uipc_socket2.c revision 1.141
1/*	$NetBSD: uipc_socket2.c,v 1.141 2022/04/09 23:52:23 riastradh Exp $	*/
2
3/*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 *    may be used to endorse or promote products derived from this software
43 *    without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58 */
59
60#include <sys/cdefs.h>
61__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.141 2022/04/09 23:52:23 riastradh Exp $");
62
63#ifdef _KERNEL_OPT
64#include "opt_ddb.h"
65#include "opt_inet.h"
66#include "opt_mbuftrace.h"
67#include "opt_sb_max.h"
68#endif
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/proc.h>
73#include <sys/file.h>
74#include <sys/buf.h>
75#include <sys/mbuf.h>
76#include <sys/protosw.h>
77#include <sys/domain.h>
78#include <sys/poll.h>
79#include <sys/socket.h>
80#include <sys/socketvar.h>
81#include <sys/signalvar.h>
82#include <sys/kauth.h>
83#include <sys/pool.h>
84#include <sys/uidinfo.h>
85
86#ifdef DDB
87#include <sys/filedesc.h>
88#endif
89
90/*
91 * Primitive routines for operating on sockets and socket buffers.
92 *
93 * Connection life-cycle:
94 *
95 *	Normal sequence from the active (originating) side:
96 *
97 *	- soisconnecting() is called during processing of connect() call,
98 *	- resulting in an eventual call to soisconnected() if/when the
99 *	  connection is established.
100 *
101 *	When the connection is torn down during processing of disconnect():
102 *
103 *	- soisdisconnecting() is called and,
104 *	- soisdisconnected() is called when the connection to the peer
105 *	  is totally severed.
106 *
107 *	The semantics of these routines are such that connectionless protocols
108 *	can call soisconnected() and soisdisconnected() only, bypassing the
109 *	in-progress calls when setting up a ``connection'' takes no time.
110 *
111 *	From the passive side, a socket is created with two queues of sockets:
112 *
113 *	- so_q0 (0) for partial connections (i.e. connections in progress)
114 *	- so_q (1) for connections already made and awaiting user acceptance.
115 *
116 *	As a protocol is preparing incoming connections, it creates a socket
117 *	structure queued on so_q0 by calling sonewconn().  When the connection
118 *	is established, soisconnected() is called, and transfers the
119 *	socket structure to so_q, making it available to accept().
120 *
121 *	If a socket is closed with sockets on either so_q0 or so_q, these
122 *	sockets are dropped.
123 *
124 * Locking rules and assumptions:
125 *
126 * o socket::so_lock can change on the fly.  The low level routines used
127 *   to lock sockets are aware of this.  When so_lock is acquired, the
128 *   routine locking must check to see if so_lock still points to the
129 *   lock that was acquired.  If so_lock has changed in the meantime, the
130 *   now irrelevant lock that was acquired must be dropped and the lock
131 *   operation retried.  Although not proven here, this is completely safe
132 *   on a multiprocessor system, even with relaxed memory ordering, given
133 *   the next two rules:
134 *
135 * o In order to mutate so_lock, the lock pointed to by the current value
136 *   of so_lock must be held: i.e., the socket must be held locked by the
137 *   changing thread.  The thread must issue membar_release() to prevent
138 *   memory accesses being reordered, and can set so_lock to the desired
139 *   value.  If the lock pointed to by the new value of so_lock is not
140 *   held by the changing thread, the socket must then be considered
141 *   unlocked.
142 *
143 * o If so_lock is mutated, and the previous lock referred to by so_lock
144 *   could still be visible to other threads in the system (e.g. via file
145 *   descriptor or protocol-internal reference), then the old lock must
146 *   remain valid until the socket and/or protocol control block has been
147 *   torn down.
148 *
149 * o If a socket has a non-NULL so_head value (i.e. is in the process of
150 *   connecting), then locking the socket must also lock the socket pointed
151 *   to by so_head: their lock pointers must match.
152 *
153 * o If a socket has connections in progress (so_q, so_q0 not empty) then
154 *   locking the socket must also lock the sockets attached to both queues.
155 *   Again, their lock pointers must match.
156 *
157 * o Beyond the initial lock assignment in socreate(), assigning locks to
158 *   sockets is the responsibility of the individual protocols / protocol
159 *   domains.
160 */
161
162static pool_cache_t	socket_cache;
163u_long			sb_max = SB_MAX;/* maximum socket buffer size */
164static u_long		sb_max_adj;	/* adjusted sb_max */
165
166void
167soisconnecting(struct socket *so)
168{
169
170	KASSERT(solocked(so));
171
172	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
173	so->so_state |= SS_ISCONNECTING;
174}
175
176void
177soisconnected(struct socket *so)
178{
179	struct socket	*head;
180
181	head = so->so_head;
182
183	KASSERT(solocked(so));
184	KASSERT(head == NULL || solocked2(so, head));
185
186	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
187	so->so_state |= SS_ISCONNECTED;
188	if (head && so->so_onq == &head->so_q0) {
189		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
190			/*
191			 * Re-enqueue and wake up any waiters, e.g.
192			 * processes blocking on accept().
193			 */
194			soqremque(so, 0);
195			soqinsque(head, so, 1);
196			sorwakeup(head);
197			cv_broadcast(&head->so_cv);
198		} else {
199			so->so_upcall =
200			    head->so_accf->so_accept_filter->accf_callback;
201			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
202			so->so_rcv.sb_flags |= SB_UPCALL;
203			so->so_options &= ~SO_ACCEPTFILTER;
204			(*so->so_upcall)(so, so->so_upcallarg,
205					 POLLIN|POLLRDNORM, M_DONTWAIT);
206		}
207	} else {
208		cv_broadcast(&so->so_cv);
209		sorwakeup(so);
210		sowwakeup(so);
211	}
212}
213
214void
215soisdisconnecting(struct socket *so)
216{
217
218	KASSERT(solocked(so));
219
220	so->so_state &= ~SS_ISCONNECTING;
221	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
222	cv_broadcast(&so->so_cv);
223	sowwakeup(so);
224	sorwakeup(so);
225}
226
227void
228soisdisconnected(struct socket *so)
229{
230
231	KASSERT(solocked(so));
232
233	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
234	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
235	cv_broadcast(&so->so_cv);
236	sowwakeup(so);
237	sorwakeup(so);
238}
239
240void
241soinit2(void)
242{
243
244	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
245	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
246}
247
248/*
249 * sonewconn: accept a new connection.
