uipc_socket2.c revision 1.58
1/*	$NetBSD: uipc_socket2.c,v 1.58 2003/10/21 22:55:47 thorpej Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
32 */
33
34#include <sys/cdefs.h>
35__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.58 2003/10/21 22:55:47 thorpej Exp $");
36
37#include "opt_mbuftrace.h"
38#include "opt_sb_max.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/proc.h>
43#include <sys/file.h>
44#include <sys/buf.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/protosw.h>
48#include <sys/poll.h>
49#include <sys/socket.h>
50#include <sys/socketvar.h>
51#include <sys/signalvar.h>
52
53/*
54 * Primitive routines for operating on sockets and socket buffers
55 */
56
57/* strings for sleep message: */
58const char	netcon[] = "netcon";
59const char	netcls[] = "netcls";
60const char	netio[] = "netio";
61const char	netlck[] = "netlck";
62
63u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
64static u_long sb_max_adj;	/* adjusted sb_max */
65
66/*
67 * Procedures to manipulate state flags of socket
68 * and do appropriate wakeups.  Normal sequence from the
69 * active (originating) side is that soisconnecting() is
70 * called during processing of connect() call,
71 * resulting in an eventual call to soisconnected() if/when the
72 * connection is established.  When the connection is torn down
73 * soisdisconnecting() is called during processing of disconnect() call,
74 * and soisdisconnected() is called when the connection to the peer
75 * is totally severed.  The semantics of these routines are such that
76 * connectionless protocols can call soisconnected() and soisdisconnected()
77 * only, bypassing the in-progress calls when setting up a ``connection''
78 * takes no time.
79 *
80 * From the passive side, a socket is created with
81 * two queues of sockets: so_q0 for connections in progress
82 * and so_q for connections already made and awaiting user acceptance.
83 * As a protocol is preparing incoming connections, it creates a socket
84 * structure queued on so_q0 by calling sonewconn().  When the connection
85 * is established, soisconnected() is called, and transfers the
86 * socket structure to so_q, making it available to accept().
87 *
88 * If a socket is closed with sockets on either
89 * so_q0 or so_q, these sockets are dropped.
90 *
91 * If higher level protocols are implemented in
92 * the kernel, the wakeups done here will sometimes
93 * cause software-interrupt process scheduling.
94 */
95
96void
97soisconnecting(struct socket *so)
98{
99
100	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
101	so->so_state |= SS_ISCONNECTING;
102}
103
104void
105soisconnected(struct socket *so)
106{
107	struct socket	*head;
108
109	head = so->so_head;
110	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
111	so->so_state |= SS_ISCONNECTED;
112	if (head && soqremque(so, 0)) {
113		soqinsque(head, so, 1);
114		sorwakeup(head);
115		wakeup((caddr_t)&head->so_timeo);
116	} else {
117		wakeup((caddr_t)&so->so_timeo);
118		sorwakeup(so);
119		sowwakeup(so);
120	}
121}
122
123void
124soisdisconnecting(struct socket *so)
125{
126
127	so->so_state &= ~SS_ISCONNECTING;
128	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
129	wakeup((caddr_t)&so->so_timeo);
130	sowwakeup(so);
131	sorwakeup(so);
132}
133
134void
135soisdisconnected(struct socket *so)
136{
137
138	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
139	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
140	wakeup((caddr_t)&so->so_timeo);
141	sowwakeup(so);
142	sorwakeup(so);
143}
144
145/*
146 * When an attempt at a new connection is noted on a socket
147 * which accepts connections, sonewconn is called.  If the
148 * connection is possible (subject to space constraints, etc.)
149 * then we allocate a new structure, propoerly linked into the
150 * data structure of the original socket, and return this.
151 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
152 *
153 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
154 * to catch calls that are missing the (new) second parameter.
