uipc_socket2.c revision 1.138
1/*	$NetBSD: uipc_socket2.c,v 1.138 2020/08/26 22:54:30 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 *    may be used to endorse or promote products derived from this software
43 *    without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58 */
59
60#include <sys/cdefs.h>
61__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.138 2020/08/26 22:54:30 christos Exp $");
62
63#ifdef _KERNEL_OPT
64#include "opt_ddb.h"
65#include "opt_mbuftrace.h"
66#include "opt_sb_max.h"
67#endif
68
69#include <sys/param.h>
70#include <sys/systm.h>
71#include <sys/proc.h>
72#include <sys/file.h>
73#include <sys/buf.h>
74#include <sys/mbuf.h>
75#include <sys/protosw.h>
76#include <sys/domain.h>
77#include <sys/poll.h>
78#include <sys/socket.h>
79#include <sys/socketvar.h>
80#include <sys/signalvar.h>
81#include <sys/kauth.h>
82#include <sys/pool.h>
83#include <sys/uidinfo.h>
84
85#ifdef DDB
86#include <sys/filedesc.h>
87#endif
88
89/*
90 * Primitive routines for operating on sockets and socket buffers.
91 *
92 * Connection life-cycle:
93 *
94 *	Normal sequence from the active (originating) side:
95 *
96 *	- soisconnecting() is called during processing of connect() call,
97 *	- resulting in an eventual call to soisconnected() if/when the
98 *	  connection is established.
99 *
100 *	When the connection is torn down during processing of disconnect():
101 *
102 *	- soisdisconnecting() is called and,
103 *	- soisdisconnected() is called when the connection to the peer
104 *	  is totally severed.
105 *
106 *	The semantics of these routines are such that connectionless protocols
107 *	can call soisconnected() and soisdisconnected() only, bypassing the
108 *	in-progress calls when setting up a ``connection'' takes no time.
109 *
110 *	From the passive side, a socket is created with two queues of sockets:
111 *
112 *	- so_q0 (0) for partial connections (i.e. connections in progress)
113 *	- so_q (1) for connections already made and awaiting user acceptance.
114 *
115 *	As a protocol is preparing incoming connections, it creates a socket
116 *	structure queued on so_q0 by calling sonewconn().  When the connection
117 *	is established, soisconnected() is called, and transfers the
118 *	socket structure to so_q, making it available to accept().
119 *
120 *	If a socket is closed with sockets on either so_q0 or so_q, these
121 *	sockets are dropped.
122 *
123 * Locking rules and assumptions:
124 *
125 * o socket::so_lock can change on the fly.  The low level routines used
126 *   to lock sockets are aware of this.  When so_lock is acquired, the
127 *   routine locking must check to see if so_lock still points to the
128 *   lock that was acquired.  If so_lock has changed in the meantime, the
129 *   now irrelevant lock that was acquired must be dropped and the lock
130 *   operation retried.  Although not proven here, this is completely safe
131 *   on a multiprocessor system, even with relaxed memory ordering, given
132 *   the next two rules:
133 *
134 * o In order to mutate so_lock, the lock pointed to by the current value
135 *   of so_lock must be held: i.e., the socket must be held locked by the
136 *   changing thread.  The thread must issue membar_exit() to prevent
137 *   memory accesses being reordered, and can set so_lock to the desired
138 *   value.  If the lock pointed to by the new value of so_lock is not
139 *   held by the changing thread, the socket must then be considered
140 *   unlocked.
141 *
142 * o If so_lock is mutated, and the previous lock referred to by so_lock
143 *   could still be visible to other threads in the system (e.g. via file
144 *   descriptor or protocol-internal reference), then the old lock must
145 *   remain valid until the socket and/or protocol control block has been
146 *   torn down.
147 *
148 * o If a socket has a non-NULL so_head value (i.e. is in the process of
149 *   connecting), then locking the socket must also lock the socket pointed
150 *   to by so_head: their lock pointers must match.
151 *
152 * o If a socket has connections in progress (so_q, so_q0 not empty) then
153 *   locking the socket must also lock the sockets attached to both queues.
154 *   Again, their lock pointers must match.
155 *
156 * o Beyond the initial lock assignment in socreate(), assigning locks to
157 *   sockets is the responsibility of the individual protocols / protocol
158 *   domains.