250 *
251 * When an attempt at a new connection is noted on a socket which accepts
252 * connections, sonewconn(9) is called.  If the connection is possible
253 * (subject to space constraints, etc) then we allocate a new structure,
254 * properly linked into the data structure of the original socket.
255 *
256 * => If 'soready' is true, then socket will become ready for accept() i.e.
257 *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
258 * => May be called from soft-interrupt context.
259 * => Listening socket should be locked.
260 * => Returns the new socket locked.
261 */
262struct socket *
263sonewconn(struct socket *head, bool soready)
264{
265	struct socket *so;
266	int soqueue, error;
267
268	KASSERT(solocked(head));
269
270	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
271		/*
272		 * Listen queue overflow.  If there is an accept filter
273		 * active, pass through the oldest cxn it's handling.
274		 */
275		if (head->so_accf == NULL) {
276			return NULL;
277		} else {
278			struct socket *so2, *next;
279
280			/* Pass the oldest connection waiting in the
281			   accept filter */
282			for (so2 = TAILQ_FIRST(&head->so_q0);
283			     so2 != NULL; so2 = next) {
284				next = TAILQ_NEXT(so2, so_qe);
285				if (so2->so_upcall == NULL) {
286					continue;
287				}
288				so2->so_upcall = NULL;
289				so2->so_upcallarg = NULL;
290				so2->so_options &= ~SO_ACCEPTFILTER;
291				so2->so_rcv.sb_flags &= ~SB_UPCALL;
292				soisconnected(so2);
293				break;
294			}
295
296			/* If nothing was nudged out of the acept filter, bail
297			 * out; otherwise proceed allocating the socket. */
298			if (so2 == NULL) {
299				return NULL;
300			}
301		}
302	}
303	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
304		soready = false;
305	}
306	soqueue = soready ? 1 : 0;
307
308	if ((so = soget(false)) == NULL) {
309		return NULL;
310	}
311	so->so_type = head->so_type;
312	so->so_options = head->so_options & ~SO_ACCEPTCONN;
313	so->so_linger = head->so_linger;
314	so->so_state = head->so_state | SS_NOFDREF;
315	so->so_proto = head->so_proto;
316	so->so_timeo = head->so_timeo;
317	so->so_pgid = head->so_pgid;
318	so->so_send = head->so_send;
319	so->so_receive = head->so_receive;
320	so->so_uidinfo = head->so_uidinfo;
321	so->so_egid = head->so_egid;
322	so->so_cpid = head->so_cpid;
323
324	/*
325	 * Share the lock with the listening-socket, it may get unshared
326	 * once the connection is complete.
327	 *
328	 * so_lock is stable while we hold the socket locked, so no
329	 * need for atomic_load_* here.
330	 */
331	mutex_obj_hold(head->so_lock);
332	so->so_lock = head->so_lock;
333
334	/*
335	 * Reserve the space for socket buffers.
336	 */
337#ifdef MBUFTRACE
338	so->so_mowner = head->so_mowner;
339	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
340	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
341#endif
342	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
343		goto out;
344	}
345	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
346	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
347	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
348	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
349	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
350	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
351
352	/*
353	 * Finally, perform the protocol attach.  Note: a new socket
354	 * lock may be assigned at this point (if so, it will be held).
355	 */
356	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
357	if (error) {
358out:
359		KASSERT(solocked(so));
360		KASSERT(so->so_accf == NULL);
361		soput(so);
362
363		/* Note: the listening socket shall stay locked. */
364		KASSERT(solocked(head));
365		return NULL;
366	}
367	KASSERT(solocked2(head, so));
368
369	/*
370	 * Insert into the queue.  If ready, update the connection status
371	 * and wake up any waiters, e.g. processes blocking on accept().
372	 */
373	soqinsque(head, so, soqueue);
374	if (soready) {
375		so->so_state |= SS_ISCONNECTED;
376		sorwakeup(head);
377		cv_broadcast(&head->so_cv);
378	}
379	return so;
380}
381
382struct socket *
383soget(bool waitok)
384{
385	struct socket *so;
386
387	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
388	if (__predict_false(so == NULL))
389		return (NULL);
390	memset(so, 0, sizeof(*so));
391	TAILQ_INIT(&so->so_q0);
392	TAILQ_INIT(&so->so_q);
393	cv_init(&so->so_cv, "socket");
394	cv_init(&so->so_rcv.sb_cv, "netio");
395	cv_init(&so->so_snd.sb_cv, "netio");
396	selinit(&so->so_rcv.sb_sel);
397	selinit(&so->so_snd.sb_sel);
398	so->so_rcv.sb_so = so;
399	so->so_snd.sb_so = so;
400	return so;
401}
402
403void
404soput(struct socket *so)
405{
406
407	KASSERT(!cv_has_waiters(&so->so_cv));
408	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
409	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
410	seldestroy(&so->so_rcv.sb_sel);
411	seldestroy(&so->so_snd.sb_sel);
412	mutex_obj_free(so->so_lock);
413	cv_destroy(&so->so_cv);
414	cv_destroy(&so->so_rcv.sb_cv);
415	cv_destroy(&so->so_snd.sb_cv);
416	pool_cache_put(socket_cache, so);
417}
418
419/*
420 * soqinsque: insert socket of a new connection into the specified
421 * accept queue of the listening socket (head).
422 *
423 *	q = 0: queue of partial connections
424 *	q = 1: queue of incoming connections
425 */
426void
427soqinsque(struct socket *head, struct socket *so, int q)
428{
429	KASSERT(q == 0 || q == 1);
430	KASSERT(solocked2(head, so));
431	KASSERT(so->so_onq == NULL);
432	KASSERT(so->so_head == NULL);
433
434	so->so_head = head;
435	if (q == 0) {
436		head->so_q0len++;
437		so->so_onq = &head->so_q0;
438	} else {
439		head->so_qlen++;
440		so->so_onq = &head->so_q;
441	}
442	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
443}
444
445/*
446 * soqremque: remove socket from the specified queue.
447 *
448 * => Returns true if socket was removed from the specified queue.
449 * => False if socket was not removed (because it was in other queue).
