uipc_socket2.c revision 1.27
1/*	$NetBSD: uipc_socket2.c,v 1.27 1999/01/20 09:15:41 mycroft Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by the University of
18 *	California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
36 */
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/proc.h>
41#include <sys/file.h>
42#include <sys/buf.h>
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/protosw.h>
46#include <sys/socket.h>
47#include <sys/socketvar.h>
48#include <sys/signalvar.h>
49
50/*
51 * Primitive routines for operating on sockets and socket buffers
52 */
53
54/* strings for sleep message: */
55const char	netio[] = "netio";
56const char	netcon[] = "netcon";
57const char	netcls[] = "netcls";
58
59u_long	sb_max = SB_MAX;		/* patchable */
60
61/*
62 * Procedures to manipulate state flags of socket
63 * and do appropriate wakeups.  Normal sequence from the
64 * active (originating) side is that soisconnecting() is
65 * called during processing of connect() call,
66 * resulting in an eventual call to soisconnected() if/when the
67 * connection is established.  When the connection is torn down
68 * soisdisconnecting() is called during processing of disconnect() call,
69 * and soisdisconnected() is called when the connection to the peer
70 * is totally severed.  The semantics of these routines are such that
71 * connectionless protocols can call soisconnected() and soisdisconnected()
72 * only, bypassing the in-progress calls when setting up a ``connection''
73 * takes no time.
74 *
75 * From the passive side, a socket is created with
76 * two queues of sockets: so_q0 for connections in progress
77 * and so_q for connections already made and awaiting user acceptance.
78 * As a protocol is preparing incoming connections, it creates a socket
79 * structure queued on so_q0 by calling sonewconn().  When the connection
80 * is established, soisconnected() is called, and transfers the
81 * socket structure to so_q, making it available to accept().
82 *
83 * If a socket is closed with sockets on either
84 * so_q0 or so_q, these sockets are dropped.
85 *
86 * If higher level protocols are implemented in
87 * the kernel, the wakeups done here will sometimes
88 * cause software-interrupt process scheduling.
89 */
90
91void
92soisconnecting(so)
93	register struct socket *so;
94{
95
96	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
97	so->so_state |= SS_ISCONNECTING;
98}
99
100void
101soisconnected(so)
102	register struct socket *so;
103{
104	register struct socket *head = so->so_head;
105
106	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
107	so->so_state |= SS_ISCONNECTED;
108	if (head && soqremque(so, 0)) {
109		soqinsque(head, so, 1);
110		sorwakeup(head);
111		wakeup((caddr_t)&head->so_timeo);
112	} else {
113		wakeup((caddr_t)&so->so_timeo);
114		sorwakeup(so);
115		sowwakeup(so);
116	}
117}
118
119void
120soisdisconnecting(so)
121	register struct socket *so;
122{
123
124	so->so_state &= ~SS_ISCONNECTING;
125	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
126	wakeup((caddr_t)&so->so_timeo);
127	sowwakeup(so);
128	sorwakeup(so);
129}
130
131void
132soisdisconnected(so)
133	register struct socket *so;
134{
135
136	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
137	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
138	wakeup((caddr_t)&so->so_timeo);
139	sowwakeup(so);
140	sorwakeup(so);
141}
142
143/*
144 * When an attempt at a new connection is noted on a socket
145 * which accepts connections, sonewconn is called.  If the
146 * connection is possible (subject to space constraints, etc.)
147 * then we allocate a new structure, propoerly linked into the
148 * data structure of the original socket, and return this.
149 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
150 *
151 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
152 * to catch calls that are missing the (new) second parameter.
