uipc_socket2.c revision 1.52
1/*	$NetBSD: uipc_socket2.c,v 1.52 2003/06/28 14:21:58 darrenr Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by the University of
18 *	California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
36 */
37
38#include <sys/cdefs.h>
39__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.52 2003/06/28 14:21:58 darrenr Exp $");
40
41#include "opt_mbuftrace.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/proc.h>
46#include <sys/file.h>
47#include <sys/buf.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/protosw.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53#include <sys/signalvar.h>
54
55/*
56 * Primitive routines for operating on sockets and socket buffers
57 */
58
59/* strings for sleep message: */
60const char	netcon[] = "netcon";
61const char	netcls[] = "netcls";
62const char	netio[] = "netio";
63const char	netlck[] = "netlck";
64
65/*
66 * Procedures to manipulate state flags of socket
67 * and do appropriate wakeups.  Normal sequence from the
68 * active (originating) side is that soisconnecting() is
69 * called during processing of connect() call,
70 * resulting in an eventual call to soisconnected() if/when the
71 * connection is established.  When the connection is torn down
72 * soisdisconnecting() is called during processing of disconnect() call,
73 * and soisdisconnected() is called when the connection to the peer
74 * is totally severed.  The semantics of these routines are such that
75 * connectionless protocols can call soisconnected() and soisdisconnected()
76 * only, bypassing the in-progress calls when setting up a ``connection''
77 * takes no time.
78 *
79 * From the passive side, a socket is created with
80 * two queues of sockets: so_q0 for connections in progress
81 * and so_q for connections already made and awaiting user acceptance.
82 * As a protocol is preparing incoming connections, it creates a socket
83 * structure queued on so_q0 by calling sonewconn().  When the connection
84 * is established, soisconnected() is called, and transfers the
85 * socket structure to so_q, making it available to accept().
86 *
87 * If a socket is closed with sockets on either
88 * so_q0 or so_q, these sockets are dropped.
89 *
90 * If higher level protocols are implemented in
91 * the kernel, the wakeups done here will sometimes
92 * cause software-interrupt process scheduling.
93 */
94
95void
96soisconnecting(struct socket *so)
97{
98
99	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
100	so->so_state |= SS_ISCONNECTING;
101}
102
103void
104soisconnected(struct socket *so)
105{
106	struct socket	*head;
107
108	head = so->so_head;
109	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
110	so->so_state |= SS_ISCONNECTED;
111	if (head && soqremque(so, 0)) {
112		soqinsque(head, so, 1);
113		sorwakeup(head);
114		wakeup((caddr_t)&head->so_timeo);
115	} else {
116		wakeup((caddr_t)&so->so_timeo);
117		sorwakeup(so);
118		sowwakeup(so);
119	}
120}
121
122void
123soisdisconnecting(struct socket *so)
124{
125
126	so->so_state &= ~SS_ISCONNECTING;
127	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
128	wakeup((caddr_t)&so->so_timeo);
129	sowwakeup(so);
130	sorwakeup(so);
131}
132
133void
134soisdisconnected(struct socket *so)
135{
136
137	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
138	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
139	wakeup((caddr_t)&so->so_timeo);
140	sowwakeup(so);
141	sorwakeup(so);
142}
143
144/*
145 * When an attempt at a new connection is noted on a socket
146 * which accepts connections, sonewconn is called.  If the
147 * connection is possible (subject to space constraints, etc.)
148 * then we allocate a new structure, propoerly linked into the
149 * data structure of the original socket, and return this.
150 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
151 *
152 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
153 * to catch calls that are missing the (new) second parameter.
