uipc_socket2.c revision 1.40
1/*	$NetBSD: uipc_socket2.c,v 1.40 2001/07/27 19:27:49 thorpej Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by the University of
18 *	California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
36 */
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/proc.h>
41#include <sys/file.h>
42#include <sys/buf.h>
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/protosw.h>
46#include <sys/socket.h>
47#include <sys/socketvar.h>
48#include <sys/signalvar.h>
49
50/*
51 * Primitive routines for operating on sockets and socket buffers
52 */
53
54/* strings for sleep message: */
55const char	netio[] = "netio";
56const char	netcon[] = "netcon";
57const char	netcls[] = "netcls";
58
59/*
60 * Procedures to manipulate state flags of socket
61 * and do appropriate wakeups.  Normal sequence from the
62 * active (originating) side is that soisconnecting() is
63 * called during processing of connect() call,
64 * resulting in an eventual call to soisconnected() if/when the
65 * connection is established.  When the connection is torn down
66 * soisdisconnecting() is called during processing of disconnect() call,
67 * and soisdisconnected() is called when the connection to the peer
68 * is totally severed.  The semantics of these routines are such that
69 * connectionless protocols can call soisconnected() and soisdisconnected()
70 * only, bypassing the in-progress calls when setting up a ``connection''
71 * takes no time.
72 *
73 * From the passive side, a socket is created with
74 * two queues of sockets: so_q0 for connections in progress
75 * and so_q for connections already made and awaiting user acceptance.
76 * As a protocol is preparing incoming connections, it creates a socket
77 * structure queued on so_q0 by calling sonewconn().  When the connection
78 * is established, soisconnected() is called, and transfers the
79 * socket structure to so_q, making it available to accept().
80 *
81 * If a socket is closed with sockets on either
82 * so_q0 or so_q, these sockets are dropped.
83 *
84 * If higher level protocols are implemented in
85 * the kernel, the wakeups done here will sometimes
86 * cause software-interrupt process scheduling.
87 */
88
89void
90soisconnecting(struct socket *so)
91{
92
93	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
94	so->so_state |= SS_ISCONNECTING;
95}
96
97void
98soisconnected(struct socket *so)
99{
100	struct socket	*head;
101
102	head = so->so_head;
103	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
104	so->so_state |= SS_ISCONNECTED;
105	if (head && soqremque(so, 0)) {
106		soqinsque(head, so, 1);
107		sorwakeup(head);
108		wakeup((caddr_t)&head->so_timeo);
109	} else {
110		wakeup((caddr_t)&so->so_timeo);
111		sorwakeup(so);
112		sowwakeup(so);
113	}
114}
115
116void
117soisdisconnecting(struct socket *so)
118{
119
120	so->so_state &= ~SS_ISCONNECTING;
121	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
122	wakeup((caddr_t)&so->so_timeo);
123	sowwakeup(so);
124	sorwakeup(so);
125}
126
127void
128soisdisconnected(struct socket *so)
129{
130
131	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
132	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
133	wakeup((caddr_t)&so->so_timeo);
134	sowwakeup(so);
135	sorwakeup(so);
136}
137
138/*
139 * When an attempt at a new connection is noted on a socket
140 * which accepts connections, sonewconn is called.  If the
141 * connection is possible (subject to space constraints, etc.)
142 * then we allocate a new structure, propoerly linked into the
143 * data structure of the original socket, and return this.
144 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
145 *
146 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
147 * to catch calls that are missing the (new) second parameter.