153 */
154struct socket *
155sonewconn1(head, connstatus)
156	register struct socket *head;
157	int connstatus;
158{
159	register struct socket *so;
160	int soqueue = connstatus ? 1 : 0;
161
162	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
163		return ((struct socket *)0);
164	so = pool_get(&socket_pool, PR_NOWAIT);
165	if (so == NULL)
166		return (NULL);
167	memset((caddr_t)so, 0, sizeof(*so));
168	so->so_type = head->so_type;
169	so->so_options = head->so_options &~ SO_ACCEPTCONN;
170	so->so_linger = head->so_linger;
171	so->so_state = head->so_state | SS_NOFDREF;
172	so->so_proto = head->so_proto;
173	so->so_timeo = head->so_timeo;
174	so->so_pgid = head->so_pgid;
175	so->so_send = head->so_send;
176	so->so_receive = head->so_receive;
177	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
178	soqinsque(head, so, soqueue);
179	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
180	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
181	    (struct proc *)0)) {
182		(void) soqremque(so, soqueue);
183		pool_put(&socket_pool, so);
184		return (NULL);
185	}
186	if (connstatus) {
187		sorwakeup(head);
188		wakeup((caddr_t)&head->so_timeo);
189		so->so_state |= connstatus;
190	}
191	return (so);
192}
193
194void
195soqinsque(head, so, q)
196	register struct socket *head, *so;
197	int q;
198{
199
200#ifdef DIAGNOSTIC
201	if (so->so_onq != NULL)
202		panic("soqinsque");
203#endif
204
205	so->so_head = head;
206	if (q == 0) {
207		head->so_q0len++;
208		so->so_onq = &head->so_q0;
209	} else {
210		head->so_qlen++;
211		so->so_onq = &head->so_q;
212	}
213	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
214}
215
216int
217soqremque(so, q)
218	register struct socket *so;
219	int q;
220{
221	struct socket *head = so->so_head;
222
223	if (q == 0) {
224		if (so->so_onq != &head->so_q0)
225			return (0);
226		head->so_q0len--;
227	} else {
228		if (so->so_onq != &head->so_q)
229			return (0);
230		head->so_qlen--;
231	}
232	TAILQ_REMOVE(so->so_onq, so, so_qe);
233	so->so_onq = NULL;
234	so->so_head = NULL;
235	return (1);
236}
237
238/*
239 * Socantsendmore indicates that no more data will be sent on the
240 * socket; it would normally be applied to a socket when the user
241 * informs the system that no more data is to be sent, by the protocol
242 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
243 * will be received, and will normally be applied to the socket by a
244 * protocol when it detects that the peer will send no more data.
245 * Data queued for reading in the socket may yet be read.
246 */
247
248void
249socantsendmore(so)
250	struct socket *so;
251{
252
253	so->so_state |= SS_CANTSENDMORE;
254	sowwakeup(so);
255}
256
257void
258socantrcvmore(so)
259	struct socket *so;
260{
261
262	so->so_state |= SS_CANTRCVMORE;
263	sorwakeup(so);
264}
265
266/*
267 * Wait for data to arrive at/drain from a socket buffer.
268 */
269int
270sbwait(sb)
271	struct sockbuf *sb;
272{
273
274	sb->sb_flags |= SB_WAIT;
275	return (tsleep((caddr_t)&sb->sb_cc,
276	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
277	    sb->sb_timeo));
278}
279
280/*
281 * Lock a sockbuf already known to be locked;
282 * return any error returned from sleep (EINTR).
283 */
284int
285sb_lock(sb)
286	register struct sockbuf *sb;
287{
288	int error;
289
290	while (sb->sb_flags & SB_LOCK) {
291		sb->sb_flags |= SB_WANT;
292		error = tsleep((caddr_t)&sb->sb_flags,
293			       (sb->sb_flags & SB_NOINTR) ?
294					PSOCK : PSOCK|PCATCH, netio, 0);
295		if (error)
296			return (error);
297	}
298	sb->sb_flags |= SB_LOCK;
299	return (0);
300}
301
302/*
303 * Wakeup processes waiting on a socket buffer.