154 */
155struct socket *
156sonewconn1(struct socket *head, int connstatus)
157{
158	struct socket	*so;
159	int		soqueue;
160
161	soqueue = connstatus ? 1 : 0;
162	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
163		return ((struct socket *)0);
164	so = pool_get(&socket_pool, PR_NOWAIT);
165	if (so == NULL)
166		return (NULL);
167	memset((caddr_t)so, 0, sizeof(*so));
168	so->so_type = head->so_type;
169	so->so_options = head->so_options &~ SO_ACCEPTCONN;
170	so->so_linger = head->so_linger;
171	so->so_state = head->so_state | SS_NOFDREF;
172	so->so_proto = head->so_proto;
173	so->so_timeo = head->so_timeo;
174	so->so_pgid = head->so_pgid;
175	so->so_send = head->so_send;
176	so->so_receive = head->so_receive;
177	so->so_uid = head->so_uid;
178#ifdef MBUFTRACE
179	so->so_mowner = head->so_mowner;
180	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
181	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
182#endif
183	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
184	soqinsque(head, so, soqueue);
185	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
186	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
187	    (struct lwp *)0)) {
188		(void) soqremque(so, soqueue);
189		pool_put(&socket_pool, so);
190		return (NULL);
191	}
192	if (connstatus) {
193		sorwakeup(head);
194		wakeup((caddr_t)&head->so_timeo);
195		so->so_state |= connstatus;
196	}
197	return (so);
198}
199
200void
201soqinsque(struct socket *head, struct socket *so, int q)
202{
203
204#ifdef DIAGNOSTIC
205	if (so->so_onq != NULL)
206		panic("soqinsque");
207#endif
208
209	so->so_head = head;
210	if (q == 0) {
211		head->so_q0len++;
212		so->so_onq = &head->so_q0;
213	} else {
214		head->so_qlen++;
215		so->so_onq = &head->so_q;
216	}
217	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
218}
219
220int
221soqremque(struct socket *so, int q)
222{
223	struct socket	*head;
224
225	head = so->so_head;
226	if (q == 0) {
227		if (so->so_onq != &head->so_q0)
228			return (0);
229		head->so_q0len--;
230	} else {
231		if (so->so_onq != &head->so_q)
232			return (0);
233		head->so_qlen--;
234	}
235	TAILQ_REMOVE(so->so_onq, so, so_qe);
236	so->so_onq = NULL;
237	so->so_head = NULL;
238	return (1);
239}
240
241/*
242 * Socantsendmore indicates that no more data will be sent on the
243 * socket; it would normally be applied to a socket when the user
244 * informs the system that no more data is to be sent, by the protocol
245 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
246 * will be received, and will normally be applied to the socket by a
247 * protocol when it detects that the peer will send no more data.
248 * Data queued for reading in the socket may yet be read.
249 */
250
251void
252socantsendmore(struct socket *so)
253{
254
255	so->so_state |= SS_CANTSENDMORE;
256	sowwakeup(so);
257}
258
259void
260socantrcvmore(struct socket *so)
261{
262
263	so->so_state |= SS_CANTRCVMORE;
264	sorwakeup(so);
265}
266
267/*
268 * Wait for data to arrive at/drain from a socket buffer.
269 */
270int
271sbwait(struct sockbuf *sb)
272{
273
274	sb->sb_flags |= SB_WAIT;
275	return (tsleep((caddr_t)&sb->sb_cc,
276	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
277	    sb->sb_timeo));
278}
279
280/*
281 * Lock a sockbuf already known to be locked;
282 * return any error returned from sleep (EINTR).
283 */
284int
285sb_lock(struct sockbuf *sb)
286{
287	int	error;
288
289	while (sb->sb_flags & SB_LOCK) {
290		sb->sb_flags |= SB_WANT;
291		error = tsleep((caddr_t)&sb->sb_flags,
292		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
293		    netlck, 0);
294		if (error)
295			return (error);
296	}
297	sb->sb_flags |= SB_LOCK;
298	return (0);
299}
300
301/*
302 * Wakeup processes waiting on a socket buffer.
303 * Do asynchronous notification via SIGIO
304 * if the socket buffer has the SB_ASYNC flag set.