450 */
451bool
452soqremque(struct socket *so, int q)
453{
454	struct socket *head = so->so_head;
455
456	KASSERT(q == 0 || q == 1);
457	KASSERT(solocked(so));
458	KASSERT(so->so_onq != NULL);
459	KASSERT(head != NULL);
460
461	if (q == 0) {
462		if (so->so_onq != &head->so_q0)
463			return false;
464		head->so_q0len--;
465	} else {
466		if (so->so_onq != &head->so_q)
467			return false;
468		head->so_qlen--;
469	}
470	KASSERT(solocked2(so, head));
471	TAILQ_REMOVE(so->so_onq, so, so_qe);
472	so->so_onq = NULL;
473	so->so_head = NULL;
474	return true;
475}
476
477/*
478 * socantsendmore: indicates that no more data will be sent on the
479 * socket; it would normally be applied to a socket when the user
480 * informs the system that no more data is to be sent, by the protocol
481 * code (in case pr_shutdown()).
482 */
483void
484socantsendmore(struct socket *so)
485{
486	KASSERT(solocked(so));
487
488	so->so_state |= SS_CANTSENDMORE;
489	sowwakeup(so);
490}
491
492/*
493 * socantrcvmore(): indicates that no more data will be received and
494 * will normally be applied to the socket by a protocol when it detects
495 * that the peer will send no more data.  Data queued for reading in
496 * the socket may yet be read.
497 */
498void
499socantrcvmore(struct socket *so)
500{
501	KASSERT(solocked(so));
502
503	so->so_state |= SS_CANTRCVMORE;
504	sorwakeup(so);
505}
506
507/*
508 * soroverflow(): indicates that data was attempted to be sent
509 * but the receiving buffer overflowed.
510 */
511void
512soroverflow(struct socket *so)
513{
514	KASSERT(solocked(so));
515
516	so->so_rcv.sb_overflowed++;
517	if (so->so_options & SO_RERROR)  {
518		so->so_rerror = ENOBUFS;
519		sorwakeup(so);
520	}
521}
522
523/*
524 * Wait for data to arrive at/drain from a socket buffer.
525 */
526int
527sbwait(struct sockbuf *sb)
528{
529	struct socket *so;
530	kmutex_t *lock;
531	int error;
532
533	so = sb->sb_so;
534
535	KASSERT(solocked(so));
536
537	sb->sb_flags |= SB_NOTIFY;
538	lock = so->so_lock;
539	if ((sb->sb_flags & SB_NOINTR) != 0)
540		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
541	else
542		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
543	if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
544		solockretry(so, lock);
545	return error;
546}
547
548/*
549 * Wakeup processes waiting on a socket buffer.
550 * Do asynchronous notification via SIGIO
551 * if the socket buffer has the SB_ASYNC flag set.
552 */
553void
554sowakeup(struct socket *so, struct sockbuf *sb, int code)
555{
556	int band;
557
558	KASSERT(solocked(so));
559	KASSERT(sb->sb_so == so);
560
561	switch (code) {
562	case POLL_IN:
563		band = POLLIN|POLLRDNORM;
564		break;
565
566	case POLL_OUT:
567		band = POLLOUT|POLLWRNORM;
568		break;
569
570	case POLL_HUP:
571		band = POLLHUP;
572		break;
573
574	default:
575		band = 0;
576#ifdef DIAGNOSTIC
577		printf("bad siginfo code %d in socket notification.\n", code);
578#endif
579		break;
580	}
581
582	sb->sb_flags &= ~SB_NOTIFY;
583	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
584	cv_broadcast(&sb->sb_cv);
585	if (sb->sb_flags & SB_ASYNC)
586		fownsignal(so->so_pgid, SIGIO, code, band, so);
587	if (sb->sb_flags & SB_UPCALL)
588		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
589}
590
591/*
592 * Reset a socket's lock pointer.  Wake all threads waiting on the
593 * socket's condition variables so that they can restart their waits
594 * using the new lock.  The existing lock must be held.
595 *
596 * Caller must have issued membar_release before this.
597 */
598void
599solockreset(struct socket *so, kmutex_t *lock)
600{
601
602	KASSERT(solocked(so));
603
604	so->so_lock = lock;
605	cv_broadcast(&so->so_snd.sb_cv);
606	cv_broadcast(&so->so_rcv.sb_cv);
607	cv_broadcast(&so->so_cv);
608}
609
610/*
611 * Socket buffer (struct sockbuf) utility routines.
612 *
613 * Each socket contains two socket buffers: one for sending data and
614 * one for receiving data.  Each buffer contains a queue of mbufs,
615 * information about the number of mbufs and amount of data in the
616 * queue, and other fields allowing poll() statements and notification
617 * on data availability to be implemented.
618 *
619 * Data stored in a socket buffer is maintained as a list of records.
620 * Each record is a list of mbufs chained together with the m_next
621 * field.  Records are chained together with the m_nextpkt field. The upper
622 * level routine soreceive() expects the following conventions to be
623 * observed when placing information in the receive buffer:
624 *
625 * 1. If the protocol requires each message be preceded by the sender's
626 *    name, then a record containing that name must be present before
627 *    any associated data (mbuf's must be of type MT_SONAME).
628 * 2. If the protocol supports the exchange of ``access rights'' (really
629 *    just additional data associated with the message), and there are
630 *    ``rights'' to be received, then a record containing this data
631 *    should be present (mbuf's must be of type MT_CONTROL).
632 * 3. If a name or rights record exists, then it must be followed by
633 *    a data record, perhaps of zero length.
634 *
635 * Before using a new socket structure it is first necessary to reserve
636 * buffer space to the socket, by calling sbreserve().  This should commit
637 * some of the available buffer space in the system buffer pool for the
638 * socket (currently, it does nothing but enforce limits).  The space
639 * should be released by calling sbrelease() when the socket is destroyed.
640 */
641
642int
643sb_max_set(u_long new_sbmax)
644{
645	int s;
646
647	if (new_sbmax < (16 * 1024))
648		return (EINVAL);
649
650	s = splsoftnet();
651	sb_max = new_sbmax;
652	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
653	splx(s);
654
655	return (0);
656}
657
658int
659soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
660{
661	KASSERT(so->so_pcb == NULL || solocked(so));
662
663	/*
664	 * there's at least one application (a configure script of screen)
665	 * which expects a fifo is writable even if it has "some" bytes
666	 * in its buffer.
667	 * so we want to make sure (hiwat - lowat) >= (some bytes).
668	 *
669	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
670	 * we expect it's large enough for such applications.
671	 */
672	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
673	u_long  hiwat = lowat + PIPE_BUF;
674
675	if (sndcc < hiwat)
676		sndcc = hiwat;
677	if (sbreserve(&so->so_snd, sndcc, so) == 0)
678		goto bad;
679	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
680		goto bad2;
681	if (so->so_rcv.sb_lowat == 0)
682		so->so_rcv.sb_lowat = 1;
683	if (so->so_snd.sb_lowat == 0)
684		so->so_snd.sb_lowat = lowat;
685	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
686		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
687	return (0);
688 bad2:
689	sbrelease(&so->so_snd, so);
690 bad:
691	return (ENOBUFS);
692}
693
694/*
695 * Allot mbufs to a sockbuf.