155 */
156struct socket *
157sonewconn1(struct socket *head, int connstatus)
158{
159	struct socket	*so;
160	int		soqueue;
161
162	soqueue = connstatus ? 1 : 0;
163	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
164		return ((struct socket *)0);
165	so = pool_get(&socket_pool, PR_NOWAIT);
166	if (so == NULL)
167		return (NULL);
168	memset((caddr_t)so, 0, sizeof(*so));
169	so->so_type = head->so_type;
170	so->so_options = head->so_options &~ SO_ACCEPTCONN;
171	so->so_linger = head->so_linger;
172	so->so_state = head->so_state | SS_NOFDREF;
173	so->so_proto = head->so_proto;
174	so->so_timeo = head->so_timeo;
175	so->so_pgid = head->so_pgid;
176	so->so_send = head->so_send;
177	so->so_receive = head->so_receive;
178	so->so_uid = head->so_uid;
179#ifdef MBUFTRACE
180	so->so_mowner = head->so_mowner;
181	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
182	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
183#endif
184	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
185	soqinsque(head, so, soqueue);
186	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
187	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
188	    (struct proc *)0)) {
189		(void) soqremque(so, soqueue);
190		pool_put(&socket_pool, so);
191		return (NULL);
192	}
193	if (connstatus) {
194		sorwakeup(head);
195		wakeup((caddr_t)&head->so_timeo);
196		so->so_state |= connstatus;
197	}
198	return (so);
199}
200
201void
202soqinsque(struct socket *head, struct socket *so, int q)
203{
204
205#ifdef DIAGNOSTIC
206	if (so->so_onq != NULL)
207		panic("soqinsque");
208#endif
209
210	so->so_head = head;
211	if (q == 0) {
212		head->so_q0len++;
213		so->so_onq = &head->so_q0;
214	} else {
215		head->so_qlen++;
216		so->so_onq = &head->so_q;
217	}
218	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
219}
220
221int
222soqremque(struct socket *so, int q)
223{
224	struct socket	*head;
225
226	head = so->so_head;
227	if (q == 0) {
228		if (so->so_onq != &head->so_q0)
229			return (0);
230		head->so_q0len--;
231	} else {
232		if (so->so_onq != &head->so_q)
233			return (0);
234		head->so_qlen--;
235	}
236	TAILQ_REMOVE(so->so_onq, so, so_qe);
237	so->so_onq = NULL;
238	so->so_head = NULL;
239	return (1);
240}
241
242/*
243 * Socantsendmore indicates that no more data will be sent on the
244 * socket; it would normally be applied to a socket when the user
245 * informs the system that no more data is to be sent, by the protocol
246 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
247 * will be received, and will normally be applied to the socket by a
248 * protocol when it detects that the peer will send no more data.
249 * Data queued for reading in the socket may yet be read.
250 */
251
252void
253socantsendmore(struct socket *so)
254{
255
256	so->so_state |= SS_CANTSENDMORE;
257	sowwakeup(so);
258}
259
260void
261socantrcvmore(struct socket *so)
262{
263
264	so->so_state |= SS_CANTRCVMORE;
265	sorwakeup(so);
266}
267
268/*
269 * Wait for data to arrive at/drain from a socket buffer.
270 */
271int
272sbwait(struct sockbuf *sb)
273{
274
275	sb->sb_flags |= SB_WAIT;
276	return (tsleep((caddr_t)&sb->sb_cc,
277	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
278	    sb->sb_timeo));
279}
280
281/*
282 * Lock a sockbuf already known to be locked;
283 * return any error returned from sleep (EINTR).
284 */
285int
286sb_lock(struct sockbuf *sb)
287{
288	int	error;
289
290	while (sb->sb_flags & SB_LOCK) {
291		sb->sb_flags |= SB_WANT;
292		error = tsleep((caddr_t)&sb->sb_flags,
293		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
294		    netlck, 0);
295		if (error)
296			return (error);
297	}
298	sb->sb_flags |= SB_LOCK;
299	return (0);
300}
301
302/*
303 * Wakeup processes waiting on a socket buffer.
304 * Do asynchronous notification via SIGIO
305 * if the socket buffer has the SB_ASYNC flag set.