304 * Do asynchronous notification via SIGIO
305 * if the socket has the SS_ASYNC flag set.
306 */
307void
308sowakeup(so, sb)
309	register struct socket *so;
310	register struct sockbuf *sb;
311{
312	struct proc *p;
313
314	selwakeup(&sb->sb_sel);
315	sb->sb_flags &= ~SB_SEL;
316	if (sb->sb_flags & SB_WAIT) {
317		sb->sb_flags &= ~SB_WAIT;
318		wakeup((caddr_t)&sb->sb_cc);
319	}
320	if (so->so_state & SS_ASYNC) {
321		if (so->so_pgid < 0)
322			gsignal(-so->so_pgid, SIGIO);
323		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
324			psignal(p, SIGIO);
325	}
326	if (sb->sb_flags & SB_UPCALL)
327		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
328}
329
330/*
331 * Socket buffer (struct sockbuf) utility routines.
332 *
333 * Each socket contains two socket buffers: one for sending data and
334 * one for receiving data.  Each buffer contains a queue of mbufs,
335 * information about the number of mbufs and amount of data in the
336 * queue, and other fields allowing poll() statements and notification
337 * on data availability to be implemented.
338 *
339 * Data stored in a socket buffer is maintained as a list of records.
340 * Each record is a list of mbufs chained together with the m_next
341 * field.  Records are chained together with the m_nextpkt field. The upper
342 * level routine soreceive() expects the following conventions to be
343 * observed when placing information in the receive buffer:
344 *
345 * 1. If the protocol requires each message be preceded by the sender's
346 *    name, then a record containing that name must be present before
347 *    any associated data (mbuf's must be of type MT_SONAME).
348 * 2. If the protocol supports the exchange of ``access rights'' (really
349 *    just additional data associated with the message), and there are
350 *    ``rights'' to be received, then a record containing this data
351 *    should be present (mbuf's must be of type MT_CONTROL).
352 * 3. If a name or rights record exists, then it must be followed by
353 *    a data record, perhaps of zero length.
354 *
355 * Before using a new socket structure it is first necessary to reserve
356 * buffer space to the socket, by calling sbreserve().  This should commit
357 * some of the available buffer space in the system buffer pool for the
358 * socket (currently, it does nothing but enforce limits).  The space
359 * should be released by calling sbrelease() when the socket is destroyed.
360 */
361
362int
363soreserve(so, sndcc, rcvcc)
364	register struct socket *so;
365	u_long sndcc, rcvcc;
366{
367
368	if (sbreserve(&so->so_snd, sndcc) == 0)
369		goto bad;
370	if (sbreserve(&so->so_rcv, rcvcc) == 0)
371		goto bad2;
372	if (so->so_rcv.sb_lowat == 0)
373		so->so_rcv.sb_lowat = 1;
374	if (so->so_snd.sb_lowat == 0)
375		so->so_snd.sb_lowat = MCLBYTES;
376	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
377		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
378	return (0);
379bad2:
380	sbrelease(&so->so_snd);
381bad:
382	return (ENOBUFS);
383}
384
385/*
386 * Allot mbufs to a sockbuf.
387 * Attempt to scale mbmax so that mbcnt doesn't become limiting
388 * if buffering efficiency is near the normal case.
389 */
390int
391sbreserve(sb, cc)
392	struct sockbuf *sb;
393	u_long cc;
394{
395
396	if (cc == 0 || cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
397		return (0);
398	sb->sb_hiwat = cc;
399	sb->sb_mbmax = min(cc * 2, sb_max);
400	if (sb->sb_lowat > sb->sb_hiwat)
401		sb->sb_lowat = sb->sb_hiwat;
402	return (1);
403}
404
405/*
406 * Free mbufs held by a socket, and reserved mbuf space.
407 */
408void
409sbrelease(sb)
410	struct sockbuf *sb;
411{
412
413	sbflush(sb);
414	sb->sb_hiwat = sb->sb_mbmax = 0;
415}
416
417/*
418 * Routines to add and remove
419 * data from an mbuf queue.
