket *)0);
165	so = pool_get(&socket_pool, PR_NOWAIT);
166	if (so == NULL)
167		return (NULL);
168	memset((caddr_t)so, 0, sizeof(*so));
169	so->so_type = head->so_type;
170	so->so_options = head->so_options &~ SO_ACCEPTCONN;
171	so->so_linger = head->so_linger;
172	so->so_state = head->so_state | SS_NOFDREF;
173	so->so_proto = head->so_proto;
174	so->so_timeo = head->so_timeo;
175	so->so_pgid = head->so_pgid;
176	so->so_send = head->so_send;
177	so->so_receive = head->so_receive;
178	so->so_uid = head->so_uid;
179#ifdef MBUFTRACE
180	so->so_mowner = head->so_mowner;
181	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
182	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
183#endif
184	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
185	soqinsque(head, so, soqueue);
186	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
187	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
188	    (struct proc *)0)) {
189		(void) soqremque(so, soqueue);
190		pool_put(&socket_pool, so);
191		return (NULL);
192	}
193	if (connstatus) {
194		sorwakeup(head);
195		wakeup((caddr_t)&head->so_timeo);
196		so->so_state |= connstatus;
197	}
198	return (so);
199}
200
201void
202soqinsque(struct socket *head, struct socket *so, int q)
203{
204
205#ifdef DIAGNOSTIC
206	if (so->so_onq != NULL)
207		panic("soqinsque");
208#endif
209
210	so->so_head = head;
211	if (q == 0) {
212		head->so_q0len++;
213		so->so_onq = &head->so_q0;
214	} else {
215		head->so_qlen++;
216		so->so_onq = &head->so_q;
217	}
218	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
219}
220
221int
222soqremque(struct socket *so, int q)
223{
224	struct socket	*head;
225
226	head = so->so_head;
227	if (q == 0) {
228		if (so->so_onq != &head->so_q0)
229			return (0);
230		head->so_q0len--;
231	} else {
232		if (so->so_onq != &head->so_q)
233			return (0);
234		head->so_qlen--;
235	}
236	TAILQ_REMOVE(so->so_onq, so, so_qe);
237	so->so_onq = NULL;
238	so->so_head = NULL;
239	return (1);
240}
241
242/*
243 * Socantsendmore indicates that no more data will be sent on the
244 * socket; it would normally be applied to a socket when the user
245 * informs the system that no more data is to be sent, by the protocol
246 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
247 * will be received, and will normally be applied to the socket by a
248 * protocol when it detects that the peer will send no more data.
249 * Data queued for reading in the socket may yet be read.
250 */
251
252void
253socantsendmore(struct socket *so)
254{
255
256	so->so_state |= SS_CANTSENDMORE;
257	sowwakeup(so);
258}
259
260void
261socantrcvmore(struct socket *so)
262{
263
264	so->so_state |= SS_CANTRCVMORE;
265	sorwakeup(so);
266}
267
268/*
269 * Wait for data to arrive at/drain from a socket buffer.
270 */
271int
272sbwait(struct sockbuf *sb)
273{
274
275	sb->sb_flags |= SB_WAIT;
276	return (tsleep((caddr_t)&sb->sb_cc,
277	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
278	    sb->sb_timeo));
279}
280
281/*
282 * Lock a sockbuf already known to be locked;
283 * return any error returned from sleep (EINTR).
284 */
285int
286sb_lock(struct sockbuf *sb)
287{
288	int	error;
289
290	while (sb->sb_flags & SB_LOCK) {
291		sb->sb_flags |= SB_WANT;
292		error = tsleep((caddr_t)&sb->sb_flags,
293		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
294		    netlck, 0);
295		if (error)
296			return (error);
297	}
298	sb->sb_flags |= SB_LOCK;
299	return (0);
300}
301
302/*
303 * Wakeup processes waiting on a socket buffer.
304 * Do asynchronous notification via SIGIO
305 * if the socket buffer has the SB_ASYNC flag set.