159 */
160
161static pool_cache_t	socket_cache;
162u_long			sb_max = SB_MAX;/* maximum socket buffer size */
163static u_long		sb_max_adj;	/* adjusted sb_max */
164
165void
166soisconnecting(struct socket *so)
167{
168
169	KASSERT(solocked(so));
170
171	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
172	so->so_state |= SS_ISCONNECTING;
173}
174
175void
176soisconnected(struct socket *so)
177{
178	struct socket	*head;
179
180	head = so->so_head;
181
182	KASSERT(solocked(so));
183	KASSERT(head == NULL || solocked2(so, head));
184
185	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
186	so->so_state |= SS_ISCONNECTED;
187	if (head && so->so_onq == &head->so_q0) {
188		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
189			/*
190			 * Re-enqueue and wake up any waiters, e.g.
191			 * processes blocking on accept().
192			 */
193			soqremque(so, 0);
194			soqinsque(head, so, 1);
195			sorwakeup(head);
196			cv_broadcast(&head->so_cv);
197		} else {
198			so->so_upcall =
199			    head->so_accf->so_accept_filter->accf_callback;
200			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
201			so->so_rcv.sb_flags |= SB_UPCALL;
202			so->so_options &= ~SO_ACCEPTFILTER;
203			(*so->so_upcall)(so, so->so_upcallarg,
204					 POLLIN|POLLRDNORM, M_DONTWAIT);
205		}
206	} else {
207		cv_broadcast(&so->so_cv);
208		sorwakeup(so);
209		sowwakeup(so);
210	}
211}
212
213void
214soisdisconnecting(struct socket *so)
215{
216
217	KASSERT(solocked(so));
218
219	so->so_state &= ~SS_ISCONNECTING;
220	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
221	cv_broadcast(&so->so_cv);
222	sowwakeup(so);
223	sorwakeup(so);
224}
225
226void
227soisdisconnected(struct socket *so)
228{
229
230	KASSERT(solocked(so));
231
232	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
233	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
234	cv_broadcast(&so->so_cv);
235	sowwakeup(so);
236	sorwakeup(so);
237}
238
239void
240soinit2(void)
241{
242
243	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
244	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
245}
246
247/*
248 * sonewconn: accept a new connection.
249 *
250 * When an attempt at a new connection is noted on a socket which accepts
251 * connections, sonewconn(9) is called.  If the connection is possible
252 * (subject to space constraints, etc) then we allocate a new structure,
253 * properly linked into the data structure of the original socket.
254 *
255 * => If 'soready' is true, then socket will become ready for accept() i.e.
256 *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
257 * => May be called from soft-interrupt context.
258 * => Listening socket should be locked.
259 * => Returns the new socket locked.
260 */
261struct socket *
262sonewconn(struct socket *head, bool soready)
263{
264	struct socket *so;
265	int soqueue, error;
266
267	KASSERT(solocked(head));
268
269	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
270		/*
271		 * Listen queue overflow.  If there is an accept filter
272		 * active, pass through the oldest cxn it's handling.
273		 */
274		if (head->so_accf == NULL) {
275			return NULL;
276		} else {
277			struct socket *so2, *next;
278
279			/* Pass the oldest connection waiting in the
280			   accept filter */
281			for (so2 = TAILQ_FIRST(&head->so_q0);
282			     so2 != NULL; so2 = next) {
283				next = TAILQ_NEXT(so2, so_qe);
284				if (so2->so_upcall == NULL) {
285					continue;
286				}
287				so2->so_upcall = NULL;
288				so2->so_upcallarg = NULL;
289				so2->so_options &= ~SO_ACCEPTFILTER;
290				so2->so_rcv.sb_flags &= ~SB_UPCALL;
291				soisconnected(so2);
292				break;
293			}
294
295			/* If nothing was nudged out of the acept filter, bail
296			 * out; otherwise proceed allocating the socket. */
297			if (so2 == NULL) {
298				return NULL;
299			}
300		}
301	}
302	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
303		soready = false;
304	}
305	soqueue = soready ? 1 : 0;
306
307	if ((so = soget(false)) == NULL) {
308		return NULL;
309	}
310	so->so_type = head->so_type;
311	so->so_options = head->so_options & ~SO_ACCEPTCONN;
312	so->so_linger = head->so_linger;
313	so->so_state = head->so_state | SS_NOFDREF;
314	so->so_proto = head->so_proto;
315	so->so_timeo = head->so_timeo;
316	so->so_pgid = head->so_pgid;
317	so->so_send = head->so_send;
318	so->so_receive = head->so_receive;
319	so->so_uidinfo = head->so_uidinfo;
320	so->so_egid = head->so_egid;
321	so->so_cpid = head->so_cpid;
322
323	/*
324	 * Share the lock with the listening-socket, it may get unshared
325	 * once the connection is complete.
