uipc_socket2.c revision 1.47
1/*	$NetBSD: uipc_socket2.c,v 1.47 2002/09/27 15:37:47 provos Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by the University of
18 *	California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
36 */
37
38#include <sys/cdefs.h>
39__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.47 2002/09/27 15:37:47 provos Exp $");
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/proc.h>
44#include <sys/file.h>
45#include <sys/buf.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/protosw.h>
49#include <sys/socket.h>
50#include <sys/socketvar.h>
51#include <sys/signalvar.h>
52
53/*
54 * Primitive routines for operating on sockets and socket buffers
55 */
56
57/* strings for sleep message: */
58const char	netcon[] = "netcon";
59const char	netcls[] = "netcls";
60const char	netio[] = "netio";
61const char	netlck[] = "netlck";
62
63/*
64 * Procedures to manipulate state flags of socket
65 * and do appropriate wakeups.  Normal sequence from the
66 * active (originating) side is that soisconnecting() is
67 * called during processing of connect() call,
68 * resulting in an eventual call to soisconnected() if/when the
69 * connection is established.  When the connection is torn down
70 * soisdisconnecting() is called during processing of disconnect() call,
71 * and soisdisconnected() is called when the connection to the peer
72 * is totally severed.  The semantics of these routines are such that
73 * connectionless protocols can call soisconnected() and soisdisconnected()
74 * only, bypassing the in-progress calls when setting up a ``connection''
75 * takes no time.
76 *
77 * From the passive side, a socket is created with
78 * two queues of sockets: so_q0 for connections in progress
79 * and so_q for connections already made and awaiting user acceptance.
80 * As a protocol is preparing incoming connections, it creates a socket
81 * structure queued on so_q0 by calling sonewconn().  When the connection
82 * is established, soisconnected() is called, and transfers the
83 * socket structure to so_q, making it available to accept().
84 *
85 * If a socket is closed with sockets on either
86 * so_q0 or so_q, these sockets are dropped.
87 *
88 * If higher level protocols are implemented in
89 * the kernel, the wakeups done here will sometimes
90 * cause software-interrupt process scheduling.
91 */
92
93void
94soisconnecting(struct socket *so)
95{
96
97	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
98	so->so_state |= SS_ISCONNECTING;
99}
100
101void
102soisconnected(struct socket *so)
103{
104	struct socket	*head;
105
106	head = so->so_head;
107	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
108	so->so_state |= SS_ISCONNECTED;
109	if (head && soqremque(so, 0)) {
110		soqinsque(head, so, 1);
111		sorwakeup(head);
112		wakeup((caddr_t)&head->so_timeo);
113	} else {
114		wakeup((caddr_t)&so->so_timeo);
115		sorwakeup(so);
116		sowwakeup(so);
117	}
118}
119
120void
121soisdisconnecting(struct socket *so)
122{
123
124	so->so_state &= ~SS_ISCONNECTING;
125	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
126	wakeup((caddr_t)&so->so_timeo);
127	sowwakeup(so);
128	sorwakeup(so);
129}
130
131void
132soisdisconnected(struct socket *so)
133{
134
135	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
136	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
137	wakeup((caddr_t)&so->so_timeo);
138	sowwakeup(so);
139	sorwakeup(so);
140}
141
142/*
143 * When an attempt at a new connection is noted on a socket
144 * which accepts connections, sonewconn is called.  If the
145 * connection is possible (subject to space constraints, etc.)
146 * then we allocate a new structure, propoerly linked into the
147 * data structure of the original socket, and return this.
148 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
149 *
150 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
151 * to catch calls that are missing the (new) second parameter.