148 */
149struct socket *
150sonewconn1(struct socket *head, int connstatus)
151{
152	struct socket	*so;
153	int		soqueue;
154
155	soqueue = connstatus ? 1 : 0;
156	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
157		return ((struct socket *)0);
158	so = pool_get(&socket_pool, PR_NOWAIT);
159	if (so == NULL)
160		return (NULL);
161	memset((caddr_t)so, 0, sizeof(*so));
162	so->so_type = head->so_type;
163	so->so_options = head->so_options &~ SO_ACCEPTCONN;
164	so->so_linger = head->so_linger;
165	so->so_state = head->so_state | SS_NOFDREF;
166	so->so_proto = head->so_proto;
167	so->so_timeo = head->so_timeo;
168	so->so_pgid = head->so_pgid;
169	so->so_send = head->so_send;
170	so->so_receive = head->so_receive;
171	so->so_uid = head->so_uid;
172	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
173	soqinsque(head, so, soqueue);
174	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
175	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
176	    (struct proc *)0)) {
177		(void) soqremque(so, soqueue);
178		pool_put(&socket_pool, so);
179		return (NULL);
180	}
181	if (connstatus) {
182		sorwakeup(head);
183		wakeup((caddr_t)&head->so_timeo);
184		so->so_state |= connstatus;
185	}
186	return (so);
187}
188
189void
190soqinsque(struct socket *head, struct socket *so, int q)
191{
192
193#ifdef DIAGNOSTIC
194	if (so->so_onq != NULL)
195		panic("soqinsque");
196#endif
197
198	so->so_head = head;
199	if (q == 0) {
200		head->so_q0len++;
201		so->so_onq = &head->so_q0;
202	} else {
203		head->so_qlen++;
204		so->so_onq = &head->so_q;
205	}
206	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
207}
208
209int
210soqremque(struct socket *so, int q)
211{
212	struct socket	*head;
213
214	head = so->so_head;
215	if (q == 0) {
216		if (so->so_onq != &head->so_q0)
217			return (0);
218		head->so_q0len--;
219	} else {
220		if (so->so_onq != &head->so_q)
221			return (0);
222		head->so_qlen--;
223	}
224	TAILQ_REMOVE(so->so_onq, so, so_qe);
225	so->so_onq = NULL;
226	so->so_head = NULL;
227	return (1);
228}
229
230/*
231 * Socantsendmore indicates that no more data will be sent on the
232 * socket; it would normally be applied to a socket when the user
233 * informs the system that no more data is to be sent, by the protocol
234 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
235 * will be received, and will normally be applied to the socket by a
236 * protocol when it detects that the peer will send no more data.
237 * Data queued for reading in the socket may yet be read.
238 */
239
240void
241socantsendmore(struct socket *so)
242{
243
244	so->so_state |= SS_CANTSENDMORE;
245	sowwakeup(so);
246}
247
248void
249socantrcvmore(struct socket *so)
250{
251
252	so->so_state |= SS_CANTRCVMORE;
253	sorwakeup(so);
254}
255
256/*
257 * Wait for data to arrive at/drain from a socket buffer.
258 */
259int
260sbwait(struct sockbuf *sb)
261{
262
263	sb->sb_flags |= SB_WAIT;
264	return (tsleep((caddr_t)&sb->sb_cc,
265	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
266	    sb->sb_timeo));
267}
268
269/*
270 * Lock a sockbuf already known to be locked;
271 * return any error returned from sleep (EINTR).
272 */
273int
274sb_lock(struct sockbuf *sb)
275{
276	int	error;
277
278	while (sb->sb_flags & SB_LOCK) {
279		sb->sb_flags |= SB_WANT;
280		error = tsleep((caddr_t)&sb->sb_flags,
281			       (sb->sb_flags & SB_NOINTR) ?
282					PSOCK : PSOCK|PCATCH, netio, 0);
283		if (error)
284			return (error);
285	}
286	sb->sb_flags |= SB_LOCK;
287	return (0);
288}
289
290/*
291 * Wakeup processes waiting on a socket buffer.
292 * Do asynchronous notification via SIGIO
293 * if the socket buffer has the SB_ASYNC flag set.
294 */
295void
296sowakeup(struct socket *so, struct sockbuf *sb)
297{
298	struct proc	*p;
299
300	selwakeup(&sb->sb_sel);
301	sb->sb_flags &= ~SB_SEL;
302	if (sb->sb_flags & SB_WAIT) {
303		sb->sb_flags &= ~SB_WAIT;
304		wakeup((caddr_t)&sb->sb_cc);
305	}
306	if (sb->sb_flags & SB_ASYNC) {
307		if (so->so_pgid < 0)
308			gsignal(-so->so_pgid, SIGIO);
309		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
310			psignal(p, SIGIO);
311	}
312	if (sb->sb_flags & SB_UPCALL)
313		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
314}
315
316/*
317 * Socket buffer (struct sockbuf) utility routines.
318 *
319 * Each socket contains two socket buffers: one for sending data and
320 * one for receiving data.  Each buffer contains a queue of mbufs,
321 * information about the number of mbufs and amount of data in the
322 * queue, and other fields allowing poll() statements and notification
323 * on data availability to be implemented.
324 *
325 * Data stored in a socket buffer is maintained as a list of records.
326 * Each record is a list of mbufs chained together with the m_next
327 * field.  Records are chained together with the m_nextpkt field. The upper
328 * level routine soreceive() expects the following conventions to be
329 * observed when placing information in the receive buffer:
330 *
331 * 1. If the protocol requires each message be preceded by the sender's
332 *    name, then a record containing that name must be present before
333 *    any associated data (mbuf's must be of type MT_SONAME).
