uipc_socket2.c revision 1.139
1/*	$NetBSD: uipc_socket2.c,v 1.139 2021/03/04 01:35:31 msaitoh Exp $	*/
2
3/*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 *    may be used to endorse or promote products derived from this software
43 *    without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58 */
59
60#include <sys/cdefs.h>
61__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.139 2021/03/04 01:35:31 msaitoh Exp $");
62
63#ifdef _KERNEL_OPT
64#include "opt_ddb.h"
65#include "opt_inet.h"
66#include "opt_mbuftrace.h"
67#include "opt_sb_max.h"
68#endif
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/proc.h>
73#include <sys/file.h>
74#include <sys/buf.h>
75#include <sys/mbuf.h>
76#include <sys/protosw.h>
77#include <sys/domain.h>
78#include <sys/poll.h>
79#include <sys/socket.h>
80#include <sys/socketvar.h>
81#include <sys/signalvar.h>
82#include <sys/kauth.h>
83#include <sys/pool.h>
84#include <sys/uidinfo.h>
85
86#ifdef DDB
87#include <sys/filedesc.h>
88#endif
89
90/*
91 * Primitive routines for operating on sockets and socket buffers.
92 *
93 * Connection life-cycle:
94 *
95 *	Normal sequence from the active (originating) side:
96 *
97 *	- soisconnecting() is called during processing of connect() call,
98 *	- resulting in an eventual call to soisconnected() if/when the
99 *	  connection is established.
100 *
101 *	When the connection is torn down during processing of disconnect():
102 *
103 *	- soisdisconnecting() is called and,
104 *	- soisdisconnected() is called when the connection to the peer
105 *	  is totally severed.
106 *
107 *	The semantics of these routines are such that connectionless protocols
108 *	can call soisconnected() and soisdisconnected() only, bypassing the
109 *	in-progress calls when setting up a ``connection'' takes no time.
110 *
111 *	From the passive side, a socket is created with two queues of sockets:
112 *
113 *	- so_q0 (0) for partial connections (i.e. connections in progress)
114 *	- so_q (1) for connections already made and awaiting user acceptance.
115 *
116 *	As a protocol is preparing incoming connections, it creates a socket
117 *	structure queued on so_q0 by calling sonewconn().  When the connection
118 *	is established, soisconnected() is called, and transfers the
119 *	socket structure to so_q, making it available to accept().
120 *
121 *	If a socket is closed with sockets on either so_q0 or so_q, these
122 *	sockets are dropped.
123 *
124 * Locking rules and assumptions:
125 *
126 * o socket::so_lock can change on the fly.  The low level routines used
127 *   to lock sockets are aware of this.  When so_lock is acquired, the
128 *   routine locking must check to see if so_lock still points to the
129 *   lock that was acquired.  If so_lock has changed in the meantime, the
130 *   now irrelevant lock that was acquired must be dropped and the lock
131 *   operation retried.  Although not proven here, this is completely safe
132 *   on a multiprocessor system, even with relaxed memory ordering, given
133 *   the next two rules:
134 *
135 * o In order to mutate so_lock, the lock pointed to by the current value
136 *   of so_lock must be held: i.e., the socket must be held locked by the
137 *   changing thread.  The thread must issue membar_exit() to prevent
138 *   memory accesses being reordered, and can set so_lock to the desired
139 *   value.  If the lock pointed to by the new value of so_lock is not
140 *   held by the changing thread, the socket must then be considered
141 *   unlocked.
142 *
143 * o If so_lock is mutated, and the previous lock referred to by so_lock
144 *   could still be visible to other threads in the system (e.g. via file
145 *   descriptor or protocol-internal reference), then the old lock must
146 *   remain valid until the socket and/or protocol control block has been
147 *   torn down.
148 *
149 * o If a socket has a non-NULL so_head value (i.e. is in the process of
150 *   connecting), then locking the socket must also lock the socket pointed
151 *   to by so_head: their lock pointers must match.
152 *
153 * o If a socket has connections in progress (so_q, so_q0 not empty) then
154 *   locking the socket must also lock the sockets attached to both queues.
155 *   Again, their lock pointers must match.
156 *
157 * o Beyond the initial lock assignment in socreate(), assigning locks to
158 *   sockets is the responsibility of the individual protocols / protocol
159 *   domains.
160 */
161
162static pool_cache_t	socket_cache;
163u_long			sb_max = SB_MAX;/* maximum socket buffer size */
164static u_long		sb_max_adj;	/* adjusted sb_max */
165
166void
167soisconnecting(struct socket *so)
168{
169
170	KASSERT(solocked(so));
171
172	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
173	so->so_state |= SS_ISCONNECTING;
174}
175
176void
177soisconnected(struct socket *so)
178{
179	struct socket	*head;
180
181	head = so->so_head;
182
183	KASSERT(solocked(so));
184	KASSERT(head == NULL || solocked2(so, head));
185
186	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
187	so->so_state |= SS_ISCONNECTED;
188	if (head && so->so_onq == &head->so_q0) {
189		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
190			/*
191			 * Re-enqueue and wake up any waiters, e.g.
192			 * processes blocking on accept().
193			 */
194			soqremque(so, 0);
195			soqinsque(head, so, 1);
196			sorwakeup(head);
197			cv_broadcast(&head->so_cv);
198		} else {
199			so->so_upcall =
200			    head->so_accf->so_accept_filter->accf_callback;
201			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
202			so->so_rcv.sb_flags |= SB_UPCALL;
203			so->so_options &= ~SO_ACCEPTFILTER;
204			(*so->so_upcall)(so, so->so_upcallarg,
205					 POLLIN|POLLRDNORM, M_DONTWAIT);
206		}
207	} else {
208		cv_broadcast(&so->so_cv);
209		sorwakeup(so);
210		sowwakeup(so);
211	}
212}
213
214void
215soisdisconnecting(struct socket *so)
216{
217
218	KASSERT(solocked(so));
219
220	so->so_state &= ~SS_ISCONNECTING;
221	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
222	cv_broadcast(&so->so_cv);
223	sowwakeup(so);
224	sorwakeup(so);
225}
226
227void
228soisdisconnected(struct socket *so)
229{
230
231	KASSERT(solocked(so));
232
233	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
234	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
235	cv_broadcast(&so->so_cv);
236	sowwakeup(so);
237	sorwakeup(so);
238}
239
240void
241soinit2(void)
242{
243
244	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
245	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
246}
247
248/*
249 * sonewconn: accept a new connection.