152 */
153struct socket *
154sonewconn1(struct socket *head, int connstatus)
155{
156	struct socket	*so;
157	int		soqueue;
158
159	soqueue = connstatus ? 1 : 0;
160	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
161		return ((struct socket *)0);
162	so = pool_get(&socket_pool, PR_NOWAIT);
163	if (so == NULL)
164		return (NULL);
165	memset((caddr_t)so, 0, sizeof(*so));
166	so->so_type = head->so_type;
167	so->so_options = head->so_options &~ SO_ACCEPTCONN;
168	so->so_linger = head->so_linger;
169	so->so_state = head->so_state | SS_NOFDREF;
170	so->so_proto = head->so_proto;
171	so->so_timeo = head->so_timeo;
172	so->so_pgid = head->so_pgid;
173	so->so_send = head->so_send;
174	so->so_receive = head->so_receive;
175	so->so_uid = head->so_uid;
176	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
177	soqinsque(head, so, soqueue);
178	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
179	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
180	    (struct proc *)0)) {
181		(void) soqremque(so, soqueue);
182		pool_put(&socket_pool, so);
183		return (NULL);
184	}
185	if (connstatus) {
186		sorwakeup(head);
187		wakeup((caddr_t)&head->so_timeo);
188		so->so_state |= connstatus;
189	}
190	return (so);
191}
192
193void
194soqinsque(struct socket *head, struct socket *so, int q)
195{
196
197#ifdef DIAGNOSTIC
198	if (so->so_onq != NULL)
199		panic("soqinsque");
200#endif
201
202	so->so_head = head;
203	if (q == 0) {
204		head->so_q0len++;
205		so->so_onq = &head->so_q0;
206	} else {
207		head->so_qlen++;
208		so->so_onq = &head->so_q;
209	}
210	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
211}
212
213int
214soqremque(struct socket *so, int q)
215{
216	struct socket	*head;
217
218	head = so->so_head;
219	if (q == 0) {
220		if (so->so_onq != &head->so_q0)
221			return (0);
222		head->so_q0len--;
223	} else {
224		if (so->so_onq != &head->so_q)
225			return (0);
226		head->so_qlen--;
227	}
228	TAILQ_REMOVE(so->so_onq, so, so_qe);
229	so->so_onq = NULL;
230	so->so_head = NULL;
231	return (1);
232}
233
234/*
235 * Socantsendmore indicates that no more data will be sent on the
236 * socket; it would normally be applied to a socket when the user
237 * informs the system that no more data is to be sent, by the protocol
238 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
239 * will be received, and will normally be applied to the socket by a
240 * protocol when it detects that the peer will send no more data.
241 * Data queued for reading in the socket may yet be read.
242 */
243
244void
245socantsendmore(struct socket *so)
246{
247
248	so->so_state |= SS_CANTSENDMORE;
249	sowwakeup(so);
250}
251
252void
253socantrcvmore(struct socket *so)
254{
255
256	so->so_state |= SS_CANTRCVMORE;
257	sorwakeup(so);
258}
259
260/*
261 * Wait for data to arrive at/drain from a socket buffer.
262 */
263int
264sbwait(struct sockbuf *sb)
265{
266
267	sb->sb_flags |= SB_WAIT;
268	return (tsleep((caddr_t)&sb->sb_cc,
269	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
270	    sb->sb_timeo));
271}
272
273/*
274 * Lock a sockbuf already known to be locked;
275 * return any error returned from sleep (EINTR).
276 */
277int
278sb_lock(struct sockbuf *sb)
279{
280	int	error;
281
282	while (sb->sb_flags & SB_LOCK) {
283		sb->sb_flags |= SB_WANT;
284		error = tsleep((caddr_t)&sb->sb_flags,
285		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
286		    netlck, 0);
287		if (error)
288			return (error);
289	}
290	sb->sb_flags |= SB_LOCK;
291	return (0);
292}
293
294/*
295 * Wakeup processes waiting on a socket buffer.
296 * Do asynchronous notification via SIGIO
297 * if the socket buffer has the SB_ASYNC flag set.
298 */
299void
300sowakeup(struct socket *so, struct sockbuf *sb)
301{
302	struct proc	*p;
303
304	selwakeup(&sb->sb_sel);
305	sb->sb_flags &= ~SB_SEL;
306	if (sb->sb_flags & SB_WAIT) {
307		sb->sb_flags &= ~SB_WAIT;
308		wakeup((caddr_t)&sb->sb_cc);
309	}
310	if (sb->sb_flags & SB_ASYNC) {
311		if (so->so_pgid < 0)
312			gsignal(-so->so_pgid, SIGIO);
313		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
314			psignal(p, SIGIO);
315	}
316	if (sb->sb_flags & SB_UPCALL)
317		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
318}
319
320/*
321 * Socket buffer (struct sockbuf) utility routines.
322 *
323 * Each socket contains two socket buffers: one for sending data and
324 * one for receiving data.  Each buffer contains a queue of mbufs,
325 * information about the number of mbufs and amount of data in the
326 * queue, and other fields allowing poll() statements and notification
327 * on data availability to be implemented.
328 *
329 * Data stored in a socket buffer is maintained as a list of records.
