uipc_socket2.c revision 1.2
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)uipc_socket2.c	7.17 (Berkeley) 5/4/91
34 *
35 * PATCHES MAGIC                LEVEL   PATCH THAT GOT US HERE
36 * --------------------         -----   ----------------------
37 * CURRENT PATCH LEVEL:         1       00061
38 * --------------------         -----   ----------------------
39 *
40 * 11 Dec 92	Williams Jolitz		Fixed tty handling
41 */
42
43#include "param.h"
44#include "systm.h"
45#include "proc.h"
46#include "file.h"
47#include "buf.h"
48#include "malloc.h"
49#include "mbuf.h"
50#include "protosw.h"
51#include "socket.h"
52#include "socketvar.h"
53
54/*
55 * Primitive routines for operating on sockets and socket buffers
56 */
57
58/* strings for sleep message: */
59char	netio[] = "netio";
60char	netcon[] = "netcon";
61char	netcls[] = "netcls";
62
63u_long	sb_max = SB_MAX;		/* patchable */
64
65/*
66 * Procedures to manipulate state flags of socket
67 * and do appropriate wakeups.  Normal sequence from the
68 * active (originating) side is that soisconnecting() is
69 * called during processing of connect() call,
70 * resulting in an eventual call to soisconnected() if/when the
71 * connection is established.  When the connection is torn down
72 * soisdisconnecting() is called during processing of disconnect() call,
73 * and soisdisconnected() is called when the connection to the peer
74 * is totally severed.  The semantics of these routines are such that
75 * connectionless protocols can call soisconnected() and soisdisconnected()
76 * only, bypassing the in-progress calls when setting up a ``connection''
77 * takes no time.
78 *
79 * From the passive side, a socket is created with
80 * two queues of sockets: so_q0 for connections in progress
81 * and so_q for connections already made and awaiting user acceptance.
82 * As a protocol is preparing incoming connections, it creates a socket
83 * structure queued on so_q0 by calling sonewconn().  When the connection
84 * is established, soisconnected() is called, and transfers the
85 * socket structure to so_q, making it available to accept().
86 *
87 * If a socket is closed with sockets on either
88 * so_q0 or so_q, these sockets are dropped.
89 *
90 * If higher level protocols are implemented in
91 * the kernel, the wakeups done here will sometimes
92 * cause software-interrupt process scheduling.
93 */
94
95soisconnecting(so)
96	register struct socket *so;
97{
98
99	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
100	so->so_state |= SS_ISCONNECTING;
101}
102
103soisconnected(so)
104	register struct socket *so;
105{
106	register struct socket *head = so->so_head;
107
108	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
109	so->so_state |= SS_ISCONNECTED;
110	if (head && soqremque(so, 0)) {
111		soqinsque(head, so, 1);
112		sorwakeup(head);
113		wakeup((caddr_t)&head->so_timeo);
114	} else {
115		wakeup((caddr_t)&so->so_timeo);
116		sorwakeup(so);
117		sowwakeup(so);
118	}
119}
120
121soisdisconnecting(so)
122	register struct socket *so;
123{
124
125	so->so_state &= ~SS_ISCONNECTING;
126	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
127	wakeup((caddr_t)&so->so_timeo);
128	sowwakeup(so);
129	sorwakeup(so);
130}
131
132soisdisconnected(so)
133	register struct socket *so;
134{
135
136	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
137	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
138	wakeup((caddr_t)&so->so_timeo);
139	sowwakeup(so);
140	sorwakeup(so);
141}
142
143/*
144 * When an attempt at a new connection is noted on a socket
145 * which accepts connections, sonewconn is called.  If the
146 * connection is possible (subject to space constraints, etc.)
147 * then we allocate a new structure, propoerly linked into the
148 * data structure of the original socket, and return this.
149 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
150 *
151 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
152 * to catch calls that are missing the (new) second parameter.