696 * Attempt to scale mbmax so that mbcnt doesn't become limiting
697 * if buffering efficiency is near the normal case.
698 */
699int
700sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
701{
702	struct lwp *l = curlwp; /* XXX */
703	rlim_t maxcc;
704	struct uidinfo *uidinfo;
705
706	KASSERT(so->so_pcb == NULL || solocked(so));
707	KASSERT(sb->sb_so == so);
708	KASSERT(sb_max_adj != 0);
709
710	if (cc == 0 || cc > sb_max_adj)
711		return (0);
712
713	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
714
715	uidinfo = so->so_uidinfo;
716	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
717		return 0;
718	sb->sb_mbmax = uimin(cc * 2, sb_max);
719	if (sb->sb_lowat > sb->sb_hiwat)
720		sb->sb_lowat = sb->sb_hiwat;
721
722	return (1);
723}
724
725/*
726 * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
727 * that the socket is held locked here: see sorflush().
728 */
729void
730sbrelease(struct sockbuf *sb, struct socket *so)
731{
732
733	KASSERT(sb->sb_so == so);
734
735	sbflush(sb);
736	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
737	sb->sb_mbmax = 0;
738}
739
740/*
741 * Routines to add and remove
742 * data from an mbuf queue.
743 *
744 * The routines sbappend() or sbappendrecord() are normally called to
745 * append new mbufs to a socket buffer, after checking that adequate
746 * space is available, comparing the function sbspace() with the amount
747 * of data to be added.  sbappendrecord() differs from sbappend() in
748 * that data supplied is treated as the beginning of a new record.
749 * To place a sender's address, optional access rights, and data in a
750 * socket receive buffer, sbappendaddr() should be used.  To place
751 * access rights and data in a socket receive buffer, sbappendrights()
752 * should be used.  In either case, the new data begins a new record.
753 * Note that unlike sbappend() and sbappendrecord(), these routines check
754 * for the caller that there will be enough space to store the data.
755 * Each fails if there is not enough space, or if it cannot find mbufs
756 * to store additional information in.
757 *
758 * Reliable protocols may use the socket send buffer to hold data
759 * awaiting acknowledgement.  Data is normally copied from a socket
760 * send buffer in a protocol with m_copym for output to a peer,
761 * and then removing the data from the socket buffer with sbdrop()
762 * or sbdroprecord() when the data is acknowledged by the peer.
763 */
764
765#ifdef SOCKBUF_DEBUG
766void
767sblastrecordchk(struct sockbuf *sb, const char *where)
768{
769	struct mbuf *m = sb->sb_mb;
770
771	KASSERT(solocked(sb->sb_so));
772
773	while (m && m->m_nextpkt)
774		m = m->m_nextpkt;
775
776	if (m != sb->sb_lastrecord) {
777		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
778		    sb->sb_mb, sb->sb_lastrecord, m);
779		printf("packet chain:\n");
780		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
781			printf("\t%p\n", m);
782		panic("sblastrecordchk from %s", where);
783	}
784}
785
786void
787sblastmbufchk(struct sockbuf *sb, const char *where)
788{
789	struct mbuf *m = sb->sb_mb;
790	struct mbuf *n;
791
792	KASSERT(solocked(sb->sb_so));
793
794	while (m && m->m_nextpkt)
795		m = m->m_nextpkt;
796
797	while (m && m->m_next)
798		m = m->m_next;
799
800	if (m != sb->sb_mbtail) {
801		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
802		    sb->sb_mb, sb->sb_mbtail, m);
803		printf("packet tree:\n");
804		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
805			printf("\t");
806			for (n = m; n != NULL; n = n->m_next)
807				printf("%p ", n);
808			printf("\n");
809		}
810		panic("sblastmbufchk from %s", where);
811	}
812}
813#endif /* SOCKBUF_DEBUG */
814
815/*
816 * Link a chain of records onto a socket buffer
817 */
818#define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
819do {									\
820	if ((sb)->sb_lastrecord != NULL)				\
821		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
822	else								\
823		(sb)->sb_mb = (m0);					\
824	(sb)->sb_lastrecord = (mlast);					\
825} while (/*CONSTCOND*/0)
826
827
828#define	SBLINKRECORD(sb, m0)						\
829    SBLINKRECORDCHAIN(sb, m0, m0)
830
831/*
832 * Append mbuf chain m to the last record in the
833 * socket buffer sb.  The additional space associated
834 * the mbuf chain is recorded in sb.  Empty mbufs are
835 * discarded and mbufs are compacted where possible.
836 */
837void
838sbappend(struct sockbuf *sb, struct mbuf *m)
839{
840	struct mbuf	*n;
841
842	KASSERT(solocked(sb->sb_so));
843
844	if (m == NULL)
845		return;
846
847#ifdef MBUFTRACE
848	m_claimm(m, sb->sb_mowner);
849#endif
850
851	SBLASTRECORDCHK(sb, "sbappend 1");
852
853	if ((n = sb->sb_lastrecord) != NULL) {
854		/*
855		 * XXX Would like to simply use sb_mbtail here, but
856		 * XXX I need to verify that I won't miss an EOR that
857		 * XXX way.
858		 */
859		do {
860			if (n->m_flags & M_EOR) {
861				sbappendrecord(sb, m); /* XXXXXX!!!! */
862				return;
863			}
864		} while (n->m_next && (n = n->m_next));
865	} else {
866		/*
867		 * If this is the first record in the socket buffer, it's
868		 * also the last record.
869		 */
870		sb->sb_lastrecord = m;
871	}
872	sbcompress(sb, m, n);
873	SBLASTRECORDCHK(sb, "sbappend 2");
874}
875
876/*
877 * This version of sbappend() should only be used when the caller
878 * absolutely knows that there will never be more than one record
879 * in the socket buffer, that is, a stream protocol (such as TCP).