330 * Each record is a list of mbufs chained together with the m_next
331 * field.  Records are chained together with the m_nextpkt field. The upper
332 * level routine soreceive() expects the following conventions to be
333 * observed when placing information in the receive buffer:
334 *
335 * 1. If the protocol requires each message be preceded by the sender's
336 *    name, then a record containing that name must be present before
337 *    any associated data (mbuf's must be of type MT_SONAME).
338 * 2. If the protocol supports the exchange of ``access rights'' (really
339 *    just additional data associated with the message), and there are
340 *    ``rights'' to be received, then a record containing this data
341 *    should be present (mbuf's must be of type MT_CONTROL).
342 * 3. If a name or rights record exists, then it must be followed by
343 *    a data record, perhaps of zero length.
344 *
345 * Before using a new socket structure it is first necessary to reserve
346 * buffer space to the socket, by calling sbreserve().  This should commit
347 * some of the available buffer space in the system buffer pool for the
348 * socket (currently, it does nothing but enforce limits).  The space
349 * should be released by calling sbrelease() when the socket is destroyed.
350 */
351
352int
353soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
354{
355
356	if (sbreserve(&so->so_snd, sndcc) == 0)
357		goto bad;
358	if (sbreserve(&so->so_rcv, rcvcc) == 0)
359		goto bad2;
360	if (so->so_rcv.sb_lowat == 0)
361		so->so_rcv.sb_lowat = 1;
362	if (so->so_snd.sb_lowat == 0)
363		so->so_snd.sb_lowat = MCLBYTES;
364	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
365		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
366	return (0);
367 bad2:
368	sbrelease(&so->so_snd);
369 bad:
370	return (ENOBUFS);
371}
372
373/*
374 * Allot mbufs to a sockbuf.
375 * Attempt to scale mbmax so that mbcnt doesn't become limiting
376 * if buffering efficiency is near the normal case.
377 */
378int
379sbreserve(struct sockbuf *sb, u_long cc)
380{
381
382	if (cc == 0 ||
383	    (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
384		return (0);
385	sb->sb_hiwat = cc;
386	sb->sb_mbmax = min(cc * 2, sb_max);
387	if (sb->sb_lowat > sb->sb_hiwat)
388		sb->sb_lowat = sb->sb_hiwat;
389	return (1);
390}
391
392/*
393 * Free mbufs held by a socket, and reserved mbuf space.
394 */
395void
396sbrelease(struct sockbuf *sb)
397{
398
399	sbflush(sb);
400	sb->sb_hiwat = sb->sb_mbmax = 0;
401}
402
403/*
404 * Routines to add and remove
405 * data from an mbuf queue.
406 *
407 * The routines sbappend() or sbappendrecord() are normally called to
408 * append new mbufs to a socket buffer, after checking that adequate
409 * space is available, comparing the function sbspace() with the amount
410 * of data to be added.  sbappendrecord() differs from sbappend() in
411 * that data supplied is treated as the beginning of a new record.
412 * To place a sender's address, optional access rights, and data in a
413 * socket receive buffer, sbappendaddr() should be used.  To place
414 * access rights and data in a socket receive buffer, sbappendrights()
415 * should be used.  In either case, the new data begins a new record.
416 * Note that unlike sbappend() and sbappendrecord(), these routines check
417 * for the caller that there will be enough space to store the data.
418 * Each fails if there is not enough space, or if it cannot find mbufs
419 * to store additional information in.
420 *
421 * Reliable protocols may use the socket send buffer to hold data
422 * awaiting acknowledgement.  Data is normally copied from a socket
423 * send buffer in a protocol with m_copy for output to a peer,
424 * and then removing the data from the socket buffer with sbdrop()
425 * or sbdroprecord() when the data is acknowledged by the peer.