250 *
251 * When an attempt at a new connection is noted on a socket which accepts
252 * connections, sonewconn(9) is called.  If the connection is possible
253 * (subject to space constraints, etc) then we allocate a new structure,
254 * properly linked into the data structure of the original socket.
255 *
256 * => If 'soready' is true, then socket will become ready for accept() i.e.
257 *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
258 * => May be called from soft-interrupt context.
259 * => Listening socket should be locked.
260 * => Returns the new socket locked.
261 */
262struct socket *
263sonewconn(struct socket *head, bool soready)
264{
265	struct socket *so;
266	int soqueue, error;
267
268	KASSERT(solocked(head));
269
270	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
271		/*
272		 * Listen queue overflow.  If there is an accept filter
273		 * active, pass through the oldest cxn it's handling.
274		 */
275		if (head->so_accf == NULL) {
276			return NULL;
277		} else {
278			struct socket *so2, *next;
279
280			/* Pass the oldest connection waiting in the
281			   accept filter */
282			for (so2 = TAILQ_FIRST(&head->so_q0);
283			     so2 != NULL; so2 = next) {
284				next = TAILQ_NEXT(so2, so_qe);
285				if (so2->so_upcall == NULL) {
286					continue;
287				}
288				so2->so_upcall = NULL;
289				so2->so_upcallarg = NULL;
290				so2->so_options &= ~SO_ACCEPTFILTER;
291				so2->so_rcv.sb_flags &= ~SB_UPCALL;
292				soisconnected(so2);
293				break;
294			}
295
296			/* If nothing was nudged out of the acept filter, bail
297			 * out; otherwise proceed allocating the socket. */
298			if (so2 == NULL) {
299				return NULL;
300			}
301		}
302	}
303	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
304		soready = false;
305	}
306	soqueue = soready ? 1 : 0;
307
308	if ((so = soget(false)) == NULL) {
309		return NULL;
310	}
311	so->so_type = head->so_type;
312	so->so_options = head->so_options & ~SO_ACCEPTCONN;
313	so->so_linger = head->so_linger;
314	so->so_state = head->so_state | SS_NOFDREF;
315	so->so_proto = head->so_proto;
316	so->so_timeo = head->so_timeo;
317	so->so_pgid = head->so_pgid;
318	so->so_send = head->so_send;
319	so->so_receive = head->so_receive;
320	so->so_uidinfo = head->so_uidinfo;
321	so->so_egid = head->so_egid;
322	so->so_cpid = head->so_cpid;
323
324	/*
325	 * Share the lock with the listening-socket, it may get unshared
326	 * once the connection is complete.
327	 */
328	mutex_obj_hold(head->so_lock);
329	so->so_lock = head->so_lock;
330
331	/*
332	 * Reserve the space for socket buffers.
333	 */
334#ifdef MBUFTRACE
335	so->so_mowner = head->so_mowner;
336	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
337	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
338#endif
339	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
340		goto out;
341	}
342	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
343	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
344	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
345	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
346	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
347	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
348
349	/*
350	 * Finally, perform the protocol attach.  Note: a new socket
351	 * lock may be assigned at this point (if so, it will be held).
352	 */
353	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
354	if (error) {
355out:
356		KASSERT(solocked(so));
357		KASSERT(so->so_accf == NULL);
358		soput(so);
359
360		/* Note: the listening socket shall stay locked. */
361		KASSERT(solocked(head));
362		return NULL;
363	}
364	KASSERT(solocked2(head, so));
365
366	/*
367	 * Insert into the queue.  If ready, update the connection status
368	 * and wake up any waiters, e.g. processes blocking on accept().
369	 */
370	soqinsque(head, so, soqueue);
371	if (soready) {
372		so->so_state |= SS_ISCONNECTED;
373		sorwakeup(head);
374		cv_broadcast(&head->so_cv);
375	}
376	return so;
377}
378
379struct socket *
380soget(bool waitok)
381{
382	struct socket *so;
383
384	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
385	if (__predict_false(so == NULL))
386		return (NULL);
387	memset(so, 0, sizeof(*so));
388	TAILQ_INIT(&so->so_q0);
389	TAILQ_INIT(&so->so_q);
390	cv_init(&so->so_cv, "socket");
391	cv_init(&so->so_rcv.sb_cv, "netio");
392	cv_init(&so->so_snd.sb_cv, "netio");
393	selinit(&so->so_rcv.sb_sel);
394	selinit(&so->so_snd.sb_sel);
395	so->so_rcv.sb_so = so;
396	so->so_snd.sb_so = so;
397	return so;
398}
399
400void
401soput(struct socket *so)
402{
403
404	KASSERT(!cv_has_waiters(&so->so_cv));
405	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
406	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
407	seldestroy(&so->so_rcv.sb_sel);
408	seldestroy(&so->so_snd.sb_sel);
409	mutex_obj_free(so->so_lock);
410	cv_destroy(&so->so_cv);
411	cv_destroy(&so->so_rcv.sb_cv);
412	cv_destroy(&so->so_snd.sb_cv);
413	pool_cache_put(socket_cache, so);
414}
415
416/*
417 * soqinsque: insert socket of a new connection into the specified
418 * accept queue of the listening socket (head).
419 *
420 *	q = 0: queue of partial connections
421 *	q = 1: queue of incoming connections
422 */
423void
424soqinsque(struct socket *head, struct socket *so, int q)
425{
426	KASSERT(q == 0 || q == 1);
427	KASSERT(solocked2(head, so));
428	KASSERT(so->so_onq == NULL);
429	KASSERT(so->so_head == NULL);
430
431	so->so_head = head;
432	if (q == 0) {
433		head->so_q0len++;
434		so->so_onq = &head->so_q0;
435	} else {
436		head->so_qlen++;
437		so->so_onq = &head->so_q;
438	}
439	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
440}
441
442/*
443 * soqremque: remove socket from the specified queue.
444 *
445 * => Returns true if socket was removed from the specified queue.
446 * => False if socket was not removed (because it was in other queue).