153 */
154struct socket *
155sonewconn1(head, connstatus)
156	register struct socket *head;
157	int connstatus;
158{
159	register struct socket *so;
160	int soqueue = connstatus ? 1 : 0;
161
162	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
163		return ((struct socket *)0);
164	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
165	if (so == NULL)
166		return ((struct socket *)0);
167	bzero((caddr_t)so, sizeof(*so));
168	so->so_type = head->so_type;
169	so->so_options = head->so_options &~ SO_ACCEPTCONN;
170	so->so_linger = head->so_linger;
171	so->so_state = head->so_state | SS_NOFDREF;
172	so->so_proto = head->so_proto;
173	so->so_timeo = head->so_timeo;
174	so->so_pgid = head->so_pgid;
175	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
176	soqinsque(head, so, soqueue);
177	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
178	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
179		(void) soqremque(so, soqueue);
180		(void) free((caddr_t)so, M_SOCKET);
181		return ((struct socket *)0);
182	}
183	if (connstatus) {
184		sorwakeup(head);
185		wakeup((caddr_t)&head->so_timeo);
186		so->so_state |= connstatus;
187	}
188	return (so);
189}
190
191soqinsque(head, so, q)
192	register struct socket *head, *so;
193	int q;
194{
195
196	register struct socket **prev;
197	so->so_head = head;
198	if (q == 0) {
199		head->so_q0len++;
200		so->so_q0 = 0;
201		for (prev = &(head->so_q0); *prev; )
202			prev = &((*prev)->so_q0);
203	} else {
204		head->so_qlen++;
205		so->so_q = 0;
206		for (prev = &(head->so_q); *prev; )
207			prev = &((*prev)->so_q);
208	}
209	*prev = so;
210}
211
212soqremque(so, q)
213	register struct socket *so;
214	int q;
215{
216	register struct socket *head, *prev, *next;
217
218	head = so->so_head;
219	prev = head;
220	for (;;) {
221		next = q ? prev->so_q : prev->so_q0;
222		if (next == so)
223			break;
224		if (next == 0)
225			return (0);
226		prev = next;
227	}
228	if (q == 0) {
229		prev->so_q0 = next->so_q0;
230		head->so_q0len--;
231	} else {
232		prev->so_q = next->so_q;
233		head->so_qlen--;
234	}
235	next->so_q0 = next->so_q = 0;
236	next->so_head = 0;
237	return (1);
238}
239
240/*
241 * Socantsendmore indicates that no more data will be sent on the
242 * socket; it would normally be applied to a socket when the user
243 * informs the system that no more data is to be sent, by the protocol
244 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
245 * will be received, and will normally be applied to the socket by a
246 * protocol when it detects that the peer will send no more data.
247 * Data queued for reading in the socket may yet be read.
248 */
249
250socantsendmore(so)
251	struct socket *so;
252{
253
254	so->so_state |= SS_CANTSENDMORE;
255	sowwakeup(so);
256}
257
258socantrcvmore(so)
259	struct socket *so;
260{
261
262	so->so_state |= SS_CANTRCVMORE;
263	sorwakeup(so);
264}
265
266/*
267 * Socket select/wakeup routines.
268 */
269
270/*
271 * Queue a process for a select on a socket buffer.
272 */
273sbselqueue(sb, cp)
274	struct sockbuf *sb;
275	struct proc *cp;
276{
277	struct proc *p;
278
279	if (sb->sb_sel && (p = pfind(sb->sb_sel)) && p->p_wchan == (caddr_t)&selwait)
280		sb->sb_flags |= SB_COLL;
281	else {
282		sb->sb_sel = cp->p_pid;
283		sb->sb_flags |= SB_SEL;
284	}
285}
286
287/*
288 * Wait for data to arrive at/drain from a socket buffer.
289 */
290sbwait(sb)
291	struct sockbuf *sb;
292{
293
294	sb->sb_flags |= SB_WAIT;
295	return (tsleep((caddr_t)&sb->sb_cc,
296	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
297	    sb->sb_timeo));
298}
299
300/*
301 * Lock a sockbuf already known to be locked;
302 * return any error returned from sleep (EINTR).
303 */
304sb_lock(sb)
305	register struct sockbuf *sb;
306{
307	int error;
308
309	while (sb->sb_flags & SB_LOCK) {
310		sb->sb_flags |= SB_WANT;
311		if (error = tsleep((caddr_t)&sb->sb_flags,
312		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
313		    netio, 0))
314			return (error);
315	}
316	sb->sb_flags |= SB_LOCK;
317	return (0);
318}
319
320/*
321 * Wakeup processes waiting on a socket buffer.
322 * Do asynchronous notification via SIGIO
323 * if the socket has the SS_ASYNC flag set.
324 */
325sowakeup(so, sb)
326	register struct socket *so;
327	register struct sockbuf *sb;
328{
329	struct proc *p;
330
331	if (sb->sb_sel) {
332		selwakeup(sb->sb_sel, sb->sb_flags & SB_COLL);
333		sb->sb_sel = 0;
334		sb->sb_flags &= ~(SB_SEL|SB_COLL);
335	}
336	if (sb->sb_flags & SB_WAIT) {
337		sb->sb_flags &= ~SB_WAIT;
338		wakeup((caddr_t)&sb->sb_cc);
339	}
340	if (so->so_state & SS_ASYNC) {
341		if (so->so_pgid < 0)
342			gsignal(-so->so_pgid, SIGIO);
343		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
344			psignal(p, SIGIO);
345	}
346}
347
348/*
349 * Socket buffer (struct sockbuf) utility routines.