306 */
307void
308sowakeup(struct socket *so, struct sockbuf *sb, int code)
309{
310	selnotify(&sb->sb_sel, 0);
311	sb->sb_flags &= ~SB_SEL;
312	if (sb->sb_flags & SB_WAIT) {
313		sb->sb_flags &= ~SB_WAIT;
314		wakeup((caddr_t)&sb->sb_cc);
315	}
316	if (sb->sb_flags & SB_ASYNC) {
317		int band;
318		if (code == POLL_IN)
319			band = POLLIN|POLLRDNORM;
320		else
321			band = POLLOUT|POLLWRNORM;
322		fownsignal(so->so_pgid, SIGIO, code, band, so);
323	}
324	if (sb->sb_flags & SB_UPCALL)
325		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
326}
327
328/*
329 * Socket buffer (struct sockbuf) utility routines.
330 *
331 * Each socket contains two socket buffers: one for sending data and
332 * one for receiving data.  Each buffer contains a queue of mbufs,
333 * information about the number of mbufs and amount of data in the
334 * queue, and other fields allowing poll() statements and notification
335 * on data availability to be implemented.
336 *
337 * Data stored in a socket buffer is maintained as a list of records.
338 * Each record is a list of mbufs chained together with the m_next
339 * field.  Records are chained together with the m_nextpkt field. The upper
340 * level routine soreceive() expects the following conventions to be
341 * observed when placing information in the receive buffer:
342 *
343 * 1. If the protocol requires each message be preceded by the sender's
344 *    name, then a record containing that name must be present before
345 *    any associated data (mbuf's must be of type MT_SONAME).
346 * 2. If the protocol supports the exchange of ``access rights'' (really
347 *    just additional data associated with the message), and there are
348 *    ``rights'' to be received, then a record containing this data
349 *    should be present (mbuf's must be of type MT_CONTROL).
350 * 3. If a name or rights record exists, then it must be followed by
351 *    a data record, perhaps of zero length.
352 *
353 * Before using a new socket structure it is first necessary to reserve
354 * buffer space to the socket, by calling sbreserve().  This should commit
355 * some of the available buffer space in the system buffer pool for the
356 * socket (currently, it does nothing but enforce limits).  The space
357 * should be released by calling sbrelease() when the socket is destroyed.
358 */
359
360int
361sb_max_set(u_long new_sbmax)
362{
363	int s;
364
365	if (new_sbmax < (16 * 1024))
366		return (EINVAL);
367
368	s = splsoftnet();
369	sb_max = new_sbmax;
370	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
371	splx(s);
372
373	return (0);
374}
375
376int
377soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
378{
379
380	if (sbreserve(&so->so_snd, sndcc, so) == 0)
381		goto bad;
382	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
383		goto bad2;
384	if (so->so_rcv.sb_lowat == 0)
385		so->so_rcv.sb_lowat = 1;
386	if (so->so_snd.sb_lowat == 0)
387		so->so_snd.sb_lowat = MCLBYTES;
388	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
389		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
390	return (0);
391 bad2:
392	sbrelease(&so->so_snd, so);
393 bad:
394	return (ENOBUFS);
395}
396
397/*
398 * Allot mbufs to a sockbuf.
399 * Attempt to scale mbmax so that mbcnt doesn't become limiting
400 * if buffering efficiency is near the normal case.
401 */
402int
403sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
404{
405	struct proc *p = curproc; /* XXX */
406	rlim_t maxcc;
407	uid_t uid;
408
409	KDASSERT(sb_max_adj != 0);
410	if (cc == 0 || cc > sb_max_adj)
411		return (0);
412	if (so) {
413		if (p && p->p_ucred->cr_uid == so->so_uid)
414			maxcc = p->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
415		else
416			maxcc = RLIM_INFINITY;
417		uid = so->so_uid;
418	} else {
419		uid = 0;	/* XXX: nothing better */
420		maxcc = RLIM_INFINITY;
421	}
422	if (!chgsbsize(uid, &sb->sb_hiwat, cc, maxcc))
423		return 0;
424	sb->sb_mbmax = min(cc * 2, sb_max);
425	if (sb->sb_lowat > sb->sb_hiwat)
426		sb->sb_lowat = sb->sb_hiwat;
427	return (1);
428}
429
430/*
431 * Free mbufs held by a socket, and reserved mbuf space.