447 */
448bool
449soqremque(struct socket *so, int q)
450{
451	struct socket *head = so->so_head;
452
453	KASSERT(q == 0 || q == 1);
454	KASSERT(solocked(so));
455	KASSERT(so->so_onq != NULL);
456	KASSERT(head != NULL);
457
458	if (q == 0) {
459		if (so->so_onq != &head->so_q0)
460			return false;
461		head->so_q0len--;
462	} else {
463		if (so->so_onq != &head->so_q)
464			return false;
465		head->so_qlen--;
466	}
467	KASSERT(solocked2(so, head));
468	TAILQ_REMOVE(so->so_onq, so, so_qe);
469	so->so_onq = NULL;
470	so->so_head = NULL;
471	return true;
472}
473
474/*
475 * socantsendmore: indicates that no more data will be sent on the
476 * socket; it would normally be applied to a socket when the user
477 * informs the system that no more data is to be sent, by the protocol
478 * code (in case pr_shutdown()).
479 */
480void
481socantsendmore(struct socket *so)
482{
483	KASSERT(solocked(so));
484
485	so->so_state |= SS_CANTSENDMORE;
486	sowwakeup(so);
487}
488
489/*
490 * socantrcvmore(): indicates that no more data will be received and
491 * will normally be applied to the socket by a protocol when it detects
492 * that the peer will send no more data.  Data queued for reading in
493 * the socket may yet be read.
494 */
495void
496socantrcvmore(struct socket *so)
497{
498	KASSERT(solocked(so));
499
500	so->so_state |= SS_CANTRCVMORE;
501	sorwakeup(so);
502}
503
504/*
505 * soroverflow(): indicates that data was attempted to be sent
506 * but the receiving buffer overflowed.
507 */
508void
509soroverflow(struct socket *so)
510{
511	KASSERT(solocked(so));
512
513	so->so_rcv.sb_overflowed++;
514	if (so->so_options & SO_RERROR)  {
515		so->so_rerror = ENOBUFS;
516		sorwakeup(so);
517	}
518}
519
520/*
521 * Wait for data to arrive at/drain from a socket buffer.
522 */
523int
524sbwait(struct sockbuf *sb)
525{
526	struct socket *so;
527	kmutex_t *lock;
528	int error;
529
530	so = sb->sb_so;
531
532	KASSERT(solocked(so));
533
534	sb->sb_flags |= SB_NOTIFY;
535	lock = so->so_lock;
536	if ((sb->sb_flags & SB_NOINTR) != 0)
537		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
538	else
539		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
540	if (__predict_false(lock != so->so_lock))
541		solockretry(so, lock);
542	return error;
543}
544
545/*
546 * Wakeup processes waiting on a socket buffer.
547 * Do asynchronous notification via SIGIO
548 * if the socket buffer has the SB_ASYNC flag set.
549 */
550void
551sowakeup(struct socket *so, struct sockbuf *sb, int code)
552{
553	int band;
554
555	KASSERT(solocked(so));
556	KASSERT(sb->sb_so == so);
557
558	if (code == POLL_IN)
559		band = POLLIN|POLLRDNORM;
560	else
561		band = POLLOUT|POLLWRNORM;
562	sb->sb_flags &= ~SB_NOTIFY;
563	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
564	cv_broadcast(&sb->sb_cv);
565	if (sb->sb_flags & SB_ASYNC)
566		fownsignal(so->so_pgid, SIGIO, code, band, so);
567	if (sb->sb_flags & SB_UPCALL)
568		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
569}
570
571/*
572 * Reset a socket's lock pointer.  Wake all threads waiting on the
573 * socket's condition variables so that they can restart their waits
574 * using the new lock.  The existing lock must be held.
575 */
576void
577solockreset(struct socket *so, kmutex_t *lock)
578{
579
580	KASSERT(solocked(so));
581
582	so->so_lock = lock;
583	cv_broadcast(&so->so_snd.sb_cv);
584	cv_broadcast(&so->so_rcv.sb_cv);
585	cv_broadcast(&so->so_cv);
586}
587
588/*
589 * Socket buffer (struct sockbuf) utility routines.
590 *
591 * Each socket contains two socket buffers: one for sending data and
592 * one for receiving data.  Each buffer contains a queue of mbufs,
593 * information about the number of mbufs and amount of data in the
594 * queue, and other fields allowing poll() statements and notification
595 * on data availability to be implemented.
596 *
597 * Data stored in a socket buffer is maintained as a list of records.
598 * Each record is a list of mbufs chained together with the m_next
599 * field.  Records are chained together with the m_nextpkt field. The upper
600 * level routine soreceive() expects the following conventions to be
601 * observed when placing information in the receive buffer:
602 *
603 * 1. If the protocol requires each message be preceded by the sender's
604 *    name, then a record containing that name must be present before
605 *    any associated data (mbuf's must be of type MT_SONAME).
606 * 2. If the protocol supports the exchange of ``access rights'' (really
607 *    just additional data associated with the message), and there are
608 *    ``rights'' to be received, then a record containing this data
609 *    should be present (mbuf's must be of type MT_CONTROL).
610 * 3. If a name or rights record exists, then it must be followed by
611 *    a data record, perhaps of zero length.
612 *
613 * Before using a new socket structure it is first necessary to reserve
614 * buffer space to the socket, by calling sbreserve().  This should commit
615 * some of the available buffer space in the system buffer pool for the
616 * socket (currently, it does nothing but enforce limits).  The space
617 * should be released by calling sbrelease() when the socket is destroyed.
618 */
619
620int
621sb_max_set(u_long new_sbmax)
622{
623	int s;
624
625	if (new_sbmax < (16 * 1024))
626		return (EINVAL);
627
628	s = splsoftnet();
629	sb_max = new_sbmax;
630	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
631	splx(s);
632
633	return (0);
634}
635
636int
637soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
638{
639	KASSERT(so->so_pcb == NULL || solocked(so));
640
641	/*
642	 * there's at least one application (a configure script of screen)
643	 * which expects a fifo is writable even if it has "some" bytes
644	 * in its buffer.
645	 * so we want to make sure (hiwat - lowat) >= (some bytes).
646	 *
647	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
648	 * we expect it's large enough for such applications.
649	 */
650	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
651	u_long  hiwat = lowat + PIPE_BUF;
652
653	if (sndcc < hiwat)
654		sndcc = hiwat;
655	if (sbreserve(&so->so_snd, sndcc, so) == 0)
656		goto bad;
657	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
658		goto bad2;
659	if (so->so_rcv.sb_lowat == 0)
660		so->so_rcv.sb_lowat = 1;
661	if (so->so_snd.sb_lowat == 0)
662		so->so_snd.sb_lowat = lowat;
663	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
664		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
665	return (0);
666 bad2:
667	sbrelease(&so->so_snd, so);
668 bad:
669	return (ENOBUFS);
670}
671
672/*
673 * Allot mbufs to a sockbuf.