305 */
306void
307sowakeup(struct socket *so, struct sockbuf *sb)
308{
309	struct proc	*p;
310
311	selnotify(&sb->sb_sel, 0);
312	sb->sb_flags &= ~SB_SEL;
313	if (sb->sb_flags & SB_WAIT) {
314		sb->sb_flags &= ~SB_WAIT;
315		wakeup((caddr_t)&sb->sb_cc);
316	}
317	if (sb->sb_flags & SB_ASYNC) {
318		if (so->so_pgid < 0)
319			gsignal(-so->so_pgid, SIGIO);
320		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
321			psignal(p, SIGIO);
322	}
323	if (sb->sb_flags & SB_UPCALL)
324		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
325}
326
327/*
328 * Socket buffer (struct sockbuf) utility routines.
329 *
330 * Each socket contains two socket buffers: one for sending data and
331 * one for receiving data.  Each buffer contains a queue of mbufs,
332 * information about the number of mbufs and amount of data in the
333 * queue, and other fields allowing poll() statements and notification
334 * on data availability to be implemented.
335 *
336 * Data stored in a socket buffer is maintained as a list of records.
337 * Each record is a list of mbufs chained together with the m_next
338 * field.  Records are chained together with the m_nextpkt field. The upper
339 * level routine soreceive() expects the following conventions to be
340 * observed when placing information in the receive buffer:
341 *
342 * 1. If the protocol requires each message be preceded by the sender's
343 *    name, then a record containing that name must be present before
344 *    any associated data (mbuf's must be of type MT_SONAME).
345 * 2. If the protocol supports the exchange of ``access rights'' (really
346 *    just additional data associated with the message), and there are
347 *    ``rights'' to be received, then a record containing this data
348 *    should be present (mbuf's must be of type MT_CONTROL).
349 * 3. If a name or rights record exists, then it must be followed by
350 *    a data record, perhaps of zero length.
351 *
352 * Before using a new socket structure it is first necessary to reserve
353 * buffer space to the socket, by calling sbreserve().  This should commit
354 * some of the available buffer space in the system buffer pool for the
355 * socket (currently, it does nothing but enforce limits).  The space
356 * should be released by calling sbrelease() when the socket is destroyed.
357 */
358
359int
360soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
361{
362
363	if (sbreserve(&so->so_snd, sndcc) == 0)
364		goto bad;
365	if (sbreserve(&so->so_rcv, rcvcc) == 0)
366		goto bad2;
367	if (so->so_rcv.sb_lowat == 0)
368		so->so_rcv.sb_lowat = 1;
369	if (so->so_snd.sb_lowat == 0)
370		so->so_snd.sb_lowat = MCLBYTES;
371	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
372		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
373	return (0);
374 bad2:
375	sbrelease(&so->so_snd);
376 bad:
377	return (ENOBUFS);
378}
379
380/*
381 * Allot mbufs to a sockbuf.
382 * Attempt to scale mbmax so that mbcnt doesn't become limiting
383 * if buffering efficiency is near the normal case.
384 */
385int
386sbreserve(struct sockbuf *sb, u_long cc)
387{
388
389	if (cc == 0 ||
390	    (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
391		return (0);
392	sb->sb_hiwat = cc;
393	sb->sb_mbmax = min(cc * 2, sb_max);
394	if (sb->sb_lowat > sb->sb_hiwat)
395		sb->sb_lowat = sb->sb_hiwat;
396	return (1);
397}
398
399/*
400 * Free mbufs held by a socket, and reserved mbuf space.
401 */
402void
403sbrelease(struct sockbuf *sb)
404{
405
406	sbflush(sb);
407	sb->sb_hiwat = sb->sb_mbmax = 0;
408}
409
410/*
411 * Routines to add and remove
412 * data from an mbuf queue.
413 *
414 * The routines sbappend() or sbappendrecord() are normally called to
415 * append new mbufs to a socket buffer, after checking that adequate
416 * space is available, comparing the function sbspace() with the amount
417 * of data to be added.  sbappendrecord() differs from sbappend() in
418 * that data supplied is treated as the beginning of a new record.
