uipc_socket2.c revision 1.5
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)uipc_socket2.c	7.17 (Berkeley) 5/4/91
34 *	$Id: uipc_socket2.c,v 1.5 1993/12/18 04:22:30 mycroft Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/proc.h>
40#include <sys/file.h>
41#include <sys/buf.h>
42#include <sys/malloc.h>
43#include <sys/select.h>
44#include <sys/mbuf.h>
45#include <sys/protosw.h>
46#include <sys/socket.h>
47#include <sys/socketvar.h>
48
49/*
50 * Primitive routines for operating on sockets and socket buffers
51 */
52
53/* strings for sleep message: */
54char	netio[] = "netio";
55char	netcon[] = "netcon";
56char	netcls[] = "netcls";
57
58u_long	sb_max = SB_MAX;		/* patchable */
59
60/*
61 * Procedures to manipulate state flags of socket
62 * and do appropriate wakeups.  Normal sequence from the
63 * active (originating) side is that soisconnecting() is
64 * called during processing of connect() call,
65 * resulting in an eventual call to soisconnected() if/when the
66 * connection is established.  When the connection is torn down
67 * soisdisconnecting() is called during processing of disconnect() call,
68 * and soisdisconnected() is called when the connection to the peer
69 * is totally severed.  The semantics of these routines are such that
70 * connectionless protocols can call soisconnected() and soisdisconnected()
71 * only, bypassing the in-progress calls when setting up a ``connection''
72 * takes no time.
73 *
74 * From the passive side, a socket is created with
75 * two queues of sockets: so_q0 for connections in progress
76 * and so_q for connections already made and awaiting user acceptance.
77 * As a protocol is preparing incoming connections, it creates a socket
78 * structure queued on so_q0 by calling sonewconn().  When the connection
79 * is established, soisconnected() is called, and transfers the
80 * socket structure to so_q, making it available to accept().
81 *
82 * If a socket is closed with sockets on either
83 * so_q0 or so_q, these sockets are dropped.
84 *
85 * If higher level protocols are implemented in
86 * the kernel, the wakeups done here will sometimes
87 * cause software-interrupt process scheduling.
88 */
89
90soisconnecting(so)
91	register struct socket *so;
92{
93
94	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
95	so->so_state |= SS_ISCONNECTING;
96}
97
98soisconnected(so)
99	register struct socket *so;
100{
101	register struct socket *head = so->so_head;
102
103	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
104	so->so_state |= SS_ISCONNECTED;
105	if (head && soqremque(so, 0)) {
106		soqinsque(head, so, 1);
107		sorwakeup(head);
108		wakeup((caddr_t)&head->so_timeo);
109	} else {
110		wakeup((caddr_t)&so->so_timeo);
111		sorwakeup(so);
112		sowwakeup(so);
113	}
114}
115
116soisdisconnecting(so)
117	register struct socket *so;
118{
119
120	so->so_state &= ~SS_ISCONNECTING;
121	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
122	wakeup((caddr_t)&so->so_timeo);
123	sowwakeup(so);
124	sorwakeup(so);
125}
126
127soisdisconnected(so)
128	register struct socket *so;
129{
130
131	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
132	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
133	wakeup((caddr_t)&so->so_timeo);
134	sowwakeup(so);
135	sorwakeup(so);
136}
137
138/*
139 * When an attempt at a new connection is noted on a socket
140 * which accepts connections, sonewconn is called.  If the
141 * connection is possible (subject to space constraints, etc.)
142 * then we allocate a new structure, propoerly linked into the
143 * data structure of the original socket, and return this.
144 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
145 *
146 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
147 * to catch calls that are missing the (new) second parameter.