674 * Attempt to scale mbmax so that mbcnt doesn't become limiting
675 * if buffering efficiency is near the normal case.
676 */
677int
678sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
679{
680	struct lwp *l = curlwp; /* XXX */
681	rlim_t maxcc;
682	struct uidinfo *uidinfo;
683
684	KASSERT(so->so_pcb == NULL || solocked(so));
685	KASSERT(sb->sb_so == so);
686	KASSERT(sb_max_adj != 0);
687
688	if (cc == 0 || cc > sb_max_adj)
689		return (0);
690
691	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
692
693	uidinfo = so->so_uidinfo;
694	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
695		return 0;
696	sb->sb_mbmax = uimin(cc * 2, sb_max);
697	if (sb->sb_lowat > sb->sb_hiwat)
698		sb->sb_lowat = sb->sb_hiwat;
699
700	return (1);
701}
702
703/*
704 * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
705 * that the socket is held locked here: see sorflush().
706 */
707void
708sbrelease(struct sockbuf *sb, struct socket *so)
709{
710
711	KASSERT(sb->sb_so == so);
712
713	sbflush(sb);
714	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
715	sb->sb_mbmax = 0;
716}
717
718/*
719 * Routines to add and remove
720 * data from an mbuf queue.
721 *
722 * The routines sbappend() or sbappendrecord() are normally called to
723 * append new mbufs to a socket buffer, after checking that adequate
724 * space is available, comparing the function sbspace() with the amount
725 * of data to be added.  sbappendrecord() differs from sbappend() in
726 * that data supplied is treated as the beginning of a new record.
727 * To place a sender's address, optional access rights, and data in a
728 * socket receive buffer, sbappendaddr() should be used.  To place
729 * access rights and data in a socket receive buffer, sbappendrights()
730 * should be used.  In either case, the new data begins a new record.
731 * Note that unlike sbappend() and sbappendrecord(), these routines check
732 * for the caller that there will be enough space to store the data.
733 * Each fails if there is not enough space, or if it cannot find mbufs
734 * to store additional information in.
735 *
736 * Reliable protocols may use the socket send buffer to hold data
737 * awaiting acknowledgement.  Data is normally copied from a socket
738 * send buffer in a protocol with m_copym for output to a peer,
739 * and then removing the data from the socket buffer with sbdrop()
740 * or sbdroprecord() when the data is acknowledged by the peer.
741 */
742
743#ifdef SOCKBUF_DEBUG
744void
745sblastrecordchk(struct sockbuf *sb, const char *where)
746{
747	struct mbuf *m = sb->sb_mb;
748
749	KASSERT(solocked(sb->sb_so));
750
751	while (m && m->m_nextpkt)
752		m = m->m_nextpkt;
753
754	if (m != sb->sb_lastrecord) {
755		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
756		    sb->sb_mb, sb->sb_lastrecord, m);
757		printf("packet chain:\n");
758		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
759			printf("\t%p\n", m);
760		panic("sblastrecordchk from %s", where);
761	}
762}
763
764void
765sblastmbufchk(struct sockbuf *sb, const char *where)
766{
767	struct mbuf *m = sb->sb_mb;
768	struct mbuf *n;
769
770	KASSERT(solocked(sb->sb_so));
771
772	while (m && m->m_nextpkt)
773		m = m->m_nextpkt;
774
775	while (m && m->m_next)
776		m = m->m_next;
777
778	if (m != sb->sb_mbtail) {
779		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
780		    sb->sb_mb, sb->sb_mbtail, m);
781		printf("packet tree:\n");
782		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
783			printf("\t");
784			for (n = m; n != NULL; n = n->m_next)
785				printf("%p ", n);
786			printf("\n");
787		}
788		panic("sblastmbufchk from %s", where);
789	}
790}
791#endif /* SOCKBUF_DEBUG */
792
793/*
794 * Link a chain of records onto a socket buffer
795 */
796#define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
797do {									\
798	if ((sb)->sb_lastrecord != NULL)				\
799		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
800	else								\
801		(sb)->sb_mb = (m0);					\
802	(sb)->sb_lastrecord = (mlast);					\
803} while (/*CONSTCOND*/0)
804
805
806#define	SBLINKRECORD(sb, m0)						\
807    SBLINKRECORDCHAIN(sb, m0, m0)
808
809/*
810 * Append mbuf chain m to the last record in the
811 * socket buffer sb.  The additional space associated
812 * the mbuf chain is recorded in sb.  Empty mbufs are
813 * discarded and mbufs are compacted where possible.
814 */
815void
816sbappend(struct sockbuf *sb, struct mbuf *m)
817{
818	struct mbuf	*n;
819
820	KASSERT(solocked(sb->sb_so));
821
822	if (m == NULL)
823		return;
824
825#ifdef MBUFTRACE
826	m_claimm(m, sb->sb_mowner);
827#endif
828
829	SBLASTRECORDCHK(sb, "sbappend 1");
830
831	if ((n = sb->sb_lastrecord) != NULL) {
832		/*
833		 * XXX Would like to simply use sb_mbtail here, but
834		 * XXX I need to verify that I won't miss an EOR that
835		 * XXX way.
836		 */
837		do {
838			if (n->m_flags & M_EOR) {
839				sbappendrecord(sb, m); /* XXXXXX!!!! */
840				return;
841			}
842		} while (n->m_next && (n = n->m_next));
843	} else {
844		/*
845		 * If this is the first record in the socket buffer, it's
846		 * also the last record.
847		 */
848		sb->sb_lastrecord = m;
849	}
850	sbcompress(sb, m, n);
851	SBLASTRECORDCHK(sb, "sbappend 2");
852}
853
854/*
855 * This version of sbappend() should only be used when the caller
856 * absolutely knows that there will never be more than one record
857 * in the socket buffer, that is, a stream protocol (such as TCP).