880 */
881void
882sbappendstream(struct sockbuf *sb, struct mbuf *m)
883{
884
885	KASSERT(solocked(sb->sb_so));
886	KDASSERT(m->m_nextpkt == NULL);
887	KASSERT(sb->sb_mb == sb->sb_lastrecord);
888
889	SBLASTMBUFCHK(sb, __func__);
890
891#ifdef MBUFTRACE
892	m_claimm(m, sb->sb_mowner);
893#endif
894
895	sbcompress(sb, m, sb->sb_mbtail);
896
897	sb->sb_lastrecord = sb->sb_mb;
898	SBLASTRECORDCHK(sb, __func__);
899}
900
901#ifdef SOCKBUF_DEBUG
902void
903sbcheck(struct sockbuf *sb)
904{
905	struct mbuf	*m, *m2;
906	u_long		len, mbcnt;
907
908	KASSERT(solocked(sb->sb_so));
909
910	len = 0;
911	mbcnt = 0;
912	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
913		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
914			len += m2->m_len;
915			mbcnt += MSIZE;
916			if (m2->m_flags & M_EXT)
917				mbcnt += m2->m_ext.ext_size;
918			if (m2->m_nextpkt != NULL)
919				panic("sbcheck nextpkt");
920		}
921	}
922	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
923		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
924		    mbcnt, sb->sb_mbcnt);
925		panic("sbcheck");
926	}
927}
928#endif
929
930/*
931 * As above, except the mbuf chain
932 * begins a new record.
933 */
934void
935sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
936{
937	struct mbuf	*m;
938
939	KASSERT(solocked(sb->sb_so));
940
941	if (m0 == NULL)
942		return;
943
944#ifdef MBUFTRACE
945	m_claimm(m0, sb->sb_mowner);
946#endif
947	/*
948	 * Put the first mbuf on the queue.
949	 * Note this permits zero length records.
950	 */
951	sballoc(sb, m0);
952	SBLASTRECORDCHK(sb, "sbappendrecord 1");
953	SBLINKRECORD(sb, m0);
954	m = m0->m_next;
955	m0->m_next = 0;
956	if (m && (m0->m_flags & M_EOR)) {
957		m0->m_flags &= ~M_EOR;
958		m->m_flags |= M_EOR;
959	}
960	sbcompress(sb, m, m0);
961	SBLASTRECORDCHK(sb, "sbappendrecord 2");
962}
963
964/*
965 * As above except that OOB data
966 * is inserted at the beginning of the sockbuf,
967 * but after any other OOB data.
968 */
969void
970sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
971{
972	struct mbuf	*m, **mp;
973
974	KASSERT(solocked(sb->sb_so));
975
976	if (m0 == NULL)
977		return;
978
979	SBLASTRECORDCHK(sb, "sbinsertoob 1");
980
981	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
982	    again:
983		switch (m->m_type) {
984
985		case MT_OOBDATA:
986			continue;		/* WANT next train */
987
988		case MT_CONTROL:
989			if ((m = m->m_next) != NULL)
990				goto again;	/* inspect THIS train further */
991		}
992		break;
993	}
994	/*
995	 * Put the first mbuf on the queue.
996	 * Note this permits zero length records.
997	 */
998	sballoc(sb, m0);
999	m0->m_nextpkt = *mp;
1000	if (*mp == NULL) {
1001		/* m0 is actually the new tail */
1002		sb->sb_lastrecord = m0;
1003	}
1004	*mp = m0;
1005	m = m0->m_next;
1006	m0->m_next = 0;
1007	if (m && (m0->m_flags & M_EOR)) {
1008		m0->m_flags &= ~M_EOR;
1009		m->m_flags |= M_EOR;
1010	}
1011	sbcompress(sb, m, m0);
1012	SBLASTRECORDCHK(sb, "sbinsertoob 2");
1013}
1014
1015/*
1016 * Append address and data, and optionally, control (ancillary) data
1017 * to the receive queue of a socket.  If present,
1018 * m0 must include a packet header with total length.
1019 * Returns 0 if no space in sockbuf or insufficient mbufs.
1020 */
1021int
1022sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
1023	struct mbuf *control)
1024{
1025	struct mbuf	*m, *n, *nlast;
1026	int		space, len;
1027
1028	KASSERT(solocked(sb->sb_so));
1029
1030	space = asa->sa_len;
1031
1032	if (m0 != NULL) {
1033		if ((m0->m_flags & M_PKTHDR) == 0)
1034			panic("sbappendaddr");
1035		space += m0->m_pkthdr.len;
1036#ifdef MBUFTRACE
1037		m_claimm(m0, sb->sb_mowner);
1038#endif
1039	}
1040	for (n = control; n; n = n->m_next) {
1041		space += n->m_len;
1042		MCLAIM(n, sb->sb_mowner);
1043		if (n->m_next == NULL)	/* keep pointer to last control buf */
1044			break;
1045	}
1046	if (space > sbspace(sb))
1047		return (0);
1048	m = m_get(M_DONTWAIT, MT_SONAME);
1049	if (m == NULL)
1050		return (0);
1051	MCLAIM(m, sb->sb_mowner);
1052	/*
1053	 * XXX avoid 'comparison always true' warning which isn't easily
1054	 * avoided.
1055	 */
1056	len = asa->sa_len;
1057	if (len > MLEN) {
1058		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1059		if ((m->m_flags & M_EXT) == 0) {
1060			m_free(m);
1061			return (0);
1062		}
1063	}
1064	m->m_len = asa->sa_len;
1065	memcpy(mtod(m, void *), asa, asa->sa_len);
1066	if (n)
1067		n->m_next = m0;		/* concatenate data to control */
1068	else
1069		control = m0;
1070	m->m_next = control;
1071
1072	SBLASTRECORDCHK(sb, "sbappendaddr 1");
1073
1074	for (n = m; n->m_next != NULL; n = n->m_next)
1075		sballoc(sb, n);
1076	sballoc(sb, n);
1077	nlast = n;
1078	SBLINKRECORD(sb, m);
1079
1080	sb->sb_mbtail = nlast;
1081	SBLASTMBUFCHK(sb, "sbappendaddr");
1082	SBLASTRECORDCHK(sb, "sbappendaddr 2");
1083
1084	return (1);
1085}
1086
1087/*
1088 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1089 * an mbuf chain.