148 */
149struct socket *
150sonewconn1(head, connstatus)
151	register struct socket *head;
152	int connstatus;
153{
154	register struct socket *so;
155	int soqueue = connstatus ? 1 : 0;
156
157	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
158		return ((struct socket *)0);
159	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
160	if (so == NULL)
161		return ((struct socket *)0);
162	bzero((caddr_t)so, sizeof(*so));
163	so->so_type = head->so_type;
164	so->so_options = head->so_options &~ SO_ACCEPTCONN;
165	so->so_linger = head->so_linger;
166	so->so_state = head->so_state | SS_NOFDREF;
167	so->so_proto = head->so_proto;
168	so->so_timeo = head->so_timeo;
169	so->so_pgid = head->so_pgid;
170	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
171	soqinsque(head, so, soqueue);
172	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
173	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
174		(void) soqremque(so, soqueue);
175		(void) free((caddr_t)so, M_SOCKET);
176		return ((struct socket *)0);
177	}
178	if (connstatus) {
179		sorwakeup(head);
180		wakeup((caddr_t)&head->so_timeo);
181		so->so_state |= connstatus;
182	}
183	return (so);
184}
185
186soqinsque(head, so, q)
187	register struct socket *head, *so;
188	int q;
189{
190
191	register struct socket **prev;
192	so->so_head = head;
193	if (q == 0) {
194		head->so_q0len++;
195		so->so_q0 = 0;
196		for (prev = &(head->so_q0); *prev; )
197			prev = &((*prev)->so_q0);
198	} else {
199		head->so_qlen++;
200		so->so_q = 0;
201		for (prev = &(head->so_q); *prev; )
202			prev = &((*prev)->so_q);
203	}
204	*prev = so;
205}
206
207soqremque(so, q)
208	register struct socket *so;
209	int q;
210{
211	register struct socket *head, *prev, *next;
212
213	head = so->so_head;
214	prev = head;
215	for (;;) {
216		next = q ? prev->so_q : prev->so_q0;
217		if (next == so)
218			break;
219		if (next == 0)
220			return (0);
221		prev = next;
222	}
223	if (q == 0) {
224		prev->so_q0 = next->so_q0;
225		head->so_q0len--;
226	} else {
227		prev->so_q = next->so_q;
228		head->so_qlen--;
229	}
230	next->so_q0 = next->so_q = 0;
231	next->so_head = 0;
232	return (1);
233}
234
235/*
236 * Socantsendmore indicates that no more data will be sent on the
237 * socket; it would normally be applied to a socket when the user
238 * informs the system that no more data is to be sent, by the protocol
239 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
240 * will be received, and will normally be applied to the socket by a
241 * protocol when it detects that the peer will send no more data.
242 * Data queued for reading in the socket may yet be read.
243 */
244
245void
246socantsendmore(so)
247	struct socket *so;
248{
249
250	so->so_state |= SS_CANTSENDMORE;
251	sowwakeup(so);
252}
253
254void
255socantrcvmore(so)
256	struct socket *so;
257{
258
259	so->so_state |= SS_CANTRCVMORE;
260	sorwakeup(so);
261}
262
263/*
264 * Socket select/wakeup routines.
265 */
266
267/*
268 * Queue a process for a select on a socket buffer.
269 */
270sbselqueue(sb, cp)
271	struct sockbuf *sb;
272	struct proc *cp;
273{
274	selrecord(cp, &sb->sb_sel);
275	sb->sb_flags |= SB_SEL;
276}
277
278/*
279 * Wait for data to arrive at/drain from a socket buffer.
280 */
281sbwait(sb)
282	struct sockbuf *sb;
283{
284
285	sb->sb_flags |= SB_WAIT;
286	return (tsleep((caddr_t)&sb->sb_cc,
287	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
288	    sb->sb_timeo));
289}
290
291/*
292 * Lock a sockbuf already known to be locked;
293 * return any error returned from sleep (EINTR).
294 */
295sb_lock(sb)
296	register struct sockbuf *sb;
297{
298	int error;
299
300	while (sb->sb_flags & SB_LOCK) {
301		sb->sb_flags |= SB_WANT;
302		if (error = tsleep((caddr_t)&sb->sb_flags,
303		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
304		    netio, 0))
305			return (error);
306	}
307	sb->sb_flags |= SB_LOCK;
308	return (0);
309}
310
311/*
312 * Wakeup processes waiting on a socket buffer.
313 * Do asynchronous notification via SIGIO
314 * if the socket has the SS_ASYNC flag set.
315 */
316sowakeup(so, sb)
317	register struct socket *so;
318	register struct sockbuf *sb;
319{
320	struct proc *p;
321
322	selwakeup(&sb->sb_sel);
323        sb->sb_flags &= ~SB_SEL;
324	if (sb->sb_flags & SB_WAIT) {
325		sb->sb_flags &= ~SB_WAIT;
326		wakeup((caddr_t)&sb->sb_cc);
327	}
328	if (so->so_state & SS_ASYNC) {
329		if (so->so_pgid < 0)
330			gsignal(-so->so_pgid, SIGIO);
331		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
332			psignal(p, SIGIO);
333	}
334}
335
336/*
337 * Socket buffer (struct sockbuf) utility routines.