858 */
859void
860sbappendstream(struct sockbuf *sb, struct mbuf *m)
861{
862
863	KASSERT(solocked(sb->sb_so));
864	KDASSERT(m->m_nextpkt == NULL);
865	KASSERT(sb->sb_mb == sb->sb_lastrecord);
866
867	SBLASTMBUFCHK(sb, __func__);
868
869#ifdef MBUFTRACE
870	m_claimm(m, sb->sb_mowner);
871#endif
872
873	sbcompress(sb, m, sb->sb_mbtail);
874
875	sb->sb_lastrecord = sb->sb_mb;
876	SBLASTRECORDCHK(sb, __func__);
877}
878
879#ifdef SOCKBUF_DEBUG
880void
881sbcheck(struct sockbuf *sb)
882{
883	struct mbuf	*m, *m2;
884	u_long		len, mbcnt;
885
886	KASSERT(solocked(sb->sb_so));
887
888	len = 0;
889	mbcnt = 0;
890	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
891		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
892			len += m2->m_len;
893			mbcnt += MSIZE;
894			if (m2->m_flags & M_EXT)
895				mbcnt += m2->m_ext.ext_size;
896			if (m2->m_nextpkt != NULL)
897				panic("sbcheck nextpkt");
898		}
899	}
900	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
901		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
902		    mbcnt, sb->sb_mbcnt);
903		panic("sbcheck");
904	}
905}
906#endif
907
908/*
909 * As above, except the mbuf chain
910 * begins a new record.
911 */
912void
913sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
914{
915	struct mbuf	*m;
916
917	KASSERT(solocked(sb->sb_so));
918
919	if (m0 == NULL)
920		return;
921
922#ifdef MBUFTRACE
923	m_claimm(m0, sb->sb_mowner);
924#endif
925	/*
926	 * Put the first mbuf on the queue.
927	 * Note this permits zero length records.
928	 */
929	sballoc(sb, m0);
930	SBLASTRECORDCHK(sb, "sbappendrecord 1");
931	SBLINKRECORD(sb, m0);
932	m = m0->m_next;
933	m0->m_next = 0;
934	if (m && (m0->m_flags & M_EOR)) {
935		m0->m_flags &= ~M_EOR;
936		m->m_flags |= M_EOR;
937	}
938	sbcompress(sb, m, m0);
939	SBLASTRECORDCHK(sb, "sbappendrecord 2");
940}
941
942/*
943 * As above except that OOB data
944 * is inserted at the beginning of the sockbuf,
945 * but after any other OOB data.
946 */
947void
948sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
949{
950	struct mbuf	*m, **mp;
951
952	KASSERT(solocked(sb->sb_so));
953
954	if (m0 == NULL)
955		return;
956
957	SBLASTRECORDCHK(sb, "sbinsertoob 1");
958
959	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
960	    again:
961		switch (m->m_type) {
962
963		case MT_OOBDATA:
964			continue;		/* WANT next train */
965
966		case MT_CONTROL:
967			if ((m = m->m_next) != NULL)
968				goto again;	/* inspect THIS train further */
969		}
970		break;
971	}
972	/*
973	 * Put the first mbuf on the queue.
974	 * Note this permits zero length records.
975	 */
976	sballoc(sb, m0);
977	m0->m_nextpkt = *mp;
978	if (*mp == NULL) {
979		/* m0 is actually the new tail */
980		sb->sb_lastrecord = m0;
981	}
982	*mp = m0;
983	m = m0->m_next;
984	m0->m_next = 0;
985	if (m && (m0->m_flags & M_EOR)) {
986		m0->m_flags &= ~M_EOR;
987		m->m_flags |= M_EOR;
988	}
989	sbcompress(sb, m, m0);
990	SBLASTRECORDCHK(sb, "sbinsertoob 2");
991}
992
993/*
994 * Append address and data, and optionally, control (ancillary) data
995 * to the receive queue of a socket.  If present,
996 * m0 must include a packet header with total length.
997 * Returns 0 if no space in sockbuf or insufficient mbufs.
998 */
999int
1000sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
1001	struct mbuf *control)
1002{
1003	struct mbuf	*m, *n, *nlast;
1004	int		space, len;
1005
1006	KASSERT(solocked(sb->sb_so));
1007
1008	space = asa->sa_len;
1009
1010	if (m0 != NULL) {
1011		if ((m0->m_flags & M_PKTHDR) == 0)
1012			panic("sbappendaddr");
1013		space += m0->m_pkthdr.len;
1014#ifdef MBUFTRACE
1015		m_claimm(m0, sb->sb_mowner);
1016#endif
1017	}
1018	for (n = control; n; n = n->m_next) {
1019		space += n->m_len;
1020		MCLAIM(n, sb->sb_mowner);
1021		if (n->m_next == NULL)	/* keep pointer to last control buf */
1022			break;
1023	}
1024	if (space > sbspace(sb))
1025		return (0);
1026	m = m_get(M_DONTWAIT, MT_SONAME);
1027	if (m == NULL)
1028		return (0);
1029	MCLAIM(m, sb->sb_mowner);
1030	/*
1031	 * XXX avoid 'comparison always true' warning which isn't easily
1032	 * avoided.
1033	 */
1034	len = asa->sa_len;
1035	if (len > MLEN) {
1036		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1037		if ((m->m_flags & M_EXT) == 0) {
1038			m_free(m);
1039			return (0);
1040		}
1041	}
1042	m->m_len = asa->sa_len;
1043	memcpy(mtod(m, void *), asa, asa->sa_len);
1044	if (n)
1045		n->m_next = m0;		/* concatenate data to control */
1046	else
1047		control = m0;
1048	m->m_next = control;
1049
1050	SBLASTRECORDCHK(sb, "sbappendaddr 1");
1051
1052	for (n = m; n->m_next != NULL; n = n->m_next)
1053		sballoc(sb, n);
1054	sballoc(sb, n);
1055	nlast = n;
1056	SBLINKRECORD(sb, m);
1057
1058	sb->sb_mbtail = nlast;
1059	SBLASTMBUFCHK(sb, "sbappendaddr");
1060	SBLASTRECORDCHK(sb, "sbappendaddr 2");
1061
1062	return (1);
1063}
1064
1065/*
1066 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1067 * an mbuf chain.