419 * To place a sender's address, optional access rights, and data in a
420 * socket receive buffer, sbappendaddr() should be used.  To place
421 * access rights and data in a socket receive buffer, sbappendrights()
422 * should be used.  In either case, the new data begins a new record.
423 * Note that unlike sbappend() and sbappendrecord(), these routines check
424 * for the caller that there will be enough space to store the data.
425 * Each fails if there is not enough space, or if it cannot find mbufs
426 * to store additional information in.
427 *
428 * Reliable protocols may use the socket send buffer to hold data
429 * awaiting acknowledgement.  Data is normally copied from a socket
430 * send buffer in a protocol with m_copy for output to a peer,
431 * and then removing the data from the socket buffer with sbdrop()
432 * or sbdroprecord() when the data is acknowledged by the peer.
433 */
434
435#ifdef SOCKBUF_DEBUG
436void
437sblastrecordchk(struct sockbuf *sb, const char *where)
438{
439	struct mbuf *m = sb->sb_mb;
440
441	while (m && m->m_nextpkt)
442		m = m->m_nextpkt;
443
444	if (m != sb->sb_lastrecord) {
445		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
446		    sb->sb_mb, sb->sb_lastrecord, m);
447		printf("packet chain:\n");
448		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
449			printf("\t%p\n", m);
450		panic("sblastrecordchk from %s", where);
451	}
452}
453
454void
455sblastmbufchk(struct sockbuf *sb, const char *where)
456{
457	struct mbuf *m = sb->sb_mb;
458	struct mbuf *n;
459
460	while (m && m->m_nextpkt)
461		m = m->m_nextpkt;
462
463	while (m && m->m_next)
464		m = m->m_next;
465
466	if (m != sb->sb_mbtail) {
467		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
468		    sb->sb_mb, sb->sb_mbtail, m);
469		printf("packet tree:\n");
470		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
471			printf("\t");
472			for (n = m; n != NULL; n = n->m_next)
473				printf("%p ", n);
474			printf("\n");
475		}
476		panic("sblastmbufchk from %s", where);
477	}
478}
479#endif /* SOCKBUF_DEBUG */
480
481#define	SBLINKRECORD(sb, m0)						\
482do {									\
483	if ((sb)->sb_lastrecord != NULL)				\
484		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
485	else								\
486		(sb)->sb_mb = (m0);					\
487	(sb)->sb_lastrecord = (m0);					\
488} while (/*CONSTCOND*/0)
489
490/*
491 * Append mbuf chain m to the last record in the
492 * socket buffer sb.  The additional space associated
493 * the mbuf chain is recorded in sb.  Empty mbufs are
494 * discarded and mbufs are compacted where possible.
495 */
496void
497sbappend(struct sockbuf *sb, struct mbuf *m)
498{
499	struct mbuf	*n;
500
501	if (m == 0)
502		return;
503
504#ifdef MBUFTRACE
505	m_claim(m, sb->sb_mowner);
506#endif
507
508	SBLASTRECORDCHK(sb, "sbappend 1");
509
510	if ((n = sb->sb_lastrecord) != NULL) {
511		/*
512		 * XXX Would like to simply use sb_mbtail here, but
513		 * XXX I need to verify that I won't miss an EOR that
514		 * XXX way.
515		 */
516		do {
517			if (n->m_flags & M_EOR) {
518				sbappendrecord(sb, m); /* XXXXXX!!!! */
519				return;
520			}
521		} while (n->m_next && (n = n->m_next));
522	} else {
523		/*
524		 * If this is the first record in the socket buffer, it's
525		 * also the last record.
526		 */
527		sb->sb_lastrecord = m;
528	}
529	sbcompress(sb, m, n);
530	SBLASTRECORDCHK(sb, "sbappend 2");
531}
532
533/*
534 * This version of sbappend() should only be used when the caller
535 * absolutely knows that there will never be more than one record
536 * in the socket buffer, that is, a stream protocol (such as TCP).