306 */
307void
308sowakeup(struct socket *so, struct sockbuf *sb, int code)
309{
310	selnotify(&sb->sb_sel, 0);
311	sb->sb_flags &= ~SB_SEL;
312	if (sb->sb_flags & SB_WAIT) {
313		sb->sb_flags &= ~SB_WAIT;
314		wakeup((caddr_t)&sb->sb_cc);
315	}
316	if (sb->sb_flags & SB_ASYNC) {
317		int band;
318		if (code == POLL_IN)
319			band = POLLIN|POLLRDNORM;
320		else
321			band = POLLOUT|POLLWRNORM;
322		fownsignal(so->so_pgid, SIGIO, code, band, so);
323	}
324	if (sb->sb_flags & SB_UPCALL)
325		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
326}
327
328/*
329 * Socket buffer (struct sockbuf) utility routines.
330 *
331 * Each socket contains two socket buffers: one for sending data and
332 * one for receiving data.  Each buffer contains a queue of mbufs,
333 * information about the number of mbufs and amount of data in the
334 * queue, and other fields allowing poll() statements and notification
335 * on data availability to be implemented.
336 *
337 * Data stored in a socket buffer is maintained as a list of records.
338 * Each record is a list of mbufs chained together with the m_next
339 * field.  Records are chained together with the m_nextpkt field. The upper
340 * level routine soreceive() expects the following conventions to be
341 * observed when placing information in the receive buffer:
342 *
343 * 1. If the protocol requires each message be preceded by the sender's
344 *    name, then a record containing that name must be present before
345 *    any associated data (mbuf's must be of type MT_SONAME).
346 * 2. If the protocol supports the exchange of ``access rights'' (really
347 *    just additional data associated with the message), and there are
348 *    ``rights'' to be received, then a record containing this data
349 *    should be present (mbuf's must be of type MT_CONTROL).
350 * 3. If a name or rights record exists, then it must be followed by
351 *    a data record, perhaps of zero length.
352 *
353 * Before using a new socket structure it is first necessary to reserve
354 * buffer space to the socket, by calling sbreserve().  This should commit
355 * some of the available buffer space in the system buffer pool for the
356 * socket (currently, it does nothing but enforce limits).  The space
357 * should be released by calling sbrelease() when the socket is destroyed.
358 */
359
360int
361sb_max_set(u_long new_sbmax)
362{
363	int s;
364
365	if (new_sbmax < (16 * 1024))
366		return (EINVAL);
367
368	s = splsoftnet();
369	sb_max = new_sbmax;
370	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
371	splx(s);
372
373	return (0);
374}
375
376int
377soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
378{
379
380	if (sbreserve(&so->so_snd, sndcc) == 0)
381		goto bad;
382	if (sbreserve(&so->so_rcv, rcvcc) == 0)
383		goto bad2;
384	if (so->so_rcv.sb_lowat == 0)
385		so->so_rcv.sb_lowat = 1;
386	if (so->so_snd.sb_lowat == 0)
387		so->so_snd.sb_lowat = MCLBYTES;
388	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
389		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
390	return (0);
391 bad2:
392	sbrelease(&so->so_snd);
393 bad:
394	return (ENOBUFS);
395}
396
397/*
398 * Allot mbufs to a sockbuf.
399 * Attempt to scale mbmax so that mbcnt doesn't become limiting
400 * if buffering efficiency is near the normal case.
401 */
402int
403sbreserve(struct sockbuf *sb, u_long cc)
404{
405
406	KDASSERT(sb_max_adj != 0);
407	if (cc == 0 || cc > sb_max_adj)
408		return (0);
409	sb->sb_hiwat = cc;
410	sb->sb_mbmax = min(cc * 2, sb_max);
411	if (sb->sb_lowat > sb->sb_hiwat)
412		sb->sb_lowat = sb->sb_hiwat;
413	return (1);
414}
415
416/*
417 * Free mbufs held by a socket, and reserved mbuf space.
418 */
419void
420sbrelease(struct sockbuf *sb)
421{
422
423	sbflush(sb);
424	sb->sb_hiwat = sb->sb_mbmax = 0;
425}
426
427/*
428 * Routines to add and remove
429 * data from an mbuf queue.