1068 */
1069static inline struct mbuf *
1070m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1071		   const struct sockaddr *asa)
1072{
1073	struct mbuf *m;
1074	const int salen = asa->sa_len;
1075
1076	KASSERT(solocked(sb->sb_so));
1077
1078	/* only the first in each chain need be a pkthdr */
1079	m = m_gethdr(M_DONTWAIT, MT_SONAME);
1080	if (m == NULL)
1081		return NULL;
1082	MCLAIM(m, sb->sb_mowner);
1083#ifdef notyet
1084	if (salen > MHLEN) {
1085		MEXTMALLOC(m, salen, M_NOWAIT);
1086		if ((m->m_flags & M_EXT) == 0) {
1087			m_free(m);
1088			return NULL;
1089		}
1090	}
1091#else
1092	KASSERT(salen <= MHLEN);
1093#endif
1094	m->m_len = salen;
1095	memcpy(mtod(m, void *), asa, salen);
1096	m->m_next = m0;
1097	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1098
1099	return m;
1100}
1101
1102int
1103sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1104		  struct mbuf *m0, int sbprio)
1105{
1106	struct mbuf *m, *n, *n0, *nlast;
1107	int error;
1108
1109	KASSERT(solocked(sb->sb_so));
1110
1111	/*
1112	 * XXX sbprio reserved for encoding priority of this* request:
1113	 *  SB_PRIO_NONE --> honour normal sb limits
1114	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1115	 *	take whole chain. Intended for large requests
1116	 *      that should be delivered atomically (all, or none).
1117	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1118	 *       over normal socket limits, for messages indicating
1119	 *       buffer overflow in earlier normal/lower-priority messages
1120	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1121	 *       Intended for  kernel-generated messages only.
1122	 *        Up to generator to avoid total mbuf resource exhaustion.
1123	 */
1124	(void)sbprio;
1125
1126	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1127		panic("sbappendaddrchain");
1128
1129#ifdef notyet
1130	space = sbspace(sb);
1131
1132	/*
1133	 * Enforce SB_PRIO_* limits as described above.
1134	 */
1135#endif
1136
1137	n0 = NULL;
1138	nlast = NULL;
1139	for (m = m0; m; m = m->m_nextpkt) {
1140		struct mbuf *np;
1141
1142#ifdef MBUFTRACE
1143		m_claimm(m, sb->sb_mowner);
1144#endif
1145
1146		/* Prepend sockaddr to this record (m) of input chain m0 */
1147	  	n = m_prepend_sockaddr(sb, m, asa);
1148		if (n == NULL) {
1149			error = ENOBUFS;
1150			goto bad;
1151		}
1152
1153		/* Append record (asa+m) to end of new chain n0 */
1154		if (n0 == NULL) {
1155			n0 = n;
1156		} else {
1157			nlast->m_nextpkt = n;
1158		}
1159		/* Keep track of last record on new chain */
1160		nlast = n;
1161
1162		for (np = n; np; np = np->m_next)
1163			sballoc(sb, np);
1164	}
1165
1166	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1167
1168	/* Drop the entire chain of (asa+m) records onto the socket */
1169	SBLINKRECORDCHAIN(sb, n0, nlast);
1170
1171	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1172
1173	for (m = nlast; m->m_next; m = m->m_next)
1174		;
1175	sb->sb_mbtail = m;
1176	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1177
1178	return (1);
1179
1180bad:
1181	/*
1182	 * On error, free the prepended addreseses. For consistency
1183	 * with sbappendaddr(), leave it to our caller to free
1184	 * the input record chain passed to us as m0.
1185	 */
1186	while ((n = n0) != NULL) {
1187	  	struct mbuf *np;
1188
1189		/* Undo the sballoc() of this record */
1190		for (np = n; np; np = np->m_next)
1191			sbfree(sb, np);
1192
1193		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1194		np = m_free(n);		/* free prepended address (not data) */
1195	}
1196	return error;
1197}
1198
1199
1200int
1201sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1202{
1203	struct mbuf	*m, *mlast, *n;
1204	int		space;
1205
1206	KASSERT(solocked(sb->sb_so));
1207
1208	space = 0;
1209	if (control == NULL)
1210		panic("sbappendcontrol");
1211	for (m = control; ; m = m->m_next) {
1212		space += m->m_len;
1213		MCLAIM(m, sb->sb_mowner);
1214		if (m->m_next == NULL)
1215			break;
1216	}
1217	n = m;			/* save pointer to last control buffer */
1218	for (m = m0; m; m = m->m_next) {
1219		MCLAIM(m, sb->sb_mowner);
1220		space += m->m_len;
1221	}
1222	if (space > sbspace(sb))
1223		return (0);
1224	n->m_next = m0;			/* concatenate data to control */
1225
1226	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1227
1228	for (m = control; m->m_next != NULL; m = m->m_next)
1229		sballoc(sb, m);
1230	sballoc(sb, m);
1231	mlast = m;
1232	SBLINKRECORD(sb, control);
1233
1234	sb->sb_mbtail = mlast;
1235	SBLASTMBUFCHK(sb, "sbappendcontrol");
1236	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1237
1238	return (1);
1239}
1240
1241/*
1242 * Compress mbuf chain m into the socket
1243 * buffer sb following mbuf n.  If n
1244 * is null, the buffer is presumed empty.
1245 */
1246void
1247sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1248{
1249	int		eor;
1250	struct mbuf	*o;
1251
1252	KASSERT(solocked(sb->sb_so));
1253
1254	eor = 0;
1255	while (m) {
1256		eor |= m->m_flags & M_EOR;
1257		if (m->m_len == 0 &&
1258		    (eor == 0 ||
1259		     (((o = m->m_next) || (o = n)) &&
1260		      o->m_type == m->m_type))) {
1261			if (sb->sb_lastrecord == m)
1262				sb->sb_lastrecord = m->m_next;
1263			m = m_free(m);
1264			continue;
1265		}
1266		if (n && (n->m_flags & M_EOR) == 0 &&
1267		    /* M_TRAILINGSPACE() checks buffer writeability */
1268		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1269		    m->m_len <= M_TRAILINGSPACE(n) &&
1270		    n->m_type == m->m_type) {
1271			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1272			    (unsigned)m->m_len);
1273			n->m_len += m->m_len;
1274			sb->sb_cc += m->m_len;
1275			m = m_free(m);
1276			continue;
1277		}
1278		if (n)
1279			n->m_next = m;
1280		else
1281			sb->sb_mb = m;
1282		sb->sb_mbtail = m;
1283		sballoc(sb, m);
1284		n = m;
1285		m->m_flags &= ~M_EOR;
1286		m = m->m_next;
1287		n->m_next = 0;
1288	}
1289	if (eor) {
1290		if (n)
1291			n->m_flags |= eor;
1292		else
1293			printf("semi-panic: sbcompress\n");
1294	}
1295	SBLASTMBUFCHK(sb, __func__);
1296}
1297
1298/*
1299 * Free all mbufs in a sockbuf.