326	 */
327	mutex_obj_hold(head->so_lock);
328	so->so_lock = head->so_lock;
329
330	/*
331	 * Reserve the space for socket buffers.
332	 */
333#ifdef MBUFTRACE
334	so->so_mowner = head->so_mowner;
335	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
336	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
337#endif
338	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
339		goto out;
340	}
341	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
342	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
343	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
344	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
345	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
346	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
347
348	/*
349	 * Finally, perform the protocol attach.  Note: a new socket
350	 * lock may be assigned at this point (if so, it will be held).
351	 */
352	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
353	if (error) {
354out:
355		KASSERT(solocked(so));
356		KASSERT(so->so_accf == NULL);
357		soput(so);
358
359		/* Note: the listening socket shall stay locked. */
360		KASSERT(solocked(head));
361		return NULL;
362	}
363	KASSERT(solocked2(head, so));
364
365	/*
366	 * Insert into the queue.  If ready, update the connection status
367	 * and wake up any waiters, e.g. processes blocking on accept().
368	 */
369	soqinsque(head, so, soqueue);
370	if (soready) {
371		so->so_state |= SS_ISCONNECTED;
372		sorwakeup(head);
373		cv_broadcast(&head->so_cv);
374	}
375	return so;
376}
377
378struct socket *
379soget(bool waitok)
380{
381	struct socket *so;
382
383	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
384	if (__predict_false(so == NULL))
385		return (NULL);
386	memset(so, 0, sizeof(*so));
387	TAILQ_INIT(&so->so_q0);
388	TAILQ_INIT(&so->so_q);
389	cv_init(&so->so_cv, "socket");
390	cv_init(&so->so_rcv.sb_cv, "netio");
391	cv_init(&so->so_snd.sb_cv, "netio");
392	selinit(&so->so_rcv.sb_sel);
393	selinit(&so->so_snd.sb_sel);
394	so->so_rcv.sb_so = so;
395	so->so_snd.sb_so = so;
396	return so;
397}
398
399void
400soput(struct socket *so)
401{
402
403	KASSERT(!cv_has_waiters(&so->so_cv));
404	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
405	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
406	seldestroy(&so->so_rcv.sb_sel);
407	seldestroy(&so->so_snd.sb_sel);
408	mutex_obj_free(so->so_lock);
409	cv_destroy(&so->so_cv);
410	cv_destroy(&so->so_rcv.sb_cv);
411	cv_destroy(&so->so_snd.sb_cv);
412	pool_cache_put(socket_cache, so);
413}
414
415/*
416 * soqinsque: insert socket of a new connection into the specified
417 * accept queue of the listening socket (head).
418 *
419 *	q = 0: queue of partial connections
420 *	q = 1: queue of incoming connections
421 */
422void
423soqinsque(struct socket *head, struct socket *so, int q)
424{
425	KASSERT(q == 0 || q == 1);
426	KASSERT(solocked2(head, so));
427	KASSERT(so->so_onq == NULL);
428	KASSERT(so->so_head == NULL);
429
430	so->so_head = head;
431	if (q == 0) {
432		head->so_q0len++;
433		so->so_onq = &head->so_q0;
434	} else {
435		head->so_qlen++;
436		so->so_onq = &head->so_q;
437	}
438	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
439}
440
441/*
442 * soqremque: remove socket from the specified queue.
443 *
444 * => Returns true if socket was removed from the specified queue.
445 * => False if socket was not removed (because it was in other queue).