420 *
421 * The routines sbappend() or sbappendrecord() are normally called to
422 * append new mbufs to a socket buffer, after checking that adequate
423 * space is available, comparing the function sbspace() with the amount
424 * of data to be added.  sbappendrecord() differs from sbappend() in
425 * that data supplied is treated as the beginning of a new record.
426 * To place a sender's address, optional access rights, and data in a
427 * socket receive buffer, sbappendaddr() should be used.  To place
428 * access rights and data in a socket receive buffer, sbappendrights()
429 * should be used.  In either case, the new data begins a new record.
430 * Note that unlike sbappend() and sbappendrecord(), these routines check
431 * for the caller that there will be enough space to store the data.
432 * Each fails if there is not enough space, or if it cannot find mbufs
433 * to store additional information in.
434 *
435 * Reliable protocols may use the socket send buffer to hold data
436 * awaiting acknowledgement.  Data is normally copied from a socket
437 * send buffer in a protocol with m_copy for output to a peer,
438 * and then removing the data from the socket buffer with sbdrop()
439 * or sbdroprecord() when the data is acknowledged by the peer.
440 */
441
442/*
443 * Append mbuf chain m to the last record in the
444 * socket buffer sb.  The additional space associated
445 * the mbuf chain is recorded in sb.  Empty mbufs are
446 * discarded and mbufs are compacted where possible.
447 */
448void
449sbappend(sb, m)
450	struct sockbuf *sb;
451	struct mbuf *m;
452{
453	register struct mbuf *n;
454
455	if (m == 0)
456		return;
457	if ((n = sb->sb_mb) != NULL) {
458		while (n->m_nextpkt)
459			n = n->m_nextpkt;
460		do {
461			if (n->m_flags & M_EOR) {
462				sbappendrecord(sb, m); /* XXXXXX!!!! */
463				return;
464			}
465		} while (n->m_next && (n = n->m_next));
466	}
467	sbcompress(sb, m, n);
468}
469
470#ifdef SOCKBUF_DEBUG
471void
472sbcheck(sb)
473	register struct sockbuf *sb;
474{
475	register struct mbuf *m;
476	register int len = 0, mbcnt = 0;
477
478	for (m = sb->sb_mb; m; m = m->m_next) {
479		len += m->m_len;
480		mbcnt += MSIZE;
481		if (m->m_flags & M_EXT)
482			mbcnt += m->m_ext.ext_size;
483		if (m->m_nextpkt)
484			panic("sbcheck nextpkt");
485	}
486	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
487		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
488		    mbcnt, sb->sb_mbcnt);
489		panic("sbcheck");
490	}
491}
492#endif
493
494/*
495 * As above, except the mbuf chain
496 * begins a new record.
497 */
498void
499sbappendrecord(sb, m0)
500	register struct sockbuf *sb;
501	register struct mbuf *m0;
502{
503	register struct mbuf *m;
504
505	if (m0 == 0)
506		return;
507	if ((m = sb->sb_mb) != NULL)
508		while (m->m_nextpkt)
509			m = m->m_nextpkt;
510	/*
511	 * Put the first mbuf on the queue.
512	 * Note this permits zero length records.
513	 */
514	sballoc(sb, m0);
515	if (m)
516		m->m_nextpkt = m0;
517	else
518		sb->sb_mb = m0;
519	m = m0->m_next;
520	m0->m_next = 0;
521	if (m && (m0->m_flags & M_EOR)) {
522		m0->m_flags &= ~M_EOR;
523		m->m_flags |= M_EOR;
524	}
525	sbcompress(sb, m, m0);
526}
527
528/*
529 * As above except that OOB data
530 * is inserted at the beginning of the sockbuf,
531 * but after any other OOB data.