1300 * Check that all resources are reclaimed.
1301 */
1302void
1303sbflush(struct sockbuf *sb)
1304{
1305
1306	KASSERT(solocked(sb->sb_so));
1307	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1308
1309	while (sb->sb_mbcnt)
1310		sbdrop(sb, (int)sb->sb_cc);
1311
1312	KASSERT(sb->sb_cc == 0);
1313	KASSERT(sb->sb_mb == NULL);
1314	KASSERT(sb->sb_mbtail == NULL);
1315	KASSERT(sb->sb_lastrecord == NULL);
1316}
1317
1318/*
1319 * Drop data from (the front of) a sockbuf.
1320 */
1321void
1322sbdrop(struct sockbuf *sb, int len)
1323{
1324	struct mbuf	*m, *next;
1325
1326	KASSERT(solocked(sb->sb_so));
1327
1328	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1329	while (len > 0) {
1330		if (m == NULL) {
1331			if (next == NULL)
1332				panic("sbdrop(%p,%d): cc=%lu",
1333				    sb, len, sb->sb_cc);
1334			m = next;
1335			next = m->m_nextpkt;
1336			continue;
1337		}
1338		if (m->m_len > len) {
1339			m->m_len -= len;
1340			m->m_data += len;
1341			sb->sb_cc -= len;
1342			break;
1343		}
1344		len -= m->m_len;
1345		sbfree(sb, m);
1346		m = m_free(m);
1347	}
1348	while (m && m->m_len == 0) {
1349		sbfree(sb, m);
1350		m = m_free(m);
1351	}
1352	if (m) {
1353		sb->sb_mb = m;
1354		m->m_nextpkt = next;
1355	} else
1356		sb->sb_mb = next;
1357	/*
1358	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1359	 * makes sure sb_lastrecord is up-to-date if we dropped
1360	 * part of the last record.
1361	 */
1362	m = sb->sb_mb;
1363	if (m == NULL) {
1364		sb->sb_mbtail = NULL;
1365		sb->sb_lastrecord = NULL;
1366	} else if (m->m_nextpkt == NULL)
1367		sb->sb_lastrecord = m;
1368}
1369
1370/*
1371 * Drop a record off the front of a sockbuf
1372 * and move the next record to the front.
1373 */
1374void
1375sbdroprecord(struct sockbuf *sb)
1376{
1377	struct mbuf	*m, *mn;
1378
1379	KASSERT(solocked(sb->sb_so));
1380
1381	m = sb->sb_mb;
1382	if (m) {
1383		sb->sb_mb = m->m_nextpkt;
1384		do {
1385			sbfree(sb, m);
1386			mn = m_free(m);
1387		} while ((m = mn) != NULL);
1388	}
1389	SB_EMPTY_FIXUP(sb);
1390}
1391
1392/*
1393 * Create a "control" mbuf containing the specified data
1394 * with the specified type for presentation on a socket buffer.
1395 */
1396struct mbuf *
1397sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1398{
1399	struct cmsghdr	*cp;
1400	struct mbuf	*m;
1401	int space = CMSG_SPACE(size);
1402
1403	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1404		printf("%s: message too large %d\n", __func__, space);
1405		return NULL;
1406	}
1407
1408	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1409		return NULL;
1410	if (space > MLEN) {
1411		if (space > MCLBYTES)
1412			MEXTMALLOC(m, space, M_WAITOK);
1413		else
1414			MCLGET(m, flags);
1415		if ((m->m_flags & M_EXT) == 0) {
1416			m_free(m);
1417			return NULL;
1418		}
1419	}
1420	cp = mtod(m, struct cmsghdr *);
1421	*p = CMSG_DATA(cp);
1422	m->m_len = space;
1423	cp->cmsg_len = CMSG_LEN(size);
1424	cp->cmsg_level = level;
1425	cp->cmsg_type = type;
1426
1427	memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
1428	memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
1429
1430	return m;
1431}
1432
1433struct mbuf *
1434sbcreatecontrol(void *p, int size, int type, int level)
1435{
1436	struct mbuf *m;
1437	void *v;
1438
1439	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1440	if (m == NULL)
1441		return NULL;
1442	memcpy(v, p, size);
1443	return m;
1444}
1445
1446void
1447solockretry(struct socket *so, kmutex_t *lock)
1448{
1449
1450	while (lock != so->so_lock) {
1451		mutex_exit(lock);
1452		lock = so->so_lock;
1453		mutex_enter(lock);
1454	}
1455}
1456
1457bool
1458solocked(const struct socket *so)
1459{
1460
1461	return mutex_owned(so->so_lock);
1462}
1463
1464bool
1465solocked2(const struct socket *so1, const struct socket *so2)
1466{
1467	const kmutex_t *lock;
1468
1469	lock = so1->so_lock;
1470	if (lock != so2->so_lock)
1471		return false;
1472	return mutex_owned(lock);
1473}
1474
1475/*
1476 * sosetlock: assign a default lock to a new socket.
1477 */
1478void
1479sosetlock(struct socket *so)
1480{
1481	if (so->so_lock == NULL) {
1482		kmutex_t *lock = softnet_lock;
1483
1484		so->so_lock = lock;
1485		mutex_obj_hold(lock);
1486		mutex_enter(lock);
1487	}
1488	KASSERT(solocked(so));
1489}
1490
1491/*
1492 * Set lock on sockbuf sb; sleep if lock is already held.
1493 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1494 * Returns error without lock if sleep is interrupted.