334 * 2. If the protocol supports the exchange of ``access rights'' (really
335 *    just additional data associated with the message), and there are
336 *    ``rights'' to be received, then a record containing this data
337 *    should be present (mbuf's must be of type MT_CONTROL).
338 * 3. If a name or rights record exists, then it must be followed by
339 *    a data record, perhaps of zero length.
340 *
341 * Before using a new socket structure it is first necessary to reserve
342 * buffer space to the socket, by calling sbreserve().  This should commit
343 * some of the available buffer space in the system buffer pool for the
344 * socket (currently, it does nothing but enforce limits).  The space
345 * should be released by calling sbrelease() when the socket is destroyed.
346 */
347
348int
349soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
350{
351
352	if (sbreserve(&so->so_snd, sndcc) == 0)
353		goto bad;
354	if (sbreserve(&so->so_rcv, rcvcc) == 0)
355		goto bad2;
356	if (so->so_rcv.sb_lowat == 0)
357		so->so_rcv.sb_lowat = 1;
358	if (so->so_snd.sb_lowat == 0)
359		so->so_snd.sb_lowat = MCLBYTES;
360	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
361		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
362	return (0);
363 bad2:
364	sbrelease(&so->so_snd);
365 bad:
366	return (ENOBUFS);
367}
368
369/*
370 * Allot mbufs to a sockbuf.
371 * Attempt to scale mbmax so that mbcnt doesn't become limiting
372 * if buffering efficiency is near the normal case.
373 */
374int
375sbreserve(struct sockbuf *sb, u_long cc)
376{
377
378	if (cc == 0 ||
379	    (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
380		return (0);
381	sb->sb_hiwat = cc;
382	sb->sb_mbmax = min(cc * 2, sb_max);
383	if (sb->sb_lowat > sb->sb_hiwat)
384		sb->sb_lowat = sb->sb_hiwat;
385	return (1);
386}
387
388/*
389 * Free mbufs held by a socket, and reserved mbuf space.
390 */
391void
392sbrelease(struct sockbuf *sb)
393{
394
395	sbflush(sb);
396	sb->sb_hiwat = sb->sb_mbmax = 0;
397}
398
399/*
400 * Routines to add and remove
401 * data from an mbuf queue.
402 *
403 * The routines sbappend() or sbappendrecord() are normally called to
404 * append new mbufs to a socket buffer, after checking that adequate
405 * space is available, comparing the function sbspace() with the amount
406 * of data to be added.  sbappendrecord() differs from sbappend() in
407 * that data supplied is treated as the beginning of a new record.
408 * To place a sender's address, optional access rights, and data in a
409 * socket receive buffer, sbappendaddr() should be used.  To place
410 * access rights and data in a socket receive buffer, sbappendrights()
411 * should be used.  In either case, the new data begins a new record.
412 * Note that unlike sbappend() and sbappendrecord(), these routines check
413 * for the caller that there will be enough space to store the data.
414 * Each fails if there is not enough space, or if it cannot find mbufs
415 * to store additional information in.
416 *
417 * Reliable protocols may use the socket send buffer to hold data
418 * awaiting acknowledgement.  Data is normally copied from a socket
419 * send buffer in a protocol with m_copy for output to a peer,
420 * and then removing the data from the socket buffer with sbdrop()
421 * or sbdroprecord() when the data is acknowledged by the peer.
422 */
423
424/*
425 * Append mbuf chain m to the last record in the
426 * socket buffer sb.  The additional space associated
427 * the mbuf chain is recorded in sb.  Empty mbufs are
428 * discarded and mbufs are compacted where possible.
429 */
430void
431sbappend(struct sockbuf *sb, struct mbuf *m)
432{
433	struct mbuf	*n;
434
435	if (m == 0)
436		return;
437	if ((n = sb->sb_mb) != NULL) {
438		while (n->m_nextpkt)
439			n = n->m_nextpkt;
440		do {
441			if (n->m_flags & M_EOR) {
442				sbappendrecord(sb, m); /* XXXXXX!!!! */
443				return;
444			}
445		} while (n->m_next && (n = n->m_next));
446	}
447	sbcompress(sb, m, n);
448}
449
450#ifdef SOCKBUF_DEBUG
451void
452sbcheck(struct sockbuf *sb)
453{
454	struct mbuf	*m;
455	int		len, mbcnt;
456
457	len = 0;
458	mbcnt = 0;
459	for (m = sb->sb_mb; m; m = m->m_next) {
460		len += m->m_len;
461		mbcnt += MSIZE;
462		if (m->m_flags & M_EXT)
463			mbcnt += m->m_ext.ext_size;
464		if (m->m_nextpkt)
465			panic("sbcheck nextpkt");
466	}
467	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
468		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
469		    mbcnt, sb->sb_mbcnt);
470		panic("sbcheck");
471	}
472}
473#endif
474
475/*
476 * As above, except the mbuf chain
477 * begins a new record.