432 */
433void
434sbrelease(struct sockbuf *sb, struct socket *so)
435{
436
437	sbflush(sb);
438	(void)chgsbsize(so->so_uid, &sb->sb_hiwat, 0,
439	    RLIM_INFINITY);
440	sb->sb_mbmax = 0;
441}
442
443/*
444 * Routines to add and remove
445 * data from an mbuf queue.
446 *
447 * The routines sbappend() or sbappendrecord() are normally called to
448 * append new mbufs to a socket buffer, after checking that adequate
449 * space is available, comparing the function sbspace() with the amount
450 * of data to be added.  sbappendrecord() differs from sbappend() in
451 * that data supplied is treated as the beginning of a new record.
452 * To place a sender's address, optional access rights, and data in a
453 * socket receive buffer, sbappendaddr() should be used.  To place
454 * access rights and data in a socket receive buffer, sbappendrights()
455 * should be used.  In either case, the new data begins a new record.
456 * Note that unlike sbappend() and sbappendrecord(), these routines check
457 * for the caller that there will be enough space to store the data.
458 * Each fails if there is not enough space, or if it cannot find mbufs
459 * to store additional information in.
460 *
461 * Reliable protocols may use the socket send buffer to hold data
462 * awaiting acknowledgement.  Data is normally copied from a socket
463 * send buffer in a protocol with m_copy for output to a peer,
464 * and then removing the data from the socket buffer with sbdrop()
465 * or sbdroprecord() when the data is acknowledged by the peer.
466 */
467
468#ifdef SOCKBUF_DEBUG
469void
470sblastrecordchk(struct sockbuf *sb, const char *where)
471{
472	struct mbuf *m = sb->sb_mb;
473
474	while (m && m->m_nextpkt)
475		m = m->m_nextpkt;
476
477	if (m != sb->sb_lastrecord) {
478		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
479		    sb->sb_mb, sb->sb_lastrecord, m);
480		printf("packet chain:\n");
481		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
482			printf("\t%p\n", m);
483		panic("sblastrecordchk from %s", where);
484	}
485}
486
487void
488sblastmbufchk(struct sockbuf *sb, const char *where)
489{
490	struct mbuf *m = sb->sb_mb;
491	struct mbuf *n;
492
493	while (m && m->m_nextpkt)
494		m = m->m_nextpkt;
495
496	while (m && m->m_next)
497		m = m->m_next;
498
499	if (m != sb->sb_mbtail) {
500		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
501		    sb->sb_mb, sb->sb_mbtail, m);
502		printf("packet tree:\n");
503		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
504			printf("\t");
505			for (n = m; n != NULL; n = n->m_next)
506				printf("%p ", n);
507			printf("\n");
508		}
509		panic("sblastmbufchk from %s", where);
510	}
511}
512#endif /* SOCKBUF_DEBUG */
513
514/*
515 * Link a chain of records onto a socket buffer
516 */
517#define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
518do {									\
519	if ((sb)->sb_lastrecord != NULL)				\
520		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
521	else								\
522		(sb)->sb_mb = (m0);					\
523	(sb)->sb_lastrecord = (mlast);					\
524} while (/*CONSTCOND*/0)
525
526
527#define	SBLINKRECORD(sb, m0)						\
528    SBLINKRECORDCHAIN(sb, m0, m0)
529
530/*
531 * Append mbuf chain m to the last record in the
532 * socket buffer sb.  The additional space associated
533 * the mbuf chain is recorded in sb.  Empty mbufs are
534 * discarded and mbufs are compacted where possible.
535 */
536void
537sbappend(struct sockbuf *sb, struct mbuf *m)
538{
539	struct mbuf	*n;
540
541	if (m == 0)
542		return;
543
544#ifdef MBUFTRACE
545	m_claimm(m, sb->sb_mowner);
546#endif
547
548	SBLASTRECORDCHK(sb, "sbappend 1");
549
550	if ((n = sb->sb_lastrecord) != NULL) {
551		/*
552		 * XXX Would like to simply use sb_mbtail here, but
553		 * XXX I need to verify that I won't miss an EOR that
554		 * XXX way.