338 *
339 * Each socket contains two socket buffers: one for sending data and
340 * one for receiving data.  Each buffer contains a queue of mbufs,
341 * information about the number of mbufs and amount of data in the
342 * queue, and other fields allowing select() statements and notification
343 * on data availability to be implemented.
344 *
345 * Data stored in a socket buffer is maintained as a list of records.
346 * Each record is a list of mbufs chained together with the m_next
347 * field.  Records are chained together with the m_nextpkt field. The upper
348 * level routine soreceive() expects the following conventions to be
349 * observed when placing information in the receive buffer:
350 *
351 * 1. If the protocol requires each message be preceded by the sender's
352 *    name, then a record containing that name must be present before
353 *    any associated data (mbuf's must be of type MT_SONAME).
354 * 2. If the protocol supports the exchange of ``access rights'' (really
355 *    just additional data associated with the message), and there are
356 *    ``rights'' to be received, then a record containing this data
357 *    should be present (mbuf's must be of type MT_RIGHTS).
358 * 3. If a name or rights record exists, then it must be followed by
359 *    a data record, perhaps of zero length.
360 *
361 * Before using a new socket structure it is first necessary to reserve
362 * buffer space to the socket, by calling sbreserve().  This should commit
363 * some of the available buffer space in the system buffer pool for the
364 * socket (currently, it does nothing but enforce limits).  The space
365 * should be released by calling sbrelease() when the socket is destroyed.
366 */
367
368soreserve(so, sndcc, rcvcc)
369	register struct socket *so;
370	u_long sndcc, rcvcc;
371{
372
373	if (sbreserve(&so->so_snd, sndcc) == 0)
374		goto bad;
375	if (sbreserve(&so->so_rcv, rcvcc) == 0)
376		goto bad2;
377	if (so->so_rcv.sb_lowat == 0)
378		so->so_rcv.sb_lowat = 1;
379	if (so->so_snd.sb_lowat == 0)
380		so->so_snd.sb_lowat = MCLBYTES;
381	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
382		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
383	return (0);
384bad2:
385	sbrelease(&so->so_snd);
386bad:
387	return (ENOBUFS);
388}
389
390/*
391 * Allot mbufs to a sockbuf.
392 * Attempt to scale mbmax so that mbcnt doesn't become limiting
393 * if buffering efficiency is near the normal case.
394 */
395sbreserve(sb, cc)
396	struct sockbuf *sb;
397	u_long cc;
398{
399
400	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
401		return (0);
402	sb->sb_hiwat = cc;
403	sb->sb_mbmax = min(cc * 2, sb_max);
404	if (sb->sb_lowat > sb->sb_hiwat)
405		sb->sb_lowat = sb->sb_hiwat;
406	return (1);
407}
408
409/*
410 * Free mbufs held by a socket, and reserved mbuf space.
411 */
412sbrelease(sb)
413	struct sockbuf *sb;
414{
415
416	sbflush(sb);
417	sb->sb_hiwat = sb->sb_mbmax = 0;
418}
419
420/*
421 * Routines to add and remove
422 * data from an mbuf queue.
423 *
424 * The routines sbappend() or sbappendrecord() are normally called to
425 * append new mbufs to a socket buffer, after checking that adequate
426 * space is available, comparing the function sbspace() with the amount
427 * of data to be added.  sbappendrecord() differs from sbappend() in
428 * that data supplied is treated as the beginning of a new record.
429 * To place a sender's address, optional access rights, and data in a
430 * socket receive buffer, sbappendaddr() should be used.  To place
431 * access rights and data in a socket receive buffer, sbappendrights()
432 * should be used.  In either case, the new data begins a new record.
433 * Note that unlike sbappend() and sbappendrecord(), these routines check
434 * for the caller that there will be enough space to store the data.
435 * Each fails if there is not enough space, or if it cannot find mbufs
436 * to store additional information in.
437 *
438 * Reliable protocols may use the socket send buffer to hold data
439 * awaiting acknowledgement.  Data is normally copied from a socket
440 * send buffer in a protocol with m_copy for output to a peer,
441 * and then removing the data from the socket buffer with sbdrop()
442 * or sbdroprecord() when the data is acknowledged by the peer.
443 */
444
445/*
446 * Append mbuf chain m to the last record in the
447 * socket buffer sb.  The additional space associated
448 * the mbuf chain is recorded in sb.  Empty mbufs are
449 * discarded and mbufs are compacted where possible.