478 */
479void
480sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
481{
482	struct mbuf	*m;
483
484	if (m0 == 0)
485		return;
486	if ((m = sb->sb_mb) != NULL)
487		while (m->m_nextpkt)
488			m = m->m_nextpkt;
489	/*
490	 * Put the first mbuf on the queue.
491	 * Note this permits zero length records.
492	 */
493	sballoc(sb, m0);
494	if (m)
495		m->m_nextpkt = m0;
496	else
497		sb->sb_mb = m0;
498	m = m0->m_next;
499	m0->m_next = 0;
500	if (m && (m0->m_flags & M_EOR)) {
501		m0->m_flags &= ~M_EOR;
502		m->m_flags |= M_EOR;
503	}
504	sbcompress(sb, m, m0);
505}
506
507/*
508 * As above except that OOB data
509 * is inserted at the beginning of the sockbuf,
510 * but after any other OOB data.
511 */
512void
513sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
514{
515	struct mbuf	*m, **mp;
516
517	if (m0 == 0)
518		return;
519	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
520	    again:
521		switch (m->m_type) {
522
523		case MT_OOBDATA:
524			continue;		/* WANT next train */
525
526		case MT_CONTROL:
527			if ((m = m->m_next) != NULL)
528				goto again;	/* inspect THIS train further */
529		}
530		break;
531	}
532	/*
533	 * Put the first mbuf on the queue.
534	 * Note this permits zero length records.
535	 */
536	sballoc(sb, m0);
537	m0->m_nextpkt = *mp;
538	*mp = m0;
539	m = m0->m_next;
540	m0->m_next = 0;
541	if (m && (m0->m_flags & M_EOR)) {
542		m0->m_flags &= ~M_EOR;
543		m->m_flags |= M_EOR;
544	}
545	sbcompress(sb, m, m0);
546}
547
548/*
549 * Append address and data, and optionally, control (ancillary) data
550 * to the receive queue of a socket.  If present,
551 * m0 must include a packet header with total length.
552 * Returns 0 if no space in sockbuf or insufficient mbufs.
553 */
554int
555sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
556	struct mbuf *control)
557{
558	struct mbuf	*m, *n;
559	int		space;
560
561	space = asa->sa_len;
562
563	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
564		panic("sbappendaddr");
565	if (m0)
566		space += m0->m_pkthdr.len;
567	for (n = control; n; n = n->m_next) {
568		space += n->m_len;
569		if (n->m_next == 0)	/* keep pointer to last control buf */
570			break;
571	}
572	if (space > sbspace(sb))
573		return (0);
574	MGET(m, M_DONTWAIT, MT_SONAME);
575	if (m == 0)
576		return (0);
577	if (asa->sa_len > MLEN) {
578		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
579		if ((m->m_flags & M_EXT) == 0) {
580			m_free(m);
581			return (0);
582		}
583	}
584	m->m_len = asa->sa_len;
585	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
586	if (n)
587		n->m_next = m0;		/* concatenate data to control */
588	else
589		control = m0;
590	m->m_next = control;
591	for (n = m; n; n = n->m_next)
592		sballoc(sb, n);
593	if ((n = sb->sb_mb) != NULL) {
594		while (n->m_nextpkt)
595			n = n->m_nextpkt;
596		n->m_nextpkt = m;
597	} else
598		sb->sb_mb = m;
599	return (1);
600}
601
602int
603sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
604{
605	struct mbuf	*m, *n;
606	int		space;
607
608	space = 0;
609	if (control == 0)
610		panic("sbappendcontrol");
611	for (m = control; ; m = m->m_next) {
612		space += m->m_len;
613		if (m->m_next == 0)
614			break;
615	}
616	n = m;			/* save pointer to last control buffer */
617	for (m = m0; m; m = m->m_next)
618		space += m->m_len;
619	if (space > sbspace(sb))
620		return (0);
621	n->m_next = m0;			/* concatenate data to control */
622	for (m = control; m; m = m->m_next)
623		sballoc(sb, m);
624	if ((n = sb->sb_mb) != NULL) {
625		while (n->m_nextpkt)
626			n = n->m_nextpkt;
627		n->m_nextpkt = control;
628	} else
629		sb->sb_mb = control;
630	return (1);
631}
632
633/*
634 * Compress mbuf chain m into the socket
635 * buffer sb following mbuf n.  If n
636 * is null, the buffer is presumed empty.