430 *
431 * The routines sbappend() or sbappendrecord() are normally called to
432 * append new mbufs to a socket buffer, after checking that adequate
433 * space is available, comparing the function sbspace() with the amount
434 * of data to be added.  sbappendrecord() differs from sbappend() in
435 * that data supplied is treated as the beginning of a new record.
436 * To place a sender's address, optional access rights, and data in a
437 * socket receive buffer, sbappendaddr() should be used.  To place
438 * access rights and data in a socket receive buffer, sbappendrights()
439 * should be used.  In either case, the new data begins a new record.
440 * Note that unlike sbappend() and sbappendrecord(), these routines check
441 * for the caller that there will be enough space to store the data.
442 * Each fails if there is not enough space, or if it cannot find mbufs
443 * to store additional information in.
444 *
445 * Reliable protocols may use the socket send buffer to hold data
446 * awaiting acknowledgement.  Data is normally copied from a socket
447 * send buffer in a protocol with m_copy for output to a peer,
448 * and then removing the data from the socket buffer with sbdrop()
449 * or sbdroprecord() when the data is acknowledged by the peer.
450 */
451
452#ifdef SOCKBUF_DEBUG
453void
454sblastrecordchk(struct sockbuf *sb, const char *where)
455{
456	struct mbuf *m = sb->sb_mb;
457
458	while (m && m->m_nextpkt)
459		m = m->m_nextpkt;
460
461	if (m != sb->sb_lastrecord) {
462		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
463		    sb->sb_mb, sb->sb_lastrecord, m);
464		printf("packet chain:\n");
465		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
466			printf("\t%p\n", m);
467		panic("sblastrecordchk from %s", where);
468	}
469}
470
471void
472sblastmbufchk(struct sockbuf *sb, const char *where)
473{
474	struct mbuf *m = sb->sb_mb;
475	struct mbuf *n;
476
477	while (m && m->m_nextpkt)
478		m = m->m_nextpkt;
479
480	while (m && m->m_next)
481		m = m->m_next;
482
483	if (m != sb->sb_mbtail) {
484		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
485		    sb->sb_mb, sb->sb_mbtail, m);
486		printf("packet tree:\n");
487		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
488			printf("\t");
489			for (n = m; n != NULL; n = n->m_next)
490				printf("%p ", n);
491			printf("\n");
492		}
493		panic("sblastmbufchk from %s", where);
494	}
495}
496#endif /* SOCKBUF_DEBUG */
497
498#define	SBLINKRECORD(sb, m0)						\
499do {									\
500	if ((sb)->sb_lastrecord != NULL)				\
501		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
502	else								\
503		(sb)->sb_mb = (m0);					\
504	(sb)->sb_lastrecord = (m0);					\
505} while (/*CONSTCOND*/0)
506
507/*
508 * Append mbuf chain m to the last record in the
509 * socket buffer sb.  The additional space associated
510 * the mbuf chain is recorded in sb.  Empty mbufs are
511 * discarded and mbufs are compacted where possible.
512 */
513void
514sbappend(struct sockbuf *sb, struct mbuf *m)
515{
516	struct mbuf	*n;
517
518	if (m == 0)
519		return;
520
521#ifdef MBUFTRACE
522	m_claim(m, sb->sb_mowner);
523#endif
524
525	SBLASTRECORDCHK(sb, "sbappend 1");
526
527	if ((n = sb->sb_lastrecord) != NULL) {
528		/*
529		 * XXX Would like to simply use sb_mbtail here, but
530		 * XXX I need to verify that I won't miss an EOR that
531		 * XXX way.
532		 */
533		do {
534			if (n->m_flags & M_EOR) {
535				sbappendrecord(sb, m); /* XXXXXX!!!! */
536				return;
537			}
538		} while (n->m_next && (n = n->m_next));
539	} else {
540		/*
541		 * If this is the first record in the socket buffer, it's
542		 * also the last record.
543		 */
544		sb->sb_lastrecord = m;
545	}
546	sbcompress(sb, m, n);
547	SBLASTRECORDCHK(sb, "sbappend 2");
548}
549
550/*
551 * This version of sbappend() should only be used when the caller
552 * absolutely knows that there will never be more than one record
553 * in the socket buffer, that is, a stream protocol (such as TCP).