450 */
451sbappend(sb, m)
452	struct sockbuf *sb;
453	struct mbuf *m;
454{
455	register struct mbuf *n;
456
457	if (m == 0)
458		return;
459	if (n = sb->sb_mb) {
460		while (n->m_nextpkt)
461			n = n->m_nextpkt;
462		do {
463			if (n->m_flags & M_EOR) {
464				sbappendrecord(sb, m); /* XXXXXX!!!! */
465				return;
466			}
467		} while (n->m_next && (n = n->m_next));
468	}
469	sbcompress(sb, m, n);
470}
471
472#ifdef SOCKBUF_DEBUG
473sbcheck(sb)
474	register struct sockbuf *sb;
475{
476	register struct mbuf *m;
477	register int len = 0, mbcnt = 0;
478
479	for (m = sb->sb_mb; m; m = m->m_next) {
480		len += m->m_len;
481		mbcnt += MSIZE;
482		if (m->m_flags & M_EXT)
483			mbcnt += m->m_ext.ext_size;
484		if (m->m_nextpkt)
485			panic("sbcheck nextpkt");
486	}
487	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
488		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
489		    mbcnt, sb->sb_mbcnt);
490		panic("sbcheck");
491	}
492}
493#endif
494
495/*
496 * As above, except the mbuf chain
497 * begins a new record.
498 */
499sbappendrecord(sb, m0)
500	register struct sockbuf *sb;
501	register struct mbuf *m0;
502{
503	register struct mbuf *m;
504
505	if (m0 == 0)
506		return;
507	if (m = sb->sb_mb)
508		while (m->m_nextpkt)
509			m = m->m_nextpkt;
510	/*
511	 * Put the first mbuf on the queue.
512	 * Note this permits zero length records.
513	 */
514	sballoc(sb, m0);
515	if (m)
516		m->m_nextpkt = m0;
517	else
518		sb->sb_mb = m0;
519	m = m0->m_next;
520	m0->m_next = 0;
521	if (m && (m0->m_flags & M_EOR)) {
522		m0->m_flags &= ~M_EOR;
523		m->m_flags |= M_EOR;
524	}
525	sbcompress(sb, m, m0);
526}
527
528/*
529 * As above except that OOB data
530 * is inserted at the beginning of the sockbuf,
531 * but after any other OOB data.
532 */
533sbinsertoob(sb, m0)
534	register struct sockbuf *sb;
535	register struct mbuf *m0;
536{
537	register struct mbuf *m;
538	register struct mbuf **mp;
539
540	if (m0 == 0)
541		return;
542	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
543	    again:
544		switch (m->m_type) {
545
546		case MT_OOBDATA:
547			continue;		/* WANT next train */
548
549		case MT_CONTROL:
550			if (m = m->m_next)
551				goto again;	/* inspect THIS train further */
552		}
553		break;
554	}
555	/*
556	 * Put the first mbuf on the queue.
557	 * Note this permits zero length records.
558	 */
559	sballoc(sb, m0);
560	m0->m_nextpkt = *mp;
561	*mp = m0;
562	m = m0->m_next;
563	m0->m_next = 0;
564	if (m && (m0->m_flags & M_EOR)) {
565		m0->m_flags &= ~M_EOR;
566		m->m_flags |= M_EOR;
567	}
568	sbcompress(sb, m, m0);
569}
570
571/*
572 * Append address and data, and optionally, control (ancillary) data
573 * to the receive queue of a socket.  If present,
574 * m0 must include a packet header with total length.
575 * Returns 0 if no space in sockbuf or insufficient mbufs.