1090 */
1091static inline struct mbuf *
1092m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1093		   const struct sockaddr *asa)
1094{
1095	struct mbuf *m;
1096	const int salen = asa->sa_len;
1097
1098	KASSERT(solocked(sb->sb_so));
1099
1100	/* only the first in each chain need be a pkthdr */
1101	m = m_gethdr(M_DONTWAIT, MT_SONAME);
1102	if (m == NULL)
1103		return NULL;
1104	MCLAIM(m, sb->sb_mowner);
1105#ifdef notyet
1106	if (salen > MHLEN) {
1107		MEXTMALLOC(m, salen, M_NOWAIT);
1108		if ((m->m_flags & M_EXT) == 0) {
1109			m_free(m);
1110			return NULL;
1111		}
1112	}
1113#else
1114	KASSERT(salen <= MHLEN);
1115#endif
1116	m->m_len = salen;
1117	memcpy(mtod(m, void *), asa, salen);
1118	m->m_next = m0;
1119	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1120
1121	return m;
1122}
1123
1124int
1125sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1126		  struct mbuf *m0, int sbprio)
1127{
1128	struct mbuf *m, *n, *n0, *nlast;
1129	int error;
1130
1131	KASSERT(solocked(sb->sb_so));
1132
1133	/*
1134	 * XXX sbprio reserved for encoding priority of this* request:
1135	 *  SB_PRIO_NONE --> honour normal sb limits
1136	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1137	 *	take whole chain. Intended for large requests
1138	 *      that should be delivered atomically (all, or none).
1139	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1140	 *       over normal socket limits, for messages indicating
1141	 *       buffer overflow in earlier normal/lower-priority messages
1142	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1143	 *       Intended for  kernel-generated messages only.
1144	 *        Up to generator to avoid total mbuf resource exhaustion.
1145	 */
1146	(void)sbprio;
1147
1148	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1149		panic("sbappendaddrchain");
1150
1151#ifdef notyet
1152	space = sbspace(sb);
1153
1154	/*
1155	 * Enforce SB_PRIO_* limits as described above.
1156	 */
1157#endif
1158
1159	n0 = NULL;
1160	nlast = NULL;
1161	for (m = m0; m; m = m->m_nextpkt) {
1162		struct mbuf *np;
1163
1164#ifdef MBUFTRACE
1165		m_claimm(m, sb->sb_mowner);
1166#endif
1167
1168		/* Prepend sockaddr to this record (m) of input chain m0 */
1169	  	n = m_prepend_sockaddr(sb, m, asa);
1170		if (n == NULL) {
1171			error = ENOBUFS;
1172			goto bad;
1173		}
1174
1175		/* Append record (asa+m) to end of new chain n0 */
1176		if (n0 == NULL) {
1177			n0 = n;
1178		} else {
1179			nlast->m_nextpkt = n;
1180		}
1181		/* Keep track of last record on new chain */
1182		nlast = n;
1183
1184		for (np = n; np; np = np->m_next)
1185			sballoc(sb, np);
1186	}
1187
1188	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1189
1190	/* Drop the entire chain of (asa+m) records onto the socket */
1191	SBLINKRECORDCHAIN(sb, n0, nlast);
1192
1193	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1194
1195	for (m = nlast; m->m_next; m = m->m_next)
1196		;
1197	sb->sb_mbtail = m;
1198	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1199
1200	return (1);
1201
1202bad:
1203	/*
1204	 * On error, free the prepended addreseses. For consistency
1205	 * with sbappendaddr(), leave it to our caller to free
1206	 * the input record chain passed to us as m0.
1207	 */
1208	while ((n = n0) != NULL) {
1209	  	struct mbuf *np;
1210
1211		/* Undo the sballoc() of this record */
1212		for (np = n; np; np = np->m_next)
1213			sbfree(sb, np);
1214
1215		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1216		np = m_free(n);		/* free prepended address (not data) */
1217	}
1218	return error;
1219}
1220
1221
1222int
1223sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1224{
1225	struct mbuf	*m, *mlast, *n;
1226	int		space;
1227
1228	KASSERT(solocked(sb->sb_so));
1229
1230	space = 0;
1231	if (control == NULL)
1232		panic("sbappendcontrol");
1233	for (m = control; ; m = m->m_next) {
1234		space += m->m_len;
1235		MCLAIM(m, sb->sb_mowner);
1236		if (m->m_next == NULL)
1237			break;
1238	}
1239	n = m;			/* save pointer to last control buffer */
1240	for (m = m0; m; m = m->m_next) {
1241		MCLAIM(m, sb->sb_mowner);
1242		space += m->m_len;
1243	}
1244	if (space > sbspace(sb))
1245		return (0);
1246	n->m_next = m0;			/* concatenate data to control */
1247
1248	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1249
1250	for (m = control; m->m_next != NULL; m = m->m_next)
1251		sballoc(sb, m);
1252	sballoc(sb, m);
1253	mlast = m;
1254	SBLINKRECORD(sb, control);
1255
1256	sb->sb_mbtail = mlast;
1257	SBLASTMBUFCHK(sb, "sbappendcontrol");
1258	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1259
1260	return (1);
1261}
1262
1263/*
1264 * Compress mbuf chain m into the socket
1265 * buffer sb following mbuf n.  If n
1266 * is null, the buffer is presumed empty.
1267 */
1268void
1269sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1270{
1271	int		eor;
1272	struct mbuf	*o;
1273
1274	KASSERT(solocked(sb->sb_so));
1275
1276	eor = 0;
1277	while (m) {
1278		eor |= m->m_flags & M_EOR;
1279		if (m->m_len == 0 &&
1280		    (eor == 0 ||
1281		     (((o = m->m_next) || (o = n)) &&
1282		      o->m_type == m->m_type))) {
1283			if (sb->sb_lastrecord == m)
1284				sb->sb_lastrecord = m->m_next;
1285			m = m_free(m);
1286			continue;
1287		}
1288		if (n && (n->m_flags & M_EOR) == 0 &&
1289		    /* M_TRAILINGSPACE() checks buffer writeability */
1290		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1291		    m->m_len <= M_TRAILINGSPACE(n) &&
1292		    n->m_type == m->m_type) {
1293			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1294			    (unsigned)m->m_len);
1295			n->m_len += m->m_len;
1296			sb->sb_cc += m->m_len;
1297			m = m_free(m);
1298			continue;
1299		}
1300		if (n)
1301			n->m_next = m;
1302		else
1303			sb->sb_mb = m;
1304		sb->sb_mbtail = m;
1305		sballoc(sb, m);
1306		n = m;
1307		m->m_flags &= ~M_EOR;
1308		m = m->m_next;
1309		n->m_next = 0;
1310	}
1311	if (eor) {
1312		if (n)
1313			n->m_flags |= eor;
1314		else
1315			printf("semi-panic: sbcompress\n");
1316	}
1317	SBLASTMBUFCHK(sb, __func__);
1318}
1319
1320/*
1321 * Free all mbufs in a sockbuf.
1322 * Check that all resources are reclaimed.