554 */
555void
556sbappendstream(struct sockbuf *sb, struct mbuf *m)
557{
558
559	KDASSERT(m->m_nextpkt == NULL);
560	KASSERT(sb->sb_mb == sb->sb_lastrecord);
561
562	SBLASTMBUFCHK(sb, __func__);
563
564#ifdef MBUFTRACE
565	m_claim(m, sb->sb_mowner);
566#endif
567
568	sbcompress(sb, m, sb->sb_mbtail);
569
570	sb->sb_lastrecord = sb->sb_mb;
571	SBLASTRECORDCHK(sb, __func__);
572}
573
574#ifdef SOCKBUF_DEBUG
575void
576sbcheck(struct sockbuf *sb)
577{
578	struct mbuf	*m;
579	u_long		len, mbcnt;
580
581	len = 0;
582	mbcnt = 0;
583	for (m = sb->sb_mb; m; m = m->m_next) {
584		len += m->m_len;
585		mbcnt += MSIZE;
586		if (m->m_flags & M_EXT)
587			mbcnt += m->m_ext.ext_size;
588		if (m->m_nextpkt)
589			panic("sbcheck nextpkt");
590	}
591	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
592		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
593		    mbcnt, sb->sb_mbcnt);
594		panic("sbcheck");
595	}
596}
597#endif
598
599/*
600 * As above, except the mbuf chain
601 * begins a new record.
602 */
603void
604sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
605{
606	struct mbuf	*m;
607
608	if (m0 == 0)
609		return;
610
611#ifdef MBUFTRACE
612	m_claim(m0, sb->sb_mowner);
613#endif
614	/*
615	 * Put the first mbuf on the queue.
616	 * Note this permits zero length records.
617	 */
618	sballoc(sb, m0);
619	SBLASTRECORDCHK(sb, "sbappendrecord 1");
620	SBLINKRECORD(sb, m0);
621	m = m0->m_next;
622	m0->m_next = 0;
623	if (m && (m0->m_flags & M_EOR)) {
624		m0->m_flags &= ~M_EOR;
625		m->m_flags |= M_EOR;
626	}
627	sbcompress(sb, m, m0);
628	SBLASTRECORDCHK(sb, "sbappendrecord 2");
629}
630
631/*
632 * As above except that OOB data
633 * is inserted at the beginning of the sockbuf,
634 * but after any other OOB data.
635 */
636void
637sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
638{
639	struct mbuf	*m, **mp;
640
641	if (m0 == 0)
642		return;
643
644	SBLASTRECORDCHK(sb, "sbinsertoob 1");
645
646	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
647	    again:
648		switch (m->m_type) {
649
650		case MT_OOBDATA:
651			continue;		/* WANT next train */
652
653		case MT_CONTROL:
654			if ((m = m->m_next) != NULL)
655				goto again;	/* inspect THIS train further */
656		}
657		break;
658	}
659	/*
660	 * Put the first mbuf on the queue.
661	 * Note this permits zero length records.
662	 */
663	sballoc(sb, m0);
664	m0->m_nextpkt = *mp;
665	if (*mp == NULL) {
666		/* m0 is actually the new tail */
667		sb->sb_lastrecord = m0;
668	}
669	*mp = m0;
670	m = m0->m_next;
671	m0->m_next = 0;
672	if (m && (m0->m_flags & M_EOR)) {
673		m0->m_flags &= ~M_EOR;
674		m->m_flags |= M_EOR;
675	}
676	sbcompress(sb, m, m0);
677	SBLASTRECORDCHK(sb, "sbinsertoob 2");
678}
679
680/*
681 * Append address and data, and optionally, control (ancillary) data
682 * to the receive queue of a socket.  If present,
683 * m0 must include a packet header with total length.
684 * Returns 0 if no space in sockbuf or insufficient mbufs.