426 */
427
428#ifdef SOCKBUF_DEBUG
429void
430sblastrecordchk(struct sockbuf *sb, const char *where)
431{
432	struct mbuf *m = sb->sb_mb;
433
434	while (m && m->m_nextpkt)
435		m = m->m_nextpkt;
436
437	if (m != sb->sb_lastrecord) {
438		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
439		    sb->sb_mb, sb->sb_lastrecord, m);
440		printf("packet chain:\n");
441		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
442			printf("\t%p\n", m);
443		panic("sblastrecordchk from %s", where);
444	}
445}
446
447void
448sblastmbufchk(struct sockbuf *sb, const char *where)
449{
450	struct mbuf *m = sb->sb_mb;
451	struct mbuf *n;
452
453	while (m && m->m_nextpkt)
454		m = m->m_nextpkt;
455
456	while (m && m->m_next)
457		m = m->m_next;
458
459	if (m != sb->sb_mbtail) {
460		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
461		    sb->sb_mb, sb->sb_mbtail, m);
462		printf("packet tree:\n");
463		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
464			printf("\t");
465			for (n = m; n != NULL; n = n->m_next)
466				printf("%p ", n);
467			printf("\n");
468		}
469		panic("sblastmbufchk from %s", where);
470	}
471}
472#endif /* SOCKBUF_DEBUG */
473
474#define	SBLINKRECORD(sb, m0)						\
475do {									\
476	if ((sb)->sb_lastrecord != NULL)				\
477		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
478	else								\
479		(sb)->sb_mb = (m0);					\
480	(sb)->sb_lastrecord = (m0);					\
481} while (/*CONSTCOND*/0)
482
483/*
484 * Append mbuf chain m to the last record in the
485 * socket buffer sb.  The additional space associated
486 * the mbuf chain is recorded in sb.  Empty mbufs are
487 * discarded and mbufs are compacted where possible.
488 */
489void
490sbappend(struct sockbuf *sb, struct mbuf *m)
491{
492	struct mbuf	*n;
493
494	if (m == 0)
495		return;
496
497	SBLASTRECORDCHK(sb, "sbappend 1");
498
499	if ((n = sb->sb_lastrecord) != NULL) {
500		/*
501		 * XXX Would like to simply use sb_mbtail here, but
502		 * XXX I need to verify that I won't miss an EOR that
503		 * XXX way.
504		 */
505		do {
506			if (n->m_flags & M_EOR) {
507				sbappendrecord(sb, m); /* XXXXXX!!!! */
508				return;
509			}
510		} while (n->m_next && (n = n->m_next));
511	} else {
512		/*
513		 * If this is the first record in the socket buffer, it's
514		 * also the last record.
515		 */
516		sb->sb_lastrecord = m;
517	}
518	sbcompress(sb, m, n);
519	SBLASTRECORDCHK(sb, "sbappend 2");
520}
521
522/*
523 * This version of sbappend() should only be used when the caller
524 * absolutely knows that there will never be more than one record
525 * in the socket buffer, that is, a stream protocol (such as TCP).
526 */
527void
528sbappendstream(struct sockbuf *sb, struct mbuf *m)
529{
530
531	KDASSERT(m->m_nextpkt == NULL);
532	KASSERT(sb->sb_mb == sb->sb_lastrecord);
533
534	SBLASTMBUFCHK(sb, __func__);
535
536	sbcompress(sb, m, sb->sb_mbtail);
537
538	sb->sb_lastrecord = sb->sb_mb;
539	SBLASTRECORDCHK(sb, __func__);
540}
541
542#ifdef SOCKBUF_DEBUG
543void
544sbcheck(struct sockbuf *sb)
545{
546	struct mbuf	*m;
547	u_long		len, mbcnt;
548
549	len = 0;
550	mbcnt = 0;
551	for (m = sb->sb_mb; m; m = m->m_next) {
552		len += m->m_len;
553		mbcnt += MSIZE;
554		if (m->m_flags & M_EXT)
555			mbcnt += m->m_ext.ext_size;
556		if (m->m_nextpkt)
557			panic("sbcheck nextpkt");
558	}
559	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
560		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
561		    mbcnt, sb->sb_mbcnt);
562		panic("sbcheck");
563	}
564}
565#endif
566
567/*
568 * As above, except the mbuf chain
569 * begins a new record.
570 */
571void
572sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
573{
574	struct mbuf	*m;
575
576	if (m0 == 0)
577		return;
578
579	/*
580	 * Put the first mbuf on the queue.
581	 * Note this permits zero length records.
582	 */
583	sballoc(sb, m0);
584	SBLASTRECORDCHK(sb, "sbappendrecord 1");
585	SBLINKRECORD(sb, m0);
586	m = m0->m_next;
587	m0->m_next = 0;
588	if (m && (m0->m_flags & M_EOR)) {
589		m0->m_flags &= ~M_EOR;
590		m->m_flags |= M_EOR;
591	}
592	sbcompress(sb, m, m0);
593	SBLASTRECORDCHK(sb, "sbappendrecord 2");
594}
595
596/*
597 * As above except that OOB data
598 * is inserted at the beginning of the sockbuf,
599 * but after any other OOB data.