555		 */
556		do {
557			if (n->m_flags & M_EOR) {
558				sbappendrecord(sb, m); /* XXXXXX!!!! */
559				return;
560			}
561		} while (n->m_next && (n = n->m_next));
562	} else {
563		/*
564		 * If this is the first record in the socket buffer, it's
565		 * also the last record.
566		 */
567		sb->sb_lastrecord = m;
568	}
569	sbcompress(sb, m, n);
570	SBLASTRECORDCHK(sb, "sbappend 2");
571}
572
573/*
574 * This version of sbappend() should only be used when the caller
575 * absolutely knows that there will never be more than one record
576 * in the socket buffer, that is, a stream protocol (such as TCP).
577 */
578void
579sbappendstream(struct sockbuf *sb, struct mbuf *m)
580{
581
582	KDASSERT(m->m_nextpkt == NULL);
583	KASSERT(sb->sb_mb == sb->sb_lastrecord);
584
585	SBLASTMBUFCHK(sb, __func__);
586
587#ifdef MBUFTRACE
588	m_claimm(m, sb->sb_mowner);
589#endif
590
591	sbcompress(sb, m, sb->sb_mbtail);
592
593	sb->sb_lastrecord = sb->sb_mb;
594	SBLASTRECORDCHK(sb, __func__);
595}
596
597#ifdef SOCKBUF_DEBUG
598void
599sbcheck(struct sockbuf *sb)
600{
601	struct mbuf	*m;
602	u_long		len, mbcnt;
603
604	len = 0;
605	mbcnt = 0;
606	for (m = sb->sb_mb; m; m = m->m_next) {
607		len += m->m_len;
608		mbcnt += MSIZE;
609		if (m->m_flags & M_EXT)
610			mbcnt += m->m_ext.ext_size;
611		if (m->m_nextpkt)
612			panic("sbcheck nextpkt");
613	}
614	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
615		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
616		    mbcnt, sb->sb_mbcnt);
617		panic("sbcheck");
618	}
619}
620#endif
621
622/*
623 * As above, except the mbuf chain
624 * begins a new record.
625 */
626void
627sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
628{
629	struct mbuf	*m;
630
631	if (m0 == 0)
632		return;
633
634#ifdef MBUFTRACE
635	m_claimm(m0, sb->sb_mowner);
636#endif
637	/*
638	 * Put the first mbuf on the queue.
639	 * Note this permits zero length records.
640	 */
641	sballoc(sb, m0);
642	SBLASTRECORDCHK(sb, "sbappendrecord 1");
643	SBLINKRECORD(sb, m0);
644	m = m0->m_next;
645	m0->m_next = 0;
646	if (m && (m0->m_flags & M_EOR)) {
647		m0->m_flags &= ~M_EOR;
648		m->m_flags |= M_EOR;
649	}
650	sbcompress(sb, m, m0);
651	SBLASTRECORDCHK(sb, "sbappendrecord 2");
652}
653
654/*
655 * As above except that OOB data
656 * is inserted at the beginning of the sockbuf,
657 * but after any other OOB data.
658 */
659void
660sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
661{
662	struct mbuf	*m, **mp;
663
664	if (m0 == 0)
665		return;
666
667	SBLASTRECORDCHK(sb, "sbinsertoob 1");
668
669	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
670	    again:
671		switch (m->m_type) {
672
673		case MT_OOBDATA:
674			continue;		/* WANT next train */
675
676		case MT_CONTROL:
677			if ((m = m->m_next) != NULL)
678				goto again;	/* inspect THIS train further */
679		}
680		break;
681	}
682	/*
683	 * Put the first mbuf on the queue.
684	 * Note this permits zero length records.
685	 */
686	sballoc(sb, m0);
687	m0->m_nextpkt = *mp;
688	if (*mp == NULL) {
689		/* m0 is actually the new tail */
690		sb->sb_lastrecord = m0;
691	}
692	*mp = m0;
693	m = m0->m_next;
694	m0->m_next = 0;
695	if (m && (m0->m_flags & M_EOR)) {
696		m0->m_flags &= ~M_EOR;
697		m->m_flags |= M_EOR;
698	}
699	sbcompress(sb, m, m0);
700	SBLASTRECORDCHK(sb, "sbinsertoob 2");
701}
702
703/*
704 * Append address and data, and optionally, control (ancillary) data
705 * to the receive queue of a socket.  If present,
706 * m0 must include a packet header with total length.