446 */
447bool
448soqremque(struct socket *so, int q)
449{
450	struct socket *head = so->so_head;
451
452	KASSERT(q == 0 || q == 1);
453	KASSERT(solocked(so));
454	KASSERT(so->so_onq != NULL);
455	KASSERT(head != NULL);
456
457	if (q == 0) {
458		if (so->so_onq != &head->so_q0)
459			return false;
460		head->so_q0len--;
461	} else {
462		if (so->so_onq != &head->so_q)
463			return false;
464		head->so_qlen--;
465	}
466	KASSERT(solocked2(so, head));
467	TAILQ_REMOVE(so->so_onq, so, so_qe);
468	so->so_onq = NULL;
469	so->so_head = NULL;
470	return true;
471}
472
473/*
474 * socantsendmore: indicates that no more data will be sent on the
475 * socket; it would normally be applied to a socket when the user
476 * informs the system that no more data is to be sent, by the protocol
477 * code (in case pr_shutdown()).
478 */
479void
480socantsendmore(struct socket *so)
481{
482	KASSERT(solocked(so));
483
484	so->so_state |= SS_CANTSENDMORE;
485	sowwakeup(so);
486}
487
488/*
489 * socantrcvmore(): indicates that no more data will be received and
490 * will normally be applied to the socket by a protocol when it detects
491 * that the peer will send no more data.  Data queued for reading in
492 * the socket may yet be read.
493 */
494void
495socantrcvmore(struct socket *so)
496{
497	KASSERT(solocked(so));
498
499	so->so_state |= SS_CANTRCVMORE;
500	sorwakeup(so);
501}
502
503/*
504 * soroverflow(): indicates that data was attempted to be sent
505 * but the receiving buffer overflowed.
506 */
507void
508soroverflow(struct socket *so)
509{
510	KASSERT(solocked(so));
511
512	so->so_rcv.sb_overflowed++;
513	if (so->so_options & SO_RERROR)  {
514		so->so_rerror = ENOBUFS;
515		sorwakeup(so);
516	}
517}
518
519/*
520 * Wait for data to arrive at/drain from a socket buffer.
521 */
522int
523sbwait(struct sockbuf *sb)
524{
525	struct socket *so;
526	kmutex_t *lock;
527	int error;
528
529	so = sb->sb_so;
530
531	KASSERT(solocked(so));
532
533	sb->sb_flags |= SB_NOTIFY;
534	lock = so->so_lock;
535	if ((sb->sb_flags & SB_NOINTR) != 0)
536		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
537	else
538		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
539	if (__predict_false(lock != so->so_lock))
540		solockretry(so, lock);
541	return error;
542}
543
544/*
545 * Wakeup processes waiting on a socket buffer.
546 * Do asynchronous notification via SIGIO
547 * if the socket buffer has the SB_ASYNC flag set.
548 */
549void
550sowakeup(struct socket *so, struct sockbuf *sb, int code)
551{
552	int band;
553
554	KASSERT(solocked(so));
555	KASSERT(sb->sb_so == so);
556
557	if (code == POLL_IN)
558		band = POLLIN|POLLRDNORM;
559	else
560		band = POLLOUT|POLLWRNORM;
561	sb->sb_flags &= ~SB_NOTIFY;
562	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
563	cv_broadcast(&sb->sb_cv);
564	if (sb->sb_flags & SB_ASYNC)
565		fownsignal(so->so_pgid, SIGIO, code, band, so);
566	if (sb->sb_flags & SB_UPCALL)
567		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
568}
569
570/*
571 * Reset a socket's lock pointer.  Wake all threads waiting on the
572 * socket's condition variables so that they can restart their waits
573 * using the new lock.  The existing lock must be held.
574 */
575void
576solockreset(struct socket *so, kmutex_t *lock)
577{
578
579	KASSERT(solocked(so));
580
581	so->so_lock = lock;
582	cv_broadcast(&so->so_snd.sb_cv);
583	cv_broadcast(&so->so_rcv.sb_cv);
584	cv_broadcast(&so->so_cv);
585}
586
587/*
588 * Socket buffer (struct sockbuf) utility routines.
589 *
590 * Each socket contains two socket buffers: one for sending data and
591 * one for receiving data.  Each buffer contains a queue of mbufs,
592 * information about the number of mbufs and amount of data in the
593 * queue, and other fields allowing poll() statements and notification
594 * on data availability to be implemented.
595 *
596 * Data stored in a socket buffer is maintained as a list of records.