600 */
601void
602sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
603{
604	struct mbuf	*m, **mp;
605
606	if (m0 == 0)
607		return;
608
609	SBLASTRECORDCHK(sb, "sbinsertoob 1");
610
611	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
612	    again:
613		switch (m->m_type) {
614
615		case MT_OOBDATA:
616			continue;		/* WANT next train */
617
618		case MT_CONTROL:
619			if ((m = m->m_next) != NULL)
620				goto again;	/* inspect THIS train further */
621		}
622		break;
623	}
624	/*
625	 * Put the first mbuf on the queue.
626	 * Note this permits zero length records.
627	 */
628	sballoc(sb, m0);
629	m0->m_nextpkt = *mp;
630	if (*mp == NULL) {
631		/* m0 is actually the new tail */
632		sb->sb_lastrecord = m0;
633	}
634	*mp = m0;
635	m = m0->m_next;
636	m0->m_next = 0;
637	if (m && (m0->m_flags & M_EOR)) {
638		m0->m_flags &= ~M_EOR;
639		m->m_flags |= M_EOR;
640	}
641	sbcompress(sb, m, m0);
642	SBLASTRECORDCHK(sb, "sbinsertoob 2");
643}
644
645/*
646 * Append address and data, and optionally, control (ancillary) data
647 * to the receive queue of a socket.  If present,
648 * m0 must include a packet header with total length.
649 * Returns 0 if no space in sockbuf or insufficient mbufs.
650 */
651int
652sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
653	struct mbuf *control)
654{
655	struct mbuf	*m, *n, *nlast;
656	int		space;
657
658	space = asa->sa_len;
659
660	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
661		panic("sbappendaddr");
662	if (m0)
663		space += m0->m_pkthdr.len;
664	for (n = control; n; n = n->m_next) {
665		space += n->m_len;
666		if (n->m_next == 0)	/* keep pointer to last control buf */
667			break;
668	}
669	if (space > sbspace(sb))
670		return (0);
671	MGET(m, M_DONTWAIT, MT_SONAME);
672	if (m == 0)
673		return (0);
674	if (asa->sa_len > MLEN) {
675		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
676		if ((m->m_flags & M_EXT) == 0) {
677			m_free(m);
678			return (0);
679		}
680	}
681	m->m_len = asa->sa_len;
682	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
683	if (n)
684		n->m_next = m0;		/* concatenate data to control */
685	else
686		control = m0;
687	m->m_next = control;
688
689	SBLASTRECORDCHK(sb, "sbappendaddr 1");
690
691	for (n = m; n->m_next != NULL; n = n->m_next)
692		sballoc(sb, n);
693	sballoc(sb, n);
694	nlast = n;
695	SBLINKRECORD(sb, m);
696
697	sb->sb_mbtail = nlast;
698	SBLASTMBUFCHK(sb, "sbappendaddr");
699
700	SBLASTRECORDCHK(sb, "sbappendaddr 2");
701
702	return (1);
703}
704
705int
706sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
707{
708	struct mbuf	*m, *mlast, *n;
709	int		space;
710
711	space = 0;
712	if (control == 0)
713		panic("sbappendcontrol");
714	for (m = control; ; m = m->m_next) {
715		space += m->m_len;
716		if (m->m_next == 0)
717			break;
718	}
719	n = m;			/* save pointer to last control buffer */
720	for (m = m0; m; m = m->m_next)
721		space += m->m_len;
722	if (space > sbspace(sb))
723		return (0);
724	n->m_next = m0;			/* concatenate data to control */
725
726	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
727
728	for (m = control; m->m_next != NULL; m = m->m_next)
729		sballoc(sb, m);
730	sballoc(sb, m);
731	mlast = m;
732	SBLINKRECORD(sb, control);
733
734	sb->sb_mbtail = mlast;
735	SBLASTMBUFCHK(sb, "sbappendcontrol");
736
737	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
738
739	return (1);
740}
741
742/*
743 * Compress mbuf chain m into the socket
744 * buffer sb following mbuf n.  If n
745 * is null, the buffer is presumed empty.