532 */
533void
534sbinsertoob(sb, m0)
535	register struct sockbuf *sb;
536	register struct mbuf *m0;
537{
538	register struct mbuf *m;
539	register struct mbuf **mp;
540
541	if (m0 == 0)
542		return;
543	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
544	    again:
545		switch (m->m_type) {
546
547		case MT_OOBDATA:
548			continue;		/* WANT next train */
549
550		case MT_CONTROL:
551			if ((m = m->m_next) != NULL)
552				goto again;	/* inspect THIS train further */
553		}
554		break;
555	}
556	/*
557	 * Put the first mbuf on the queue.
558	 * Note this permits zero length records.
559	 */
560	sballoc(sb, m0);
561	m0->m_nextpkt = *mp;
562	*mp = m0;
563	m = m0->m_next;
564	m0->m_next = 0;
565	if (m && (m0->m_flags & M_EOR)) {
566		m0->m_flags &= ~M_EOR;
567		m->m_flags |= M_EOR;
568	}
569	sbcompress(sb, m, m0);
570}
571
572/*
573 * Append address and data, and optionally, control (ancillary) data
574 * to the receive queue of a socket.  If present,
575 * m0 must include a packet header with total length.
576 * Returns 0 if no space in sockbuf or insufficient mbufs.
577 */
578int
579sbappendaddr(sb, asa, m0, control)
580	register struct sockbuf *sb;
581	struct sockaddr *asa;
582	struct mbuf *m0, *control;
583{
584	register struct mbuf *m, *n;
585	int space = asa->sa_len;
586
587if (m0 && (m0->m_flags & M_PKTHDR) == 0)
588panic("sbappendaddr");
589	if (m0)
590		space += m0->m_pkthdr.len;
591	for (n = control; n; n = n->m_next) {
592		space += n->m_len;
593		if (n->m_next == 0)	/* keep pointer to last control buf */
594			break;
595	}
596	if (space > sbspace(sb))
597		return (0);
598	MGET(m, M_DONTWAIT, MT_SONAME);
599	if (m == 0)
600		return (0);
601	if (asa->sa_len > MLEN) {
602		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
603		if ((m->m_flags & M_EXT) == 0) {
604			m_free(m);
605			return (0);
606		}
607	}
608	m->m_len = asa->sa_len;
609	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
610	if (n)
611		n->m_next = m0;		/* concatenate data to control */
612	else
613		control = m0;
614	m->m_next = control;
615	for (n = m; n; n = n->m_next)
616		sballoc(sb, n);
617	if ((n = sb->sb_mb) != NULL) {
618		while (n->m_nextpkt)
619			n = n->m_nextpkt;
620		n->m_nextpkt = m;
621	} else
622		sb->sb_mb = m;
623	return (1);
624}
625
626int
627sbappendcontrol(sb, m0, control)
628	struct sockbuf *sb;
629	struct mbuf *m0, *control;
630{
631	register struct mbuf *m, *n;
632	int space = 0;
633
634	if (control == 0)
635		panic("sbappendcontrol");
636	for (m = control; ; m = m->m_next) {
637		space += m->m_len;
638		if (m->m_next == 0)
639			break;
640	}
641	n = m;			/* save pointer to last control buffer */
642	for (m = m0; m; m = m->m_next)
643		space += m->m_len;
644	if (space > sbspace(sb))
645		return (0);
646	n->m_next = m0;			/* concatenate data to control */
647	for (m = control; m; m = m->m_next)
648		sballoc(sb, m);
649	if ((n = sb->sb_mb) != NULL) {
650		while (n->m_nextpkt)
651			n = n->m_nextpkt;
652		n->m_nextpkt = control;
653	} else
654		sb->sb_mb = control;
655	return (1);
656}
657
658/*
659 * Compress mbuf chain m into the socket
660 * buffer sb following mbuf n.  If n
661 * is null, the buffer is presumed empty.