537 */
538void
539sbappendstream(struct sockbuf *sb, struct mbuf *m)
540{
541
542	KDASSERT(m->m_nextpkt == NULL);
543	KASSERT(sb->sb_mb == sb->sb_lastrecord);
544
545	SBLASTMBUFCHK(sb, __func__);
546
547#ifdef MBUFTRACE
548	m_claim(m, sb->sb_mowner);
549#endif
550
551	sbcompress(sb, m, sb->sb_mbtail);
552
553	sb->sb_lastrecord = sb->sb_mb;
554	SBLASTRECORDCHK(sb, __func__);
555}
556
557#ifdef SOCKBUF_DEBUG
558void
559sbcheck(struct sockbuf *sb)
560{
561	struct mbuf	*m;
562	u_long		len, mbcnt;
563
564	len = 0;
565	mbcnt = 0;
566	for (m = sb->sb_mb; m; m = m->m_next) {
567		len += m->m_len;
568		mbcnt += MSIZE;
569		if (m->m_flags & M_EXT)
570			mbcnt += m->m_ext.ext_size;
571		if (m->m_nextpkt)
572			panic("sbcheck nextpkt");
573	}
574	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
575		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
576		    mbcnt, sb->sb_mbcnt);
577		panic("sbcheck");
578	}
579}
580#endif
581
582/*
583 * As above, except the mbuf chain
584 * begins a new record.
585 */
586void
587sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
588{
589	struct mbuf	*m;
590
591	if (m0 == 0)
592		return;
593
594#ifdef MBUFTRACE
595	m_claim(m0, sb->sb_mowner);
596#endif
597	/*
598	 * Put the first mbuf on the queue.
599	 * Note this permits zero length records.
600	 */
601	sballoc(sb, m0);
602	SBLASTRECORDCHK(sb, "sbappendrecord 1");
603	SBLINKRECORD(sb, m0);
604	m = m0->m_next;
605	m0->m_next = 0;
606	if (m && (m0->m_flags & M_EOR)) {
607		m0->m_flags &= ~M_EOR;
608		m->m_flags |= M_EOR;
609	}
610	sbcompress(sb, m, m0);
611	SBLASTRECORDCHK(sb, "sbappendrecord 2");
612}
613
614/*
615 * As above except that OOB data
616 * is inserted at the beginning of the sockbuf,
617 * but after any other OOB data.
618 */
619void
620sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
621{
622	struct mbuf	*m, **mp;
623
624	if (m0 == 0)
625		return;
626
627	SBLASTRECORDCHK(sb, "sbinsertoob 1");
628
629	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
630	    again:
631		switch (m->m_type) {
632
633		case MT_OOBDATA:
634			continue;		/* WANT next train */
635
636		case MT_CONTROL:
637			if ((m = m->m_next) != NULL)
638				goto again;	/* inspect THIS train further */
639		}
640		break;
641	}
642	/*
643	 * Put the first mbuf on the queue.
644	 * Note this permits zero length records.
645	 */
646	sballoc(sb, m0);
647	m0->m_nextpkt = *mp;
648	if (*mp == NULL) {
649		/* m0 is actually the new tail */
650		sb->sb_lastrecord = m0;
651	}
652	*mp = m0;
653	m = m0->m_next;
654	m0->m_next = 0;
655	if (m && (m0->m_flags & M_EOR)) {
656		m0->m_flags &= ~M_EOR;
657		m->m_flags |= M_EOR;
658	}
659	sbcompress(sb, m, m0);
660	SBLASTRECORDCHK(sb, "sbinsertoob 2");
661}
662
663/*
664 * Append address and data, and optionally, control (ancillary) data
665 * to the receive queue of a socket.  If present,
666 * m0 must include a packet header with total length.
667 * Returns 0 if no space in sockbuf or insufficient mbufs.