350 *
351 * Each socket contains two socket buffers: one for sending data and
352 * one for receiving data.  Each buffer contains a queue of mbufs,
353 * information about the number of mbufs and amount of data in the
354 * queue, and other fields allowing select() statements and notification
355 * on data availability to be implemented.
356 *
357 * Data stored in a socket buffer is maintained as a list of records.
358 * Each record is a list of mbufs chained together with the m_next
359 * field.  Records are chained together with the m_nextpkt field. The upper
360 * level routine soreceive() expects the following conventions to be
361 * observed when placing information in the receive buffer:
362 *
363 * 1. If the protocol requires each message be preceded by the sender's
364 *    name, then a record containing that name must be present before
365 *    any associated data (mbuf's must be of type MT_SONAME).
366 * 2. If the protocol supports the exchange of ``access rights'' (really
367 *    just additional data associated with the message), and there are
368 *    ``rights'' to be received, then a record containing this data
369 *    should be present (mbuf's must be of type MT_RIGHTS).
370 * 3. If a name or rights record exists, then it must be followed by
371 *    a data record, perhaps of zero length.
372 *
373 * Before using a new socket structure it is first necessary to reserve
374 * buffer space to the socket, by calling sbreserve().  This should commit
375 * some of the available buffer space in the system buffer pool for the
376 * socket (currently, it does nothing but enforce limits).  The space
377 * should be released by calling sbrelease() when the socket is destroyed.
378 */
379
380soreserve(so, sndcc, rcvcc)
381	register struct socket *so;
382	u_long sndcc, rcvcc;
383{
384
385	if (sbreserve(&so->so_snd, sndcc) == 0)
386		goto bad;
387	if (sbreserve(&so->so_rcv, rcvcc) == 0)
388		goto bad2;
389	if (so->so_rcv.sb_lowat == 0)
390		so->so_rcv.sb_lowat = 1;
391	if (so->so_snd.sb_lowat == 0)
392		so->so_snd.sb_lowat = MCLBYTES;
393	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
394		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
395	return (0);
396bad2:
397	sbrelease(&so->so_snd);
398bad:
399	return (ENOBUFS);
400}
401
402/*
403 * Allot mbufs to a sockbuf.
404 * Attempt to scale mbmax so that mbcnt doesn't become limiting
405 * if buffering efficiency is near the normal case.
406 */
407sbreserve(sb, cc)
408	struct sockbuf *sb;
409	u_long cc;
410{
411
412	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
413		return (0);
414	sb->sb_hiwat = cc;
415	sb->sb_mbmax = min(cc * 2, sb_max);
416	if (sb->sb_lowat > sb->sb_hiwat)
417		sb->sb_lowat = sb->sb_hiwat;
418	return (1);
419}
420
421/*
422 * Free mbufs held by a socket, and reserved mbuf space.
423 */
424sbrelease(sb)
425	struct sockbuf *sb;
426{
427
428	sbflush(sb);
429	sb->sb_hiwat = sb->sb_mbmax = 0;
430}
431
432/*
433 * Routines to add and remove
434 * data from an mbuf queue.
435 *
436 * The routines sbappend() or sbappendrecord() are normally called to
437 * append new mbufs to a socket buffer, after checking that adequate
438 * space is available, comparing the function sbspace() with the amount
439 * of data to be added.  sbappendrecord() differs from sbappend() in
440 * that data supplied is treated as the beginning of a new record.
441 * To place a sender's address, optional access rights, and data in a
442 * socket receive buffer, sbappendaddr() should be used.  To place
443 * access rights and data in a socket receive buffer, sbappendrights()
444 * should be used.  In either case, the new data begins a new record.
445 * Note that unlike sbappend() and sbappendrecord(), these routines check
446 * for the caller that there will be enough space to store the data.
447 * Each fails if there is not enough space, or if it cannot find mbufs
448 * to store additional information in.
449 *
450 * Reliable protocols may use the socket send buffer to hold data
451 * awaiting acknowledgement.  Data is normally copied from a socket
452 * send buffer in a protocol with m_copy for output to a peer,
453 * and then removing the data from the socket buffer with sbdrop()
454 * or sbdroprecord() when the data is acknowledged by the peer.
455 */
456
457/*
458 * Append mbuf chain m to the last record in the
459 * socket buffer sb.  The additional space associated
460 * the mbuf chain is recorded in sb.  Empty mbufs are
461 * discarded and mbufs are compacted where possible.