662 */
663void
664sbcompress(sb, m, n)
665	register struct sockbuf *sb;
666	register struct mbuf *m, *n;
667{
668	register int eor = 0;
669	register struct mbuf *o;
670
671	while (m) {
672		eor |= m->m_flags & M_EOR;
673		if (m->m_len == 0 &&
674		    (eor == 0 ||
675		     (((o = m->m_next) || (o = n)) &&
676		      o->m_type == m->m_type))) {
677			m = m_free(m);
678			continue;
679		}
680		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
681		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
682		    n->m_type == m->m_type) {
683			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
684			    (unsigned)m->m_len);
685			n->m_len += m->m_len;
686			sb->sb_cc += m->m_len;
687			m = m_free(m);
688			continue;
689		}
690		if (n)
691			n->m_next = m;
692		else
693			sb->sb_mb = m;
694		sballoc(sb, m);
695		n = m;
696		m->m_flags &= ~M_EOR;
697		m = m->m_next;
698		n->m_next = 0;
699	}
700	if (eor) {
701		if (n)
702			n->m_flags |= eor;
703		else
704			printf("semi-panic: sbcompress\n");
705	}
706}
707
708/*
709 * Free all mbufs in a sockbuf.
710 * Check that all resources are reclaimed.
711 */
712void
713sbflush(sb)
714	register struct sockbuf *sb;
715{
716
717	if (sb->sb_flags & SB_LOCK)
718		panic("sbflush");
719	while (sb->sb_mbcnt)
720		sbdrop(sb, (int)sb->sb_cc);
721	if (sb->sb_cc || sb->sb_mb)
722		panic("sbflush 2");
723}
724
725/*
726 * Drop data from (the front of) a sockbuf.
727 */
728void
729sbdrop(sb, len)
730	register struct sockbuf *sb;
731	register int len;
732{
733	register struct mbuf *m, *mn;
734	struct mbuf *next;
735
736	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
737	while (len > 0) {
738		if (m == 0) {
739			if (next == 0)
740				panic("sbdrop");
741			m = next;
742			next = m->m_nextpkt;
743			continue;
744		}
745		if (m->m_len > len) {
746			m->m_len -= len;
747			m->m_data += len;
748			sb->sb_cc -= len;
749			break;
750		}
751		len -= m->m_len;
752		sbfree(sb, m);
753		MFREE(m, mn);
754		m = mn;
755	}
756	while (m && m->m_len == 0) {
757		sbfree(sb, m);
758		MFREE(m, mn);
759		m = mn;
760	}
761	if (m) {
762		sb->sb_mb = m;
763		m->m_nextpkt = next;
764	} else
765		sb->sb_mb = next;
766}
767
768/*
769 * Drop a record off the front of a sockbuf
770 * and move the next record to the front.
771 */
772void
773sbdroprecord(sb)
774	register struct sockbuf *sb;
775{
776	register struct mbuf *m, *mn;
777
778	m = sb->sb_mb;
779	if (m) {
780		sb->sb_mb = m->m_nextpkt;
781		do {
782			sbfree(sb, m);
783			MFREE(m, mn);
784		} while ((m = mn) != NULL);
785	}
786}
787
788/*
789 * Create a "control" mbuf containing the specified data
790 * with the specified type for presentation on a socket buffer.
791 */
792struct mbuf *
793sbcreatecontrol(p, size, type, level)
794	caddr_t p;
795	register int size;
796	int type, level;
797{
798	register struct cmsghdr *cp;
799	struct mbuf *m;
800
801	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
802		return ((struct mbuf *) NULL);
803	cp = mtod(m, struct cmsghdr *);
804	memcpy(CMSG_DATA(cp), p, size);
805	size += sizeof(*cp);
806	m->m_len = size;
807	cp->cmsg_len = size;
808	cp->cmsg_level = level;
809	cp->cmsg_type = type;
810	return (m);
811}
812