668 */
669int
670sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
671	struct mbuf *control)
672{
673	struct mbuf	*m, *n, *nlast;
674	int		space, len;
675
676	space = asa->sa_len;
677
678	if (m0 != NULL) {
679		if ((m0->m_flags & M_PKTHDR) == 0)
680			panic("sbappendaddr");
681		space += m0->m_pkthdr.len;
682#ifdef MBUFTRACE
683		m_claim(m0, sb->sb_mowner);
684#endif
685	}
686	for (n = control; n; n = n->m_next) {
687		space += n->m_len;
688		MCLAIM(n, sb->sb_mowner);
689		if (n->m_next == 0)	/* keep pointer to last control buf */
690			break;
691	}
692	if (space > sbspace(sb))
693		return (0);
694	MGET(m, M_DONTWAIT, MT_SONAME);
695	if (m == 0)
696		return (0);
697	MCLAIM(m, sb->sb_mowner);
698	/*
699	 * XXX avoid 'comparison always true' warning which isn't easily
700	 * avoided.
701	 */
702	len = asa->sa_len;
703	if (len > MLEN) {
704		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
705		if ((m->m_flags & M_EXT) == 0) {
706			m_free(m);
707			return (0);
708		}
709	}
710	m->m_len = asa->sa_len;
711	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
712	if (n)
713		n->m_next = m0;		/* concatenate data to control */
714	else
715		control = m0;
716	m->m_next = control;
717
718	SBLASTRECORDCHK(sb, "sbappendaddr 1");
719
720	for (n = m; n->m_next != NULL; n = n->m_next)
721		sballoc(sb, n);
722	sballoc(sb, n);
723	nlast = n;
724	SBLINKRECORD(sb, m);
725
726	sb->sb_mbtail = nlast;
727	SBLASTMBUFCHK(sb, "sbappendaddr");
728
729	SBLASTRECORDCHK(sb, "sbappendaddr 2");
730
731	return (1);
732}
733
734int
735sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
736{
737	struct mbuf	*m, *mlast, *n;
738	int		space;
739
740	space = 0;
741	if (control == 0)
742		panic("sbappendcontrol");
743	for (m = control; ; m = m->m_next) {
744		space += m->m_len;
745		MCLAIM(m, sb->sb_mowner);
746		if (m->m_next == 0)
747			break;
748	}
749	n = m;			/* save pointer to last control buffer */
750	for (m = m0; m; m = m->m_next) {
751		MCLAIM(m, sb->sb_mowner);
752		space += m->m_len;
753	}
754	if (space > sbspace(sb))
755		return (0);
756	n->m_next = m0;			/* concatenate data to control */
757
758	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
759
760	for (m = control; m->m_next != NULL; m = m->m_next)
761		sballoc(sb, m);
762	sballoc(sb, m);
763	mlast = m;
764	SBLINKRECORD(sb, control);
765
766	sb->sb_mbtail = mlast;
767	SBLASTMBUFCHK(sb, "sbappendcontrol");
768
769	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
770
771	return (1);
772}
773
774/*
775 * Compress mbuf chain m into the socket
776 * buffer sb following mbuf n.  If n
777 * is null, the buffer is presumed empty.
778 */
779void
780sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
781{
782	int		eor;
783	struct mbuf	*o;
784
785	eor = 0;
786	while (m) {
787		eor |= m->m_flags & M_EOR;
788		if (m->m_len == 0 &&
789		    (eor == 0 ||
790		     (((o = m->m_next) || (o = n)) &&
791		      o->m_type == m->m_type))) {
792			if (sb->sb_lastrecord == m)
793				sb->sb_lastrecord = m->m_next;
794			m = m_free(m);
795			continue;
796		}
797		if (n && (n->m_flags & M_EOR) == 0 &&
798		    /* M_TRAILINGSPACE() checks buffer writeability */
799		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
800		    m->m_len <= M_TRAILINGSPACE(n) &&
801		    n->m_type == m->m_type) {
802			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
803			    (unsigned)m->m_len);
804			n->m_len += m->m_len;
805			sb->sb_cc += m->m_len;
806			m = m_free(m);
807			continue;
808		}
809		if (n)
810			n->m_next = m;
811		else
812			sb->sb_mb = m;
813		sb->sb_mbtail = m;
814		sballoc(sb, m);
815		n = m;
816		m->m_flags &= ~M_EOR;
817		m = m->m_next;
818		n->m_next = 0;
819	}
820	if (eor) {
821		if (n)
822			n->m_flags |= eor;
823		else
824			printf("semi-panic: sbcompress\n");
825	}
826	SBLASTMBUFCHK(sb, __func__);
827}
828
829/*
830 * Free all mbufs in a sockbuf.