707 * Returns 0 if no space in sockbuf or insufficient mbufs.
708 */
709int
710sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
711	struct mbuf *control)
712{
713	struct mbuf	*m, *n, *nlast;
714	int		space, len;
715
716	space = asa->sa_len;
717
718	if (m0 != NULL) {
719		if ((m0->m_flags & M_PKTHDR) == 0)
720			panic("sbappendaddr");
721		space += m0->m_pkthdr.len;
722#ifdef MBUFTRACE
723		m_claimm(m0, sb->sb_mowner);
724#endif
725	}
726	for (n = control; n; n = n->m_next) {
727		space += n->m_len;
728		MCLAIM(n, sb->sb_mowner);
729		if (n->m_next == 0)	/* keep pointer to last control buf */
730			break;
731	}
732	if (space > sbspace(sb))
733		return (0);
734	MGET(m, M_DONTWAIT, MT_SONAME);
735	if (m == 0)
736		return (0);
737	MCLAIM(m, sb->sb_mowner);
738	/*
739	 * XXX avoid 'comparison always true' warning which isn't easily
740	 * avoided.
741	 */
742	len = asa->sa_len;
743	if (len > MLEN) {
744		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
745		if ((m->m_flags & M_EXT) == 0) {
746			m_free(m);
747			return (0);
748		}
749	}
750	m->m_len = asa->sa_len;
751	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
752	if (n)
753		n->m_next = m0;		/* concatenate data to control */
754	else
755		control = m0;
756	m->m_next = control;
757
758	SBLASTRECORDCHK(sb, "sbappendaddr 1");
759
760	for (n = m; n->m_next != NULL; n = n->m_next)
761		sballoc(sb, n);
762	sballoc(sb, n);
763	nlast = n;
764	SBLINKRECORD(sb, m);
765
766	sb->sb_mbtail = nlast;
767	SBLASTMBUFCHK(sb, "sbappendaddr");
768
769	SBLASTRECORDCHK(sb, "sbappendaddr 2");
770
771	return (1);
772}
773
774/*
775 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
776 * an mbuf chain.
777 */
778static __inline struct mbuf *
779m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
780		   const struct sockaddr *asa)
781{
782	struct mbuf *m;
783	const int salen = asa->sa_len;
784
785	/* only the first in each chain need be a pkthdr */
786	MGETHDR(m, M_DONTWAIT, MT_SONAME);
787	if (m == 0)
788		return (0);
789	MCLAIM(m, sb->sb_mowner);
790#ifdef notyet
791	if (salen > MHLEN) {
792		MEXTMALLOC(m, salen, M_NOWAIT);
793		if ((m->m_flags & M_EXT) == 0) {
794			m_free(m);
795			return (0);
796		}
797	}
798#else
799	KASSERT(salen <= MHLEN);
800#endif
801	m->m_len = salen;
802	memcpy(mtod(m, caddr_t), (caddr_t)asa, salen);
803	m->m_next = m0;
804	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
805
806	return m;
807}
808
809int
810sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
811		  struct mbuf *m0, int sbprio)
812{
813	int space;
814	struct mbuf *m, *n, *n0, *nlast;
815	int error;
816
817	/*
818	 * XXX sbprio reserved for encoding priority of this* request:
819	 *  SB_PRIO_NONE --> honour normal sb limits
820	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
821	 *	take whole chain. Intended for large requests
822	 *      that should be delivered atomically (all, or none).
823	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
824	 *       over normal socket limits, for messages indicating
825	 *       buffer overflow in earlier normal/lower-priority messages
826	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
827	 *       Intended for  kernel-generated messages only.
828	 *        Up to generator to avoid total mbuf resource exhaustion.
829	 */
830	(void)sbprio;
831
832	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
833		panic("sbappendaddrchain");
834
835	space = sbspace(sb);
836
837#ifdef notyet
838	/*
839	 * Enforce SB_PRIO_* limits as described above.