685 */
686int
687sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
688	struct mbuf *control)
689{
690	struct mbuf	*m, *n, *nlast;
691	int		space, len;
692
693	space = asa->sa_len;
694
695	if (m0 != NULL) {
696		if ((m0->m_flags & M_PKTHDR) == 0)
697			panic("sbappendaddr");
698		space += m0->m_pkthdr.len;
699#ifdef MBUFTRACE
700		m_claim(m0, sb->sb_mowner);
701#endif
702	}
703	for (n = control; n; n = n->m_next) {
704		space += n->m_len;
705		MCLAIM(n, sb->sb_mowner);
706		if (n->m_next == 0)	/* keep pointer to last control buf */
707			break;
708	}
709	if (space > sbspace(sb))
710		return (0);
711	MGET(m, M_DONTWAIT, MT_SONAME);
712	if (m == 0)
713		return (0);
714	MCLAIM(m, sb->sb_mowner);
715	/*
716	 * XXX avoid 'comparison always true' warning which isn't easily
717	 * avoided.
718	 */
719	len = asa->sa_len;
720	if (len > MLEN) {
721		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
722		if ((m->m_flags & M_EXT) == 0) {
723			m_free(m);
724			return (0);
725		}
726	}
727	m->m_len = asa->sa_len;
728	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
729	if (n)
730		n->m_next = m0;		/* concatenate data to control */
731	else
732		control = m0;
733	m->m_next = control;
734
735	SBLASTRECORDCHK(sb, "sbappendaddr 1");
736
737	for (n = m; n->m_next != NULL; n = n->m_next)
738		sballoc(sb, n);
739	sballoc(sb, n);
740	nlast = n;
741	SBLINKRECORD(sb, m);
742
743	sb->sb_mbtail = nlast;
744	SBLASTMBUFCHK(sb, "sbappendaddr");
745
746	SBLASTRECORDCHK(sb, "sbappendaddr 2");
747
748	return (1);
749}
750
751int
752sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
753{
754	struct mbuf	*m, *mlast, *n;
755	int		space;
756
757	space = 0;
758	if (control == 0)
759		panic("sbappendcontrol");
760	for (m = control; ; m = m->m_next) {
761		space += m->m_len;
762		MCLAIM(m, sb->sb_mowner);
763		if (m->m_next == 0)
764			break;
765	}
766	n = m;			/* save pointer to last control buffer */
767	for (m = m0; m; m = m->m_next) {
768		MCLAIM(m, sb->sb_mowner);
769		space += m->m_len;
770	}
771	if (space > sbspace(sb))
772		return (0);
773	n->m_next = m0;			/* concatenate data to control */
774
775	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
776
777	for (m = control; m->m_next != NULL; m = m->m_next)
778		sballoc(sb, m);
779	sballoc(sb, m);
780	mlast = m;
781	SBLINKRECORD(sb, control);
782
783	sb->sb_mbtail = mlast;
784	SBLASTMBUFCHK(sb, "sbappendcontrol");
785
786	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
787
788	return (1);
789}
790
791/*
792 * Compress mbuf chain m into the socket
793 * buffer sb following mbuf n.  If n
794 * is null, the buffer is presumed empty.
795 */
796void
797sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
798{
799	int		eor;
800	struct mbuf	*o;
801
802	eor = 0;
803	while (m) {
804		eor |= m->m_flags & M_EOR;
805		if (m->m_len == 0 &&
806		    (eor == 0 ||
807		     (((o = m->m_next) || (o = n)) &&
808		      o->m_type == m->m_type))) {
809			if (sb->sb_lastrecord == m)
810				sb->sb_lastrecord = m->m_next;
811			m = m_free(m);
812			continue;
813		}
814		if (n && (n->m_flags & M_EOR) == 0 &&
815		    /* M_TRAILINGSPACE() checks buffer writeability */
816		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
817		    m->m_len <= M_TRAILINGSPACE(n) &&
818		    n->m_type == m->m_type) {
819			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
820			    (unsigned)m->m_len);
821			n->m_len += m->m_len;
822			sb->sb_cc += m->m_len;
823			m = m_free(m);
824			continue;
825		}
826		if (n)
827			n->m_next = m;
828		else
829			sb->sb_mb = m;
830		sb->sb_mbtail = m;
831		sballoc(sb, m);
832		n = m;
833		m->m_flags &= ~M_EOR;
834		m = m->m_next;
835		n->m_next = 0;
836	}
837	if (eor) {
838		if (n)
839			n->m_flags |= eor;
840		else
841			printf("semi-panic: sbcompress\n");
842	}
843	SBLASTMBUFCHK(sb, __func__);
844}
845
846/*
847 * Free all mbufs in a sockbuf.