637 */
638void
639sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
640{
641	int		eor;
642	struct mbuf	*o;
643
644	eor = 0;
645	while (m) {
646		eor |= m->m_flags & M_EOR;
647		if (m->m_len == 0 &&
648		    (eor == 0 ||
649		     (((o = m->m_next) || (o = n)) &&
650		      o->m_type == m->m_type))) {
651			m = m_free(m);
652			continue;
653		}
654		if (n && (n->m_flags & M_EOR) == 0 &&
655		    /* M_TRAILINGSPACE() checks buffer writeability */
656		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
657		    m->m_len <= M_TRAILINGSPACE(n) &&
658		    n->m_type == m->m_type) {
659			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
660			    (unsigned)m->m_len);
661			n->m_len += m->m_len;
662			sb->sb_cc += m->m_len;
663			m = m_free(m);
664			continue;
665		}
666		if (n)
667			n->m_next = m;
668		else
669			sb->sb_mb = m;
670		sballoc(sb, m);
671		n = m;
672		m->m_flags &= ~M_EOR;
673		m = m->m_next;
674		n->m_next = 0;
675	}
676	if (eor) {
677		if (n)
678			n->m_flags |= eor;
679		else
680			printf("semi-panic: sbcompress\n");
681	}
682}
683
684/*
685 * Free all mbufs in a sockbuf.
686 * Check that all resources are reclaimed.
687 */
688void
689sbflush(struct sockbuf *sb)
690{
691
692	if (sb->sb_flags & SB_LOCK)
693		panic("sbflush");
694	while (sb->sb_mbcnt)
695		sbdrop(sb, (int)sb->sb_cc);
696	if (sb->sb_cc || sb->sb_mb)
697		panic("sbflush 2");
698}
699
700/*
701 * Drop data from (the front of) a sockbuf.
702 */
703void
704sbdrop(struct sockbuf *sb, int len)
705{
706	struct mbuf	*m, *mn, *next;
707
708	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
709	while (len > 0) {
710		if (m == 0) {
711			if (next == 0)
712				panic("sbdrop");
713			m = next;
714			next = m->m_nextpkt;
715			continue;
716		}
717		if (m->m_len > len) {
718			m->m_len -= len;
719			m->m_data += len;
720			sb->sb_cc -= len;
721			break;
722		}
723		len -= m->m_len;
724		sbfree(sb, m);
725		MFREE(m, mn);
726		m = mn;
727	}
728	while (m && m->m_len == 0) {
729		sbfree(sb, m);
730		MFREE(m, mn);
731		m = mn;
732	}
733	if (m) {
734		sb->sb_mb = m;
735		m->m_nextpkt = next;
736	} else
737		sb->sb_mb = next;
738}
739
740/*
741 * Drop a record off the front of a sockbuf
742 * and move the next record to the front.
743 */
744void
745sbdroprecord(struct sockbuf *sb)
746{
747	struct mbuf	*m, *mn;
748
749	m = sb->sb_mb;
750	if (m) {
751		sb->sb_mb = m->m_nextpkt;
752		do {
753			sbfree(sb, m);
754			MFREE(m, mn);
755		} while ((m = mn) != NULL);
756	}
757}
758
759/*
760 * Create a "control" mbuf containing the specified data
761 * with the specified type for presentation on a socket buffer.
762 */
763struct mbuf *
764sbcreatecontrol(caddr_t p, int size, int type, int level)
765{
766	struct cmsghdr	*cp;
767	struct mbuf	*m;
768
769	if (CMSG_SPACE(size) > MCLBYTES) {
770		printf("sbcreatecontrol: message too large %d\n", size);
771		return NULL;
772	}
773
774	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
775		return ((struct mbuf *) NULL);
776	if (CMSG_SPACE(size) > MLEN) {
777		MCLGET(m, M_DONTWAIT);
778		if ((m->m_flags & M_EXT) == 0) {
779			m_free(m);
780			return NULL;
781		}
782	}
783	cp = mtod(m, struct cmsghdr *);
784	memcpy(CMSG_DATA(cp), p, size);
785	m->m_len = CMSG_SPACE(size);
786	cp->cmsg_len = CMSG_LEN(size);
787	cp->cmsg_level = level;
788	cp->cmsg_type = type;
789	return (m);
790}
791