840	 */
841#endif
842
843	n0 = NULL;
844	nlast = NULL;
845	for (m = m0; m; m = m->m_nextpkt) {
846		struct mbuf *np;
847
848#ifdef MBUFTRACE
849		m_claimm(m, sb->sb_mowner);
850#endif
851
852		/* Prepend sockaddr to this record (m) of input chain m0 */
853	  	n = m_prepend_sockaddr(sb, m, asa);
854		if (n == NULL) {
855			error = ENOBUFS;
856			goto bad;
857		}
858
859		/* Append record (asa+m) to end of new chain n0 */
860		if (n0 == NULL) {
861			n0 = n;
862		} else {
863			nlast->m_nextpkt = n;
864		}
865		/* Keep track of last record on new chain */
866		nlast = n;
867
868		for (np = n; np; np = np->m_next)
869			sballoc(sb, np);
870	}
871
872	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
873
874	/* Drop the entire chain of (asa+m) records onto the socket */
875	SBLINKRECORDCHAIN(sb, n0, nlast);
876
877	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
878
879	for (m = nlast; m->m_next; m = m->m_next)
880		;
881	sb->sb_mbtail = m;
882	SBLASTMBUFCHK(sb, "sbappendaddrchain");
883
884	return (1);
885
886bad:
887	/*
888	 * On error, free the prepended addreseses. For consistency
889	 * with sbappendaddr(), leave it to our caller to free
890	 * the input record chain passed to us as m0.
891	 */
892	while ((n = n0) != NULL) {
893	  	struct mbuf *np;
894
895		/* Undo the sballoc() of this record */
896		for (np = n; np; np = np->m_next)
897			sbfree(sb, np);
898
899		n0 = n->m_nextpkt;	/* iterate at next prepended address */
900		MFREE(n, np);		/* free prepended address (not data) */
901	}
902	return 0;
903}
904
905
906int
907sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
908{
909	struct mbuf	*m, *mlast, *n;
910	int		space;
911
912	space = 0;
913	if (control == 0)
914		panic("sbappendcontrol");
915	for (m = control; ; m = m->m_next) {
916		space += m->m_len;
917		MCLAIM(m, sb->sb_mowner);
918		if (m->m_next == 0)
919			break;
920	}
921	n = m;			/* save pointer to last control buffer */
922	for (m = m0; m; m = m->m_next) {
923		MCLAIM(m, sb->sb_mowner);
924		space += m->m_len;
925	}
926	if (space > sbspace(sb))
927		return (0);
928	n->m_next = m0;			/* concatenate data to control */
929
930	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
931
932	for (m = control; m->m_next != NULL; m = m->m_next)
933		sballoc(sb, m);
934	sballoc(sb, m);
935	mlast = m;
936	SBLINKRECORD(sb, control);
937
938	sb->sb_mbtail = mlast;
939	SBLASTMBUFCHK(sb, "sbappendcontrol");
940
941	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
942
943	return (1);
944}
945
946/*
947 * Compress mbuf chain m into the socket
948 * buffer sb following mbuf n.  If n
949 * is null, the buffer is presumed empty.
950 */
951void
952sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
953{
954	int		eor;
955	struct mbuf	*o;
956
957	eor = 0;
958	while (m) {
959		eor |= m->m_flags & M_EOR;
960		if (m->m_len == 0 &&
961		    (eor == 0 ||
962		     (((o = m->m_next) || (o = n)) &&
963		      o->m_type == m->m_type))) {
964			if (sb->sb_lastrecord == m)
965				sb->sb_lastrecord = m->m_next;
966			m = m_free(m);
967			continue;
968		}
969		if (n && (n->m_flags & M_EOR) == 0 &&
970		    /* M_TRAILINGSPACE() checks buffer writeability */
971		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
972		    m->m_len <= M_TRAILINGSPACE(n) &&
973		    n->m_type == m->m_type) {
974			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
975			    (unsigned)m->m_len);
976			n->m_len += m->m_len;
977			sb->sb_cc += m->m_len;
978			m = m_free(m);
979			continue;
980		}
981		if (n)
982			n->m_next = m;
983		else
984			sb->sb_mb = m;
985		sb->sb_mbtail = m;
986		sballoc(sb, m);
987		n = m;
988		m->m_flags &= ~M_EOR;
989		m = m->m_next;
990		n->m_next = 0;
991	}
992	if (eor) {
993		if (n)
994			n->m_flags |= eor;
995		else
996			printf("semi-panic: sbcompress\n");
997	}
998	SBLASTMBUFCHK(sb, __func__);
999}
1000
1001/*
1002 * Free all mbufs in a sockbuf.