848 * Check that all resources are reclaimed.
849 */
850void
851sbflush(struct sockbuf *sb)
852{
853
854	KASSERT((sb->sb_flags & SB_LOCK) == 0);
855
856	while (sb->sb_mbcnt)
857		sbdrop(sb, (int)sb->sb_cc);
858
859	KASSERT(sb->sb_cc == 0);
860	KASSERT(sb->sb_mb == NULL);
861	KASSERT(sb->sb_mbtail == NULL);
862	KASSERT(sb->sb_lastrecord == NULL);
863}
864
865/*
866 * Drop data from (the front of) a sockbuf.
867 */
868void
869sbdrop(struct sockbuf *sb, int len)
870{
871	struct mbuf	*m, *mn, *next;
872
873	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
874	while (len > 0) {
875		if (m == 0) {
876			if (next == 0)
877				panic("sbdrop");
878			m = next;
879			next = m->m_nextpkt;
880			continue;
881		}
882		if (m->m_len > len) {
883			m->m_len -= len;
884			m->m_data += len;
885			sb->sb_cc -= len;
886			break;
887		}
888		len -= m->m_len;
889		sbfree(sb, m);
890		MFREE(m, mn);
891		m = mn;
892	}
893	while (m && m->m_len == 0) {
894		sbfree(sb, m);
895		MFREE(m, mn);
896		m = mn;
897	}
898	if (m) {
899		sb->sb_mb = m;
900		m->m_nextpkt = next;
901	} else
902		sb->sb_mb = next;
903	/*
904	 * First part is an inline SB_EMPTY_FIXUP().  Second part
905	 * makes sure sb_lastrecord is up-to-date if we dropped
906	 * part of the last record.
907	 */
908	m = sb->sb_mb;
909	if (m == NULL) {
910		sb->sb_mbtail = NULL;
911		sb->sb_lastrecord = NULL;
912	} else if (m->m_nextpkt == NULL)
913		sb->sb_lastrecord = m;
914}
915
916/*
917 * Drop a record off the front of a sockbuf
918 * and move the next record to the front.
919 */
920void
921sbdroprecord(struct sockbuf *sb)
922{
923	struct mbuf	*m, *mn;
924
925	m = sb->sb_mb;
926	if (m) {
927		sb->sb_mb = m->m_nextpkt;
928		do {
929			sbfree(sb, m);
930			MFREE(m, mn);
931		} while ((m = mn) != NULL);
932	}
933	SB_EMPTY_FIXUP(sb);
934}
935
936/*
937 * Create a "control" mbuf containing the specified data
938 * with the specified type for presentation on a socket buffer.
939 */
940struct mbuf *
941sbcreatecontrol(caddr_t p, int size, int type, int level)
942{
943	struct cmsghdr	*cp;
944	struct mbuf	*m;
945
946	if (CMSG_SPACE(size) > MCLBYTES) {
947		printf("sbcreatecontrol: message too large %d\n", size);
948		return NULL;
949	}
950
951	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
952		return ((struct mbuf *) NULL);
953	if (CMSG_SPACE(size) > MLEN) {
954		MCLGET(m, M_DONTWAIT);
955		if ((m->m_flags & M_EXT) == 0) {
956			m_free(m);
957			return NULL;
958		}
959	}
960	cp = mtod(m, struct cmsghdr *);
961	memcpy(CMSG_DATA(cp), p, size);
962	m->m_len = CMSG_SPACE(size);
963	cp->cmsg_len = CMSG_LEN(size);
964	cp->cmsg_level = level;
965	cp->cmsg_type = type;
966	return (m);
967}
968