1323 */
1324void
1325sbflush(struct sockbuf *sb)
1326{
1327
1328	KASSERT(solocked(sb->sb_so));
1329	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1330
1331	while (sb->sb_mbcnt)
1332		sbdrop(sb, (int)sb->sb_cc);
1333
1334	KASSERT(sb->sb_cc == 0);
1335	KASSERT(sb->sb_mb == NULL);
1336	KASSERT(sb->sb_mbtail == NULL);
1337	KASSERT(sb->sb_lastrecord == NULL);
1338}
1339
1340/*
1341 * Drop data from (the front of) a sockbuf.
1342 */
1343void
1344sbdrop(struct sockbuf *sb, int len)
1345{
1346	struct mbuf	*m, *next;
1347
1348	KASSERT(solocked(sb->sb_so));
1349
1350	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1351	while (len > 0) {
1352		if (m == NULL) {
1353			if (next == NULL)
1354				panic("sbdrop(%p,%d): cc=%lu",
1355				    sb, len, sb->sb_cc);
1356			m = next;
1357			next = m->m_nextpkt;
1358			continue;
1359		}
1360		if (m->m_len > len) {
1361			m->m_len -= len;
1362			m->m_data += len;
1363			sb->sb_cc -= len;
1364			break;
1365		}
1366		len -= m->m_len;
1367		sbfree(sb, m);
1368		m = m_free(m);
1369	}
1370	while (m && m->m_len == 0) {
1371		sbfree(sb, m);
1372		m = m_free(m);
1373	}
1374	if (m) {
1375		sb->sb_mb = m;
1376		m->m_nextpkt = next;
1377	} else
1378		sb->sb_mb = next;
1379	/*
1380	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1381	 * makes sure sb_lastrecord is up-to-date if we dropped
1382	 * part of the last record.
1383	 */
1384	m = sb->sb_mb;
1385	if (m == NULL) {
1386		sb->sb_mbtail = NULL;
1387		sb->sb_lastrecord = NULL;
1388	} else if (m->m_nextpkt == NULL)
1389		sb->sb_lastrecord = m;
1390}
1391
1392/*
1393 * Drop a record off the front of a sockbuf
1394 * and move the next record to the front.
1395 */
1396void
1397sbdroprecord(struct sockbuf *sb)
1398{
1399	struct mbuf	*m, *mn;
1400
1401	KASSERT(solocked(sb->sb_so));
1402
1403	m = sb->sb_mb;
1404	if (m) {
1405		sb->sb_mb = m->m_nextpkt;
1406		do {
1407			sbfree(sb, m);
1408			mn = m_free(m);
1409		} while ((m = mn) != NULL);
1410	}
1411	SB_EMPTY_FIXUP(sb);
1412}
1413
1414/*
1415 * Create a "control" mbuf containing the specified data
1416 * with the specified type for presentation on a socket buffer.
1417 */
1418struct mbuf *
1419sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1420{
1421	struct cmsghdr	*cp;
1422	struct mbuf	*m;
1423	int space = CMSG_SPACE(size);
1424
1425	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1426		printf("%s: message too large %d\n", __func__, space);
1427		return NULL;
1428	}
1429
1430	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1431		return NULL;
1432	if (space > MLEN) {
1433		if (space > MCLBYTES)
1434			MEXTMALLOC(m, space, M_WAITOK);
1435		else
1436			MCLGET(m, flags);
1437		if ((m->m_flags & M_EXT) == 0) {
1438			m_free(m);
1439			return NULL;
1440		}
1441	}
1442	cp = mtod(m, struct cmsghdr *);
1443	*p = CMSG_DATA(cp);
1444	m->m_len = space;
1445	cp->cmsg_len = CMSG_LEN(size);
1446	cp->cmsg_level = level;
1447	cp->cmsg_type = type;
1448
1449	memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
1450	memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
1451
1452	return m;
1453}
1454
1455struct mbuf *
1456sbcreatecontrol(void *p, int size, int type, int level)
1457{
1458	struct mbuf *m;
1459	void *v;
1460
1461	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1462	if (m == NULL)
1463		return NULL;
1464	memcpy(v, p, size);
1465	return m;
1466}
1467
1468void
1469solockretry(struct socket *so, kmutex_t *lock)
1470{
1471
1472	while (lock != atomic_load_relaxed(&so->so_lock)) {
1473		mutex_exit(lock);
1474		lock = atomic_load_consume(&so->so_lock);
1475		mutex_enter(lock);
1476	}
1477}
1478
1479bool
1480solocked(const struct socket *so)
1481{
1482
1483	/*
1484	 * Used only for diagnostic assertions, so so_lock should be
1485	 * stable at this point, hence on need for atomic_load_*.
1486	 */
1487	return mutex_owned(so->so_lock);
1488}
1489
1490bool
1491solocked2(const struct socket *so1, const struct socket *so2)
1492{
1493	const kmutex_t *lock;
1494
1495	/*
1496	 * Used only for diagnostic assertions, so so_lock should be
1497	 * stable at this point, hence on need for atomic_load_*.
1498	 */
1499	lock = so1->so_lock;
1500	if (lock != so2->so_lock)
1501		return false;
1502	return mutex_owned(lock);
1503}
1504
1505/*
1506 * sosetlock: assign a default lock to a new socket.
1507 */
1508void
1509sosetlock(struct socket *so)
1510{
1511	if (so->so_lock == NULL) {
1512		kmutex_t *lock = softnet_lock;
1513
1514		so->so_lock = lock;
1515		mutex_obj_hold(lock);
1516		mutex_enter(lock);
1517	}
1518	KASSERT(solocked(so));
1519}
1520
1521/*
1522 * Set lock on sockbuf sb; sleep if lock is already held.
1523 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1524 * Returns error without lock if sleep is interrupted.