1495 */
1496int
1497sblock(struct sockbuf *sb, int wf)
1498{
1499	struct socket *so;
1500	kmutex_t *lock;
1501	int error;
1502
1503	KASSERT(solocked(sb->sb_so));
1504
1505	for (;;) {
1506		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1507			sb->sb_flags |= SB_LOCK;
1508			return 0;
1509		}
1510		if (wf != M_WAITOK)
1511			return EWOULDBLOCK;
1512		so = sb->sb_so;
1513		lock = so->so_lock;
1514		if ((sb->sb_flags & SB_NOINTR) != 0) {
1515			cv_wait(&so->so_cv, lock);
1516			error = 0;
1517		} else
1518			error = cv_wait_sig(&so->so_cv, lock);
1519		if (__predict_false(lock != so->so_lock))
1520			solockretry(so, lock);
1521		if (error != 0)
1522			return error;
1523	}
1524}
1525
1526void
1527sbunlock(struct sockbuf *sb)
1528{
1529	struct socket *so;
1530
1531	so = sb->sb_so;
1532
1533	KASSERT(solocked(so));
1534	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1535
1536	sb->sb_flags &= ~SB_LOCK;
1537	cv_broadcast(&so->so_cv);
1538}
1539
1540int
1541sowait(struct socket *so, bool catch_p, int timo)
1542{
1543	kmutex_t *lock;
1544	int error;
1545
1546	KASSERT(solocked(so));
1547	KASSERT(catch_p || timo != 0);
1548
1549	lock = so->so_lock;
1550	if (catch_p)
1551		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1552	else
1553		error = cv_timedwait(&so->so_cv, lock, timo);
1554	if (__predict_false(lock != so->so_lock))
1555		solockretry(so, lock);
1556	return error;
1557}
1558
1559#ifdef DDB
1560
1561/*
1562 * Currently, sofindproc() is used only from DDB. It could be used from others
1563 * by using db_mutex_enter()
1564 */
1565
1566static inline int
1567db_mutex_enter(kmutex_t *mtx)
1568{
1569	extern int db_active;
1570	int rv;
1571
1572	if (!db_active) {
1573		mutex_enter(mtx);
1574		rv = 1;
1575	} else
1576		rv = mutex_tryenter(mtx);
1577
1578	return rv;
1579}
1580
1581int
1582sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1583{
1584	proc_t *p;
1585	filedesc_t *fdp;
1586	fdtab_t *dt;
1587	fdfile_t *ff;
1588	file_t *fp = NULL;
1589	int found = 0;
1590	int i, t;
1591
1592	if (so == NULL)
1593		return 0;
1594
1595	t = db_mutex_enter(&proc_lock);
1596	if (!t) {
1597		pr("could not acquire proc_lock mutex\n");
1598		return 0;
1599	}
1600	PROCLIST_FOREACH(p, &allproc) {
1601		if (p->p_stat == SIDL)
1602			continue;
1603		fdp = p->p_fd;
1604		t = db_mutex_enter(&fdp->fd_lock);
1605		if (!t) {
1606			pr("could not acquire fd_lock mutex\n");
1607			continue;
1608		}
1609		dt = atomic_load_consume(&fdp->fd_dt);
1610		for (i = 0; i < dt->dt_nfiles; i++) {
1611			ff = dt->dt_ff[i];
1612			if (ff == NULL)
1613				continue;
1614
1615			fp = atomic_load_consume(&ff->ff_file);
1616			if (fp == NULL)
1617				continue;
1618
1619			t = db_mutex_enter(&fp->f_lock);
1620			if (!t) {
1621				pr("could not acquire f_lock mutex\n");
1622				continue;
1623			}
1624			if ((struct socket *)fp->f_data != so) {
1625				mutex_exit(&fp->f_lock);
1626				continue;
1627			}
1628			found++;
1629			if (pr)
1630				pr("socket %p: owner %s(pid=%d)\n",
1631				    so, p->p_comm, p->p_pid);
1632			mutex_exit(&fp->f_lock);
1633			if (all == 0)
1634				break;
1635		}
1636		mutex_exit(&fdp->fd_lock);
1637		if (all == 0 && found != 0)
1638			break;
1639	}
1640	mutex_exit(&proc_lock);
1641
1642	return found;
1643}
1644
1645void
1646socket_print(const char *modif, void (*pr)(const char *, ...))
1647{
1648	file_t *fp;
1649	struct socket *so;
1650	struct sockbuf *sb_snd, *sb_rcv;
1651	struct mbuf *m_rec, *m;
1652	bool opt_v = false;
1653	bool opt_m = false;
1654	bool opt_a = false;
1655	bool opt_p = false;
1656	int nrecs, nmbufs;
1657	char ch;
1658	const char *family;
1659
1660	while ( (ch = *(modif++)) != '\0') {
1661		switch (ch) {
1662		case 'v':
1663			opt_v = true;
1664			break;
1665		case 'm':
1666			opt_m = true;
1667			break;
1668		case 'a':
1669			opt_a = true;
1670			break;
1671		case 'p':
1672			opt_p = true;
1673			break;
1674		}
1675	}
1676	if (opt_v == false && pr)
1677		(pr)("Ignore empty sockets. use /v to print all.\n");
1678	if (opt_p == true && pr)
1679		(pr)("Don't search owner process.\n");
1680
1681	LIST_FOREACH(fp, &filehead, f_list) {
1682		if (fp->f_type != DTYPE_SOCKET)
1683			continue;
1684		so = (struct socket *)fp->f_data;
1685		if (so == NULL)
1686			continue;
1687
1688		if (so->so_proto->pr_domain->dom_family == AF_INET)
1689			family = "INET";
1690#ifdef INET6
1691		else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1692			family = "INET6";
1693#endif
1694		else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1695			family = "KEY";
1696		else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1697			family = "ROUTE";
1698		else
1699			continue;
1700
1701		sb_snd = &so->so_snd;
1702		sb_rcv = &so->so_rcv;
1703
1704		if (opt_v != true &&
1705		    sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1706			continue;
1707
1708		pr("---SOCKET %p: type %s\n", so, family);
1709		if (opt_p != true)
1710			sofindproc(so, opt_a == true ? 1 : 0, pr);
1711		pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1712		pr("Send Buffer mbufs:\n");
1713		m_rec = m = sb_snd->sb_mb;
1714		nrecs = 0;
1715		nmbufs = 0;
1716		while (m_rec) {
1717			nrecs++;
1718			if (opt_m == true)
1719				pr(" mbuf chain %p\n", m_rec);
1720			while (m) {
1721				nmbufs++;
1722				m = m->m_next;
1723			}
1724			m_rec = m = m_rec->m_nextpkt;
1725		}
1726		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1727
1728		pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1729		pr("Recv Buffer mbufs:\n");
1730		m_rec = m = sb_rcv->sb_mb;
1731		nrecs = 0;
1732		nmbufs = 0;
1733		while (m_rec) {
1734			nrecs++;
1735			if (opt_m == true)
1736				pr(" mbuf chain %p\n", m_rec);
1737			while (m) {
1738				nmbufs++;
1739				m = m->m_next;
1740			}
1741			m_rec = m = m_rec->m_nextpkt;
1742		}
1743		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1744	}
1745}
1746#endif /* DDB */
1747