1003 * Check that all resources are reclaimed.
1004 */
1005void
1006sbflush(struct sockbuf *sb)
1007{
1008
1009	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1010
1011	while (sb->sb_mbcnt)
1012		sbdrop(sb, (int)sb->sb_cc);
1013
1014	KASSERT(sb->sb_cc == 0);
1015	KASSERT(sb->sb_mb == NULL);
1016	KASSERT(sb->sb_mbtail == NULL);
1017	KASSERT(sb->sb_lastrecord == NULL);
1018}
1019
1020/*
1021 * Drop data from (the front of) a sockbuf.
1022 */
1023void
1024sbdrop(struct sockbuf *sb, int len)
1025{
1026	struct mbuf	*m, *mn, *next;
1027
1028	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1029	while (len > 0) {
1030		if (m == 0) {
1031			if (next == 0)
1032				panic("sbdrop");
1033			m = next;
1034			next = m->m_nextpkt;
1035			continue;
1036		}
1037		if (m->m_len > len) {
1038			m->m_len -= len;
1039			m->m_data += len;
1040			sb->sb_cc -= len;
1041			break;
1042		}
1043		len -= m->m_len;
1044		sbfree(sb, m);
1045		MFREE(m, mn);
1046		m = mn;
1047	}
1048	while (m && m->m_len == 0) {
1049		sbfree(sb, m);
1050		MFREE(m, mn);
1051		m = mn;
1052	}
1053	if (m) {
1054		sb->sb_mb = m;
1055		m->m_nextpkt = next;
1056	} else
1057		sb->sb_mb = next;
1058	/*
1059	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1060	 * makes sure sb_lastrecord is up-to-date if we dropped
1061	 * part of the last record.
1062	 */
1063	m = sb->sb_mb;
1064	if (m == NULL) {
1065		sb->sb_mbtail = NULL;
1066		sb->sb_lastrecord = NULL;
1067	} else if (m->m_nextpkt == NULL)
1068		sb->sb_lastrecord = m;
1069}
1070
1071/*
1072 * Drop a record off the front of a sockbuf
1073 * and move the next record to the front.
1074 */
1075void
1076sbdroprecord(struct sockbuf *sb)
1077{
1078	struct mbuf	*m, *mn;
1079
1080	m = sb->sb_mb;
1081	if (m) {
1082		sb->sb_mb = m->m_nextpkt;
1083		do {
1084			sbfree(sb, m);
1085			MFREE(m, mn);
1086		} while ((m = mn) != NULL);
1087	}
1088	SB_EMPTY_FIXUP(sb);
1089}
1090
1091/*
1092 * Create a "control" mbuf containing the specified data
1093 * with the specified type for presentation on a socket buffer.
1094 */
1095struct mbuf *
1096sbcreatecontrol(caddr_t p, int size, int type, int level)
1097{
1098	struct cmsghdr	*cp;
1099	struct mbuf	*m;
1100
1101	if (CMSG_SPACE(size) > MCLBYTES) {
1102		printf("sbcreatecontrol: message too large %d\n", size);
1103		return NULL;
1104	}
1105
1106	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1107		return ((struct mbuf *) NULL);
1108	if (CMSG_SPACE(size) > MLEN) {
1109		MCLGET(m, M_DONTWAIT);
1110		if ((m->m_flags & M_EXT) == 0) {
1111			m_free(m);
1112			return NULL;
1113		}
1114	}
1115	cp = mtod(m, struct cmsghdr *);
1116	memcpy(CMSG_DATA(cp), p, size);
1117	m->m_len = CMSG_SPACE(size);
1118	cp->cmsg_len = CMSG_LEN(size);
1119	cp->cmsg_level = level;
1120	cp->cmsg_type = type;
1121	return (m);
1122}
1123