462 */
463sbappend(sb, m)
464	struct sockbuf *sb;
465	struct mbuf *m;
466{
467	register struct mbuf *n;
468
469	if (m == 0)
470		return;
471	if (n = sb->sb_mb) {
472		while (n->m_nextpkt)
473			n = n->m_nextpkt;
474		do {
475			if (n->m_flags & M_EOR) {
476				sbappendrecord(sb, m); /* XXXXXX!!!! */
477				return;
478			}
479		} while (n->m_next && (n = n->m_next));
480	}
481	sbcompress(sb, m, n);
482}
483
484#ifdef SOCKBUF_DEBUG
485sbcheck(sb)
486	register struct sockbuf *sb;
487{
488	register struct mbuf *m;
489	register int len = 0, mbcnt = 0;
490
491	for (m = sb->sb_mb; m; m = m->m_next) {
492		len += m->m_len;
493		mbcnt += MSIZE;
494		if (m->m_flags & M_EXT)
495			mbcnt += m->m_ext.ext_size;
496		if (m->m_nextpkt)
497			panic("sbcheck nextpkt");
498	}
499	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
500		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
501		    mbcnt, sb->sb_mbcnt);
502		panic("sbcheck");
503	}
504}
505#endif
506
507/*
508 * As above, except the mbuf chain
509 * begins a new record.
510 */
511sbappendrecord(sb, m0)
512	register struct sockbuf *sb;
513	register struct mbuf *m0;
514{
515	register struct mbuf *m;
516
517	if (m0 == 0)
518		return;
519	if (m = sb->sb_mb)
520		while (m->m_nextpkt)
521			m = m->m_nextpkt;
522	/*
523	 * Put the first mbuf on the queue.
524	 * Note this permits zero length records.
525	 */
526	sballoc(sb, m0);
527	if (m)
528		m->m_nextpkt = m0;
529	else
530		sb->sb_mb = m0;
531	m = m0->m_next;
532	m0->m_next = 0;
533	if (m && (m0->m_flags & M_EOR)) {
534		m0->m_flags &= ~M_EOR;
535		m->m_flags |= M_EOR;
536	}
537	sbcompress(sb, m, m0);
538}
539
540/*
541 * As above except that OOB data
542 * is inserted at the beginning of the sockbuf,
543 * but after any other OOB data.
544 */
545sbinsertoob(sb, m0)
546	register struct sockbuf *sb;
547	register struct mbuf *m0;
548{
549	register struct mbuf *m;
550	register struct mbuf **mp;
551
552	if (m0 == 0)
553		return;
554	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
555	    again:
556		switch (m->m_type) {
557
558		case MT_OOBDATA:
559			continue;		/* WANT next train */
560
561		case MT_CONTROL:
562			if (m = m->m_next)
563				goto again;	/* inspect THIS train further */
564		}
565		break;
566	}
567	/*
568	 * Put the first mbuf on the queue.
569	 * Note this permits zero length records.
570	 */
571	sballoc(sb, m0);
572	m0->m_nextpkt = *mp;
573	*mp = m0;
574	m = m0->m_next;
575	m0->m_next = 0;
576	if (m && (m0->m_flags & M_EOR)) {
577		m0->m_flags &= ~M_EOR;
578		m->m_flags |= M_EOR;
579	}
580	sbcompress(sb, m, m0);
581}
582
583/*
584 * Append address and data, and optionally, control (ancillary) data
585 * to the receive queue of a socket.  If present,
586 * m0 must include a packet header with total length.
587 * Returns 0 if no space in sockbuf or insufficient mbufs.