746 */
747void
748sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
749{
750	int		eor;
751	struct mbuf	*o;
752
753	eor = 0;
754	while (m) {
755		eor |= m->m_flags & M_EOR;
756		if (m->m_len == 0 &&
757		    (eor == 0 ||
758		     (((o = m->m_next) || (o = n)) &&
759		      o->m_type == m->m_type))) {
760			if (sb->sb_lastrecord == m)
761				sb->sb_lastrecord = m->m_next;
762			m = m_free(m);
763			continue;
764		}
765		if (n && (n->m_flags & M_EOR) == 0 &&
766		    /* M_TRAILINGSPACE() checks buffer writeability */
767		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
768		    m->m_len <= M_TRAILINGSPACE(n) &&
769		    n->m_type == m->m_type) {
770			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
771			    (unsigned)m->m_len);
772			n->m_len += m->m_len;
773			sb->sb_cc += m->m_len;
774			m = m_free(m);
775			continue;
776		}
777		if (n)
778			n->m_next = m;
779		else
780			sb->sb_mb = m;
781		sb->sb_mbtail = m;
782		sballoc(sb, m);
783		n = m;
784		m->m_flags &= ~M_EOR;
785		m = m->m_next;
786		n->m_next = 0;
787	}
788	if (eor) {
789		if (n)
790			n->m_flags |= eor;
791		else
792			printf("semi-panic: sbcompress\n");
793	}
794	SBLASTMBUFCHK(sb, __func__);
795}
796
797/*
798 * Free all mbufs in a sockbuf.
799 * Check that all resources are reclaimed.
800 */
801void
802sbflush(struct sockbuf *sb)
803{
804
805	KASSERT((sb->sb_flags & SB_LOCK) == 0);
806
807	while (sb->sb_mbcnt)
808		sbdrop(sb, (int)sb->sb_cc);
809
810	KASSERT(sb->sb_cc == 0);
811	KASSERT(sb->sb_mb == NULL);
812	KASSERT(sb->sb_mbtail == NULL);
813	KASSERT(sb->sb_lastrecord == NULL);
814}
815
816/*
817 * Drop data from (the front of) a sockbuf.
818 */
819void
820sbdrop(struct sockbuf *sb, int len)
821{
822	struct mbuf	*m, *mn, *next;
823
824	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
825	while (len > 0) {
826		if (m == 0) {
827			if (next == 0)
828				panic("sbdrop");
829			m = next;
830			next = m->m_nextpkt;
831			continue;
832		}
833		if (m->m_len > len) {
834			m->m_len -= len;
835			m->m_data += len;
836			sb->sb_cc -= len;
837			break;
838		}
839		len -= m->m_len;
840		sbfree(sb, m);
841		MFREE(m, mn);
842		m = mn;
843	}
844	while (m && m->m_len == 0) {
845		sbfree(sb, m);
846		MFREE(m, mn);
847		m = mn;
848	}
849	if (m) {
850		sb->sb_mb = m;
851		m->m_nextpkt = next;
852	} else
853		sb->sb_mb = next;
854	/*
855	 * First part is an inline SB_EMPTY_FIXUP().  Second part
856	 * makes sure sb_lastrecord is up-to-date if we dropped
857	 * part of the last record.
858	 */
859	m = sb->sb_mb;
860	if (m == NULL) {
861		sb->sb_mbtail = NULL;
862		sb->sb_lastrecord = NULL;
863	} else if (m->m_nextpkt == NULL)
864		sb->sb_lastrecord = m;
865}
866
867/*
868 * Drop a record off the front of a sockbuf
869 * and move the next record to the front.
870 */
871void
872sbdroprecord(struct sockbuf *sb)
873{
874	struct mbuf	*m, *mn;
875
876	m = sb->sb_mb;
877	if (m) {
878		sb->sb_mb = m->m_nextpkt;
879		do {
880			sbfree(sb, m);
881			MFREE(m, mn);
882		} while ((m = mn) != NULL);
883	}
884	SB_EMPTY_FIXUP(sb);
885}
886
887/*
888 * Create a "control" mbuf containing the specified data
889 * with the specified type for presentation on a socket buffer.
890 */
891struct mbuf *
892sbcreatecontrol(caddr_t p, int size, int type, int level)
893{
894	struct cmsghdr	*cp;
895	struct mbuf	*m;
896
897	if (CMSG_SPACE(size) > MCLBYTES) {
898		printf("sbcreatecontrol: message too large %d\n", size);
899		return NULL;
900	}
901
902	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
903		return ((struct mbuf *) NULL);
904	if (CMSG_SPACE(size) > MLEN) {
905		MCLGET(m, M_DONTWAIT);
906		if ((m->m_flags & M_EXT) == 0) {
907			m_free(m);
908			return NULL;
909		}
910	}
911	cp = mtod(m, struct cmsghdr *);
912	memcpy(CMSG_DATA(cp), p, size);
913	m->m_len = CMSG_SPACE(size);
914	cp->cmsg_len = CMSG_LEN(size);
915	cp->cmsg_level = level;
916	cp->cmsg_type = type;
917	return (m);
918}
919