1525 */
1526int
1527sblock(struct sockbuf *sb, int wf)
1528{
1529	struct socket *so;
1530	kmutex_t *lock;
1531	int error;
1532
1533	KASSERT(solocked(sb->sb_so));
1534
1535	for (;;) {
1536		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1537			sb->sb_flags |= SB_LOCK;
1538			return 0;
1539		}
1540		if (wf != M_WAITOK)
1541			return EWOULDBLOCK;
1542		so = sb->sb_so;
1543		lock = so->so_lock;
1544		if ((sb->sb_flags & SB_NOINTR) != 0) {
1545			cv_wait(&so->so_cv, lock);
1546			error = 0;
1547		} else
1548			error = cv_wait_sig(&so->so_cv, lock);
1549		if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
1550			solockretry(so, lock);
1551		if (error != 0)
1552			return error;
1553	}
1554}
1555
1556void
1557sbunlock(struct sockbuf *sb)
1558{
1559	struct socket *so;
1560
1561	so = sb->sb_so;
1562
1563	KASSERT(solocked(so));
1564	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1565
1566	sb->sb_flags &= ~SB_LOCK;
1567	cv_broadcast(&so->so_cv);
1568}
1569
1570int
1571sowait(struct socket *so, bool catch_p, int timo)
1572{
1573	kmutex_t *lock;
1574	int error;
1575
1576	KASSERT(solocked(so));
1577	KASSERT(catch_p || timo != 0);
1578
1579	lock = so->so_lock;
1580	if (catch_p)
1581		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1582	else
1583		error = cv_timedwait(&so->so_cv, lock, timo);
1584	if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
1585		solockretry(so, lock);
1586	return error;
1587}
1588
1589#ifdef DDB
1590
1591/*
1592 * Currently, sofindproc() is used only from DDB. It could be used from others
1593 * by using db_mutex_enter()
1594 */
1595
1596static inline int
1597db_mutex_enter(kmutex_t *mtx)
1598{
1599	extern int db_active;
1600	int rv;
1601
1602	if (!db_active) {
1603		mutex_enter(mtx);
1604		rv = 1;
1605	} else
1606		rv = mutex_tryenter(mtx);
1607
1608	return rv;
1609}
1610
1611int
1612sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1613{
1614	proc_t *p;
1615	filedesc_t *fdp;
1616	fdtab_t *dt;
1617	fdfile_t *ff;
1618	file_t *fp = NULL;
1619	int found = 0;
1620	int i, t;
1621
1622	if (so == NULL)
1623		return 0;
1624
1625	t = db_mutex_enter(&proc_lock);
1626	if (!t) {
1627		pr("could not acquire proc_lock mutex\n");
1628		return 0;
1629	}
1630	PROCLIST_FOREACH(p, &allproc) {
1631		if (p->p_stat == SIDL)
1632			continue;
1633		fdp = p->p_fd;
1634		t = db_mutex_enter(&fdp->fd_lock);
1635		if (!t) {
1636			pr("could not acquire fd_lock mutex\n");
1637			continue;
1638		}
1639		dt = atomic_load_consume(&fdp->fd_dt);
1640		for (i = 0; i < dt->dt_nfiles; i++) {
1641			ff = dt->dt_ff[i];
1642			if (ff == NULL)
1643				continue;
1644
1645			fp = atomic_load_consume(&ff->ff_file);
1646			if (fp == NULL)
1647				continue;
1648
1649			t = db_mutex_enter(&fp->f_lock);
1650			if (!t) {
1651				pr("could not acquire f_lock mutex\n");
1652				continue;
1653			}
1654			if ((struct socket *)fp->f_data != so) {
1655				mutex_exit(&fp->f_lock);
1656				continue;
1657			}
1658			found++;
1659			if (pr)
1660				pr("socket %p: owner %s(pid=%d)\n",
1661				    so, p->p_comm, p->p_pid);
1662			mutex_exit(&fp->f_lock);
1663			if (all == 0)
1664				break;
1665		}
1666		mutex_exit(&fdp->fd_lock);
1667		if (all == 0 && found != 0)
1668			break;
1669	}
1670	mutex_exit(&proc_lock);
1671
1672	return found;
1673}
1674
1675void
1676socket_print(const char *modif, void (*pr)(const char *, ...))
1677{
1678	file_t *fp;
1679	struct socket *so;
1680	struct sockbuf *sb_snd, *sb_rcv;
1681	struct mbuf *m_rec, *m;
1682	bool opt_v = false;
1683	bool opt_m = false;
1684	bool opt_a = false;
1685	bool opt_p = false;
1686	int nrecs, nmbufs;
1687	char ch;
1688	const char *family;
1689
1690	while ( (ch = *(modif++)) != '\0') {
1691		switch (ch) {
1692		case 'v':
1693			opt_v = true;
1694			break;
1695		case 'm':
1696			opt_m = true;
1697			break;
1698		case 'a':
1699			opt_a = true;
1700			break;
1701		case 'p':
1702			opt_p = true;
1703			break;
1704		}
1705	}
1706	if (opt_v == false && pr)
1707		(pr)("Ignore empty sockets. use /v to print all.\n");
1708	if (opt_p == true && pr)
1709		(pr)("Don't search owner process.\n");
1710
1711	LIST_FOREACH(fp, &filehead, f_list) {
1712		if (fp->f_type != DTYPE_SOCKET)
1713			continue;
1714		so = (struct socket *)fp->f_data;
1715		if (so == NULL)
1716			continue;
1717
1718		if (so->so_proto->pr_domain->dom_family == AF_INET)
1719			family = "INET";
1720#ifdef INET6
1721		else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1722			family = "INET6";
1723#endif
1724		else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1725			family = "KEY";
1726		else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1727			family = "ROUTE";
1728		else
1729			continue;
1730
1731		sb_snd = &so->so_snd;
1732		sb_rcv = &so->so_rcv;
1733
1734		if (opt_v != true &&
1735		    sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1736			continue;
1737
1738		pr("---SOCKET %p: type %s\n", so, family);
1739		if (opt_p != true)
1740			sofindproc(so, opt_a == true ? 1 : 0, pr);
1741		pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1742		pr("Send Buffer mbufs:\n");
1743		m_rec = m = sb_snd->sb_mb;
1744		nrecs = 0;
1745		nmbufs = 0;
1746		while (m_rec) {
1747			nrecs++;
1748			if (opt_m == true)
1749				pr(" mbuf chain %p\n", m_rec);
1750			while (m) {
1751				nmbufs++;
1752				m = m->m_next;
1753			}
1754			m_rec = m = m_rec->m_nextpkt;
1755		}
1756		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1757
1758		pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1759		pr("Recv Buffer mbufs:\n");
1760		m_rec = m = sb_rcv->sb_mb;
1761		nrecs = 0;
1762		nmbufs = 0;
1763		while (m_rec) {
1764			nrecs++;
1765			if (opt_m == true)
1766				pr(" mbuf chain %p\n", m_rec);
1767			while (m) {
1768				nmbufs++;
1769				m = m->m_next;
1770			}
1771			m_rec = m = m_rec->m_nextpkt;
1772		}
1773		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1774	}
1775}
1776#endif /* DDB */
1777