588 */
589sbappendaddr(sb, asa, m0, control)
590	register struct sockbuf *sb;
591	struct sockaddr *asa;
592	struct mbuf *m0, *control;
593{
594	register struct mbuf *m, *n;
595	int space = asa->sa_len;
596
597if (m0 && (m0->m_flags & M_PKTHDR) == 0)
598panic("sbappendaddr");
599	if (m0)
600		space += m0->m_pkthdr.len;
601	for (n = control; n; n = n->m_next) {
602		space += n->m_len;
603		if (n->m_next == 0)	/* keep pointer to last control buf */
604			break;
605	}
606	if (space > sbspace(sb))
607		return (0);
608	if (asa->sa_len > MLEN)
609		return (0);
610	MGET(m, M_DONTWAIT, MT_SONAME);
611	if (m == 0)
612		return (0);
613	m->m_len = asa->sa_len;
614	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
615	if (n)
616		n->m_next = m0;		/* concatenate data to control */
617	else
618		control = m0;
619	m->m_next = control;
620	for (n = m; n; n = n->m_next)
621		sballoc(sb, n);
622	if (n = sb->sb_mb) {
623		while (n->m_nextpkt)
624			n = n->m_nextpkt;
625		n->m_nextpkt = m;
626	} else
627		sb->sb_mb = m;
628	return (1);
629}
630
631sbappendcontrol(sb, m0, control)
632	struct sockbuf *sb;
633	struct mbuf *control, *m0;
634{
635	register struct mbuf *m, *n;
636	int space = 0;
637
638	if (control == 0)
639		panic("sbappendcontrol");
640	for (m = control; ; m = m->m_next) {
641		space += m->m_len;
642		if (m->m_next == 0)
643			break;
644	}
645	n = m;			/* save pointer to last control buffer */
646	for (m = m0; m; m = m->m_next)
647		space += m->m_len;
648	if (space > sbspace(sb))
649		return (0);
650	n->m_next = m0;			/* concatenate data to control */
651	for (m = control; m; m = m->m_next)
652		sballoc(sb, m);
653	if (n = sb->sb_mb) {
654		while (n->m_nextpkt)
655			n = n->m_nextpkt;
656		n->m_nextpkt = control;
657	} else
658		sb->sb_mb = control;
659	return (1);
660}
661
662/*
663 * Compress mbuf chain m into the socket
664 * buffer sb following mbuf n.  If n
665 * is null, the buffer is presumed empty.
666 */
667sbcompress(sb, m, n)
668	register struct sockbuf *sb;
669	register struct mbuf *m, *n;
670{
671	register int eor = 0;
672	register struct mbuf *o;
673
674	while (m) {
675		eor |= m->m_flags & M_EOR;
676		if (m->m_len == 0 &&
677		    (eor == 0 ||
678		     (((o = m->m_next) || (o = n)) &&
679		      o->m_type == m->m_type))) {
680			m = m_free(m);
681			continue;
682		}
683		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
684		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
685		    n->m_type == m->m_type) {
686			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
687			    (unsigned)m->m_len);
688			n->m_len += m->m_len;
689			sb->sb_cc += m->m_len;
690			m = m_free(m);
691			continue;
692		}
693		if (n)
694			n->m_next = m;
695		else
696			sb->sb_mb = m;
697		sballoc(sb, m);
698		n = m;
699		m->m_flags &= ~M_EOR;
700		m = m->m_next;
701		n->m_next = 0;
702	}
703	if (eor) {
704		if (n)
705			n->m_flags |= eor;
706		else
707			printf("semi-panic: sbcompress\n");
708	}
709}
710
711/*
712 * Free all mbufs in a sockbuf.
713 * Check that all resources are reclaimed.
714 */
715sbflush(sb)
716	register struct sockbuf *sb;
717{
718
719	if (sb->sb_flags & SB_LOCK)
720		panic("sbflush");
721	while (sb->sb_mbcnt)
722		sbdrop(sb, (int)sb->sb_cc);
723	if (sb->sb_cc || sb->sb_mb)
724		panic("sbflush 2");
725}
726
727/*
728 * Drop data from (the front of) a sockbuf.
729 */
730sbdrop(sb, len)
731	register struct sockbuf *sb;
732	register int len;
733{
734	register struct mbuf *m, *mn;
735	struct mbuf *next;
736
737	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
738	while (len > 0) {
739		if (m == 0) {
740			if (next == 0)
741				panic("sbdrop");
742			m = next;
743			next = m->m_nextpkt;
744			continue;
745		}
746		if (m->m_len > len) {
747			m->m_len -= len;
748			m->m_data += len;
749			sb->sb_cc -= len;
750			break;
751		}
752		len -= m->m_len;
753		sbfree(sb, m);
754		MFREE(m, mn);
755		m = mn;
756	}
757	while (m && m->m_len == 0) {
758		sbfree(sb, m);
759		MFREE(m, mn);
760		m = mn;
761	}
762	if (m) {
763		sb->sb_mb = m;
764		m->m_nextpkt = next;
765	} else
766		sb->sb_mb = next;
767}
768
769/*
770 * Drop a record off the front of a sockbuf
771 * and move the next record to the front.
772 */
773sbdroprecord(sb)
774	register struct sockbuf *sb;
775{
776	register struct mbuf *m, *mn;
777
778	m = sb->sb_mb;
779	if (m) {
780		sb->sb_mb = m->m_nextpkt;
781		do {
782			sbfree(sb, m);
783			MFREE(m, mn);
784		} while (m = mn);
785	}
786}
787