576 */
577sbappendaddr(sb, asa, m0, control)
578	register struct sockbuf *sb;
579	struct sockaddr *asa;
580	struct mbuf *m0, *control;
581{
582	register struct mbuf *m, *n;
583	int space = asa->sa_len;
584
585if (m0 && (m0->m_flags & M_PKTHDR) == 0)
586panic("sbappendaddr");
587	if (m0)
588		space += m0->m_pkthdr.len;
589	for (n = control; n; n = n->m_next) {
590		space += n->m_len;
591		if (n->m_next == 0)	/* keep pointer to last control buf */
592			break;
593	}
594	if (space > sbspace(sb))
595		return (0);
596	if (asa->sa_len > MLEN)
597		return (0);
598	MGET(m, M_DONTWAIT, MT_SONAME);
599	if (m == 0)
600		return (0);
601	m->m_len = asa->sa_len;
602	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
603	if (n)
604		n->m_next = m0;		/* concatenate data to control */
605	else
606		control = m0;
607	m->m_next = control;
608	for (n = m; n; n = n->m_next)
609		sballoc(sb, n);
610	if (n = sb->sb_mb) {
611		while (n->m_nextpkt)
612			n = n->m_nextpkt;
613		n->m_nextpkt = m;
614	} else
615		sb->sb_mb = m;
616	return (1);
617}
618
619sbappendcontrol(sb, m0, control)
620	struct sockbuf *sb;
621	struct mbuf *control, *m0;
622{
623	register struct mbuf *m, *n;
624	int space = 0;
625
626	if (control == 0)
627		panic("sbappendcontrol");
628	for (m = control; ; m = m->m_next) {
629		space += m->m_len;
630		if (m->m_next == 0)
631			break;
632	}
633	n = m;			/* save pointer to last control buffer */
634	for (m = m0; m; m = m->m_next)
635		space += m->m_len;
636	if (space > sbspace(sb))
637		return (0);
638	n->m_next = m0;			/* concatenate data to control */
639	for (m = control; m; m = m->m_next)
640		sballoc(sb, m);
641	if (n = sb->sb_mb) {
642		while (n->m_nextpkt)
643			n = n->m_nextpkt;
644		n->m_nextpkt = control;
645	} else
646		sb->sb_mb = control;
647	return (1);
648}
649
650/*
651 * Compress mbuf chain m into the socket
652 * buffer sb following mbuf n.  If n
653 * is null, the buffer is presumed empty.
654 */
655sbcompress(sb, m, n)
656	register struct sockbuf *sb;
657	register struct mbuf *m, *n;
658{
659	register int eor = 0;
660	register struct mbuf *o;
661
662	while (m) {
663		eor |= m->m_flags & M_EOR;
664		if (m->m_len == 0 &&
665		    (eor == 0 ||
666		     (((o = m->m_next) || (o = n)) &&
667		      o->m_type == m->m_type))) {
668			m = m_free(m);
669			continue;
670		}
671		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
672		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
673		    n->m_type == m->m_type) {
674			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
675			    (unsigned)m->m_len);
676			n->m_len += m->m_len;
677			sb->sb_cc += m->m_len;
678			m = m_free(m);
679			continue;
680		}
681		if (n)
682			n->m_next = m;
683		else
684			sb->sb_mb = m;
685		sballoc(sb, m);
686		n = m;
687		m->m_flags &= ~M_EOR;
688		m = m->m_next;
689		n->m_next = 0;
690	}
691	if (eor) {
692		if (n)
693			n->m_flags |= eor;
694		else
695			printf("semi-panic: sbcompress\n");
696	}
697}
698
699/*
700 * Free all mbufs in a sockbuf.
701 * Check that all resources are reclaimed.
702 */
703sbflush(sb)
704	register struct sockbuf *sb;
705{
706
707	if (sb->sb_flags & SB_LOCK)
708		panic("sbflush");
709	while (sb->sb_mbcnt)
710		sbdrop(sb, (int)sb->sb_cc);
711	if (sb->sb_cc || sb->sb_mb)
712		panic("sbflush 2");
713}
714
715/*
716 * Drop data from (the front of) a sockbuf.
717 */
718sbdrop(sb, len)
719	register struct sockbuf *sb;
720	register int len;
721{
722	register struct mbuf *m, *mn;
723	struct mbuf *next;
724
725	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
726	while (len > 0) {
727		if (m == 0) {
728			if (next == 0)
729				panic("sbdrop");
730			m = next;
731			next = m->m_nextpkt;
732			continue;
733		}
734		if (m->m_len > len) {
735			m->m_len -= len;
736			m->m_data += len;
737			sb->sb_cc -= len;
738			break;
739		}
740		len -= m->m_len;
741		sbfree(sb, m);
742		MFREE(m, mn);
743		m = mn;
744	}
745	while (m && m->m_len == 0) {
746		sbfree(sb, m);
747		MFREE(m, mn);
748		m = mn;
749	}
750	if (m) {
751		sb->sb_mb = m;
752		m->m_nextpkt = next;
753	} else
754		sb->sb_mb = next;
755}
756
757/*
758 * Drop a record off the front of a sockbuf
759 * and move the next record to the front.
760 */
761sbdroprecord(sb)
762	register struct sockbuf *sb;
763{
764	register struct mbuf *m, *mn;
765
766	m = sb->sb_mb;
767	if (m) {
768		sb->sb_mb = m->m_nextpkt;
769		do {
770			sbfree(sb, m);
771			MFREE(m, mn);
772		} while (m = mn);
773	}
774}
775