831 * Check that all resources are reclaimed.
832 */
833void
834sbflush(struct sockbuf *sb)
835{
836
837	KASSERT((sb->sb_flags & SB_LOCK) == 0);
838
839	while (sb->sb_mbcnt)
840		sbdrop(sb, (int)sb->sb_cc);
841
842	KASSERT(sb->sb_cc == 0);
843	KASSERT(sb->sb_mb == NULL);
844	KASSERT(sb->sb_mbtail == NULL);
845	KASSERT(sb->sb_lastrecord == NULL);
846}
847
848/*
849 * Drop data from (the front of) a sockbuf.
850 */
851void
852sbdrop(struct sockbuf *sb, int len)
853{
854	struct mbuf	*m, *mn, *next;
855
856	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
857	while (len > 0) {
858		if (m == 0) {
859			if (next == 0)
860				panic("sbdrop");
861			m = next;
862			next = m->m_nextpkt;
863			continue;
864		}
865		if (m->m_len > len) {
866			m->m_len -= len;
867			m->m_data += len;
868			sb->sb_cc -= len;
869			break;
870		}
871		len -= m->m_len;
872		sbfree(sb, m);
873		MFREE(m, mn);
874		m = mn;
875	}
876	while (m && m->m_len == 0) {
877		sbfree(sb, m);
878		MFREE(m, mn);
879		m = mn;
880	}
881	if (m) {
882		sb->sb_mb = m;
883		m->m_nextpkt = next;
884	} else
885		sb->sb_mb = next;
886	/*
887	 * First part is an inline SB_EMPTY_FIXUP().  Second part
888	 * makes sure sb_lastrecord is up-to-date if we dropped
889	 * part of the last record.
890	 */
891	m = sb->sb_mb;
892	if (m == NULL) {
893		sb->sb_mbtail = NULL;
894		sb->sb_lastrecord = NULL;
895	} else if (m->m_nextpkt == NULL)
896		sb->sb_lastrecord = m;
897}
898
899/*
900 * Drop a record off the front of a sockbuf
901 * and move the next record to the front.
902 */
903void
904sbdroprecord(struct sockbuf *sb)
905{
906	struct mbuf	*m, *mn;
907
908	m = sb->sb_mb;
909	if (m) {
910		sb->sb_mb = m->m_nextpkt;
911		do {
912			sbfree(sb, m);
913			MFREE(m, mn);
914		} while ((m = mn) != NULL);
915	}
916	SB_EMPTY_FIXUP(sb);
917}
918
919/*
920 * Create a "control" mbuf containing the specified data
921 * with the specified type for presentation on a socket buffer.
922 */
923struct mbuf *
924sbcreatecontrol(caddr_t p, int size, int type, int level)
925{
926	struct cmsghdr	*cp;
927	struct mbuf	*m;
928
929	if (CMSG_SPACE(size) > MCLBYTES) {
930		printf("sbcreatecontrol: message too large %d\n", size);
931		return NULL;
932	}
933
934	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
935		return ((struct mbuf *) NULL);
936	if (CMSG_SPACE(size) > MLEN) {
937		MCLGET(m, M_DONTWAIT);
938		if ((m->m_flags & M_EXT) == 0) {
939			m_free(m);
940			return NULL;
941		}
942	}
943	cp = mtod(m, struct cmsghdr *);
944	memcpy(CMSG_DATA(cp), p, size);
945	m->m_len = CMSG_SPACE(size);
946	cp->cmsg_len = CMSG_LEN(size);
947	cp->cmsg_level = level;
948	cp->cmsg_type = type;
949	return (m);
950}
951