597 * Each record is a list of mbufs chained together with the m_next
598 * field.  Records are chained together with the m_nextpkt field. The upper
599 * level routine soreceive() expects the following conventions to be
600 * observed when placing information in the receive buffer:
601 *
602 * 1. If the protocol requires each message be preceded by the sender's
603 *    name, then a record containing that name must be present before
604 *    any associated data (mbuf's must be of type MT_SONAME).
605 * 2. If the protocol supports the exchange of ``access rights'' (really
606 *    just additional data associated with the message), and there are
607 *    ``rights'' to be received, then a record containing this data
608 *    should be present (mbuf's must be of type MT_CONTROL).
609 * 3. If a name or rights record exists, then it must be followed by
610 *    a data record, perhaps of zero length.
611 *
612 * Before using a new socket structure it is first necessary to reserve
613 * buffer space to the socket, by calling sbreserve().  This should commit
614 * some of the available buffer space in the system buffer pool for the
615 * socket (currently, it does nothing but enforce limits).  The space
616 * should be released by calling sbrelease() when the socket is destroyed.
617 */
618
619int
620sb_max_set(u_long new_sbmax)
621{
622	int s;
623
624	if (new_sbmax < (16 * 1024))
625		return (EINVAL);
626
627	s = splsoftnet();
628	sb_max = new_sbmax;
629	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
630	splx(s);
631
632	return (0);
633}
634
635int
636soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
637{
638	KASSERT(so->so_pcb == NULL || solocked(so));
639
640	/*
641	 * there's at least one application (a configure script of screen)
642	 * which expects a fifo is writable even if it has "some" bytes
643	 * in its buffer.
644	 * so we want to make sure (hiwat - lowat) >= (some bytes).
645	 *
646	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
647	 * we expect it's large enough for such applications.
648	 */
649	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
650	u_long  hiwat = lowat + PIPE_BUF;
651
652	if (sndcc < hiwat)
653		sndcc = hiwat;
654	if (sbreserve(&so->so_snd, sndcc, so) == 0)
655		goto bad;
656	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
657		goto bad2;
658	if (so->so_rcv.sb_lowat == 0)
659		so->so_rcv.sb_lowat = 1;
660	if (so->so_snd.sb_lowat == 0)
661		so->so_snd.sb_lowat = lowat;
662	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
663		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
664	return (0);
665 bad2:
666	sbrelease(&so->so_snd, so);
667 bad:
668	return (ENOBUFS);
669}
670
671/*
672 * Allot mbufs to a sockbuf.
673 * Attempt to scale mbmax so that mbcnt doesn't become limiting
674 * if buffering efficiency is near the normal case.
675 */
676int
677sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
678{
679	struct lwp *l = curlwp; /* XXX */
680	rlim_t maxcc;
681	struct uidinfo *uidinfo;
682
683	KASSERT(so->so_pcb == NULL || solocked(so));
684	KASSERT(sb->sb_so == so);
685	KASSERT(sb_max_adj != 0);
686
687	if (cc == 0 || cc > sb_max_adj)
688		return (0);
689
690	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
691
692	uidinfo = so->so_uidinfo;
693	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
694		return 0;
695	sb->sb_mbmax = uimin(cc * 2, sb_max);
696	if (sb->sb_lowat > sb->sb_hiwat)
697		sb->sb_lowat = sb->sb_hiwat;
698
699	return (1);
700}
701
702/*
703 * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
704 * that the socket is held locked here: see sorflush().
705 */
706void
707sbrelease(struct sockbuf *sb, struct socket *so)
708{
709
710	KASSERT(sb->sb_so == so);
711
712	sbflush(sb);
713	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
714	sb->sb_mbmax = 0;
715}
716
717/*
718 * Routines to add and remove
719 * data from an mbuf queue.
720 *
721 * The routines sbappend() or sbappendrecord() are normally called to
722 * append new mbufs to a socket buffer, after checking that adequate
723 * space is available, comparing the function sbspace() with the amount
724 * of data to be added.  sbappendrecord() differs from sbappend() in
725 * that data supplied is treated as the beginning of a new record.
726 * To place a sender's address, optional access rights, and data in a
727 * socket receive buffer, sbappendaddr() should be used.  To place
728 * access rights and data in a socket receive buffer, sbappendrights()
729 * should be used.  In either case, the new data begins a new record.
730 * Note that unlike sbappend() and sbappendrecord(), these routines check
731 * for the caller that there will be enough space to store the data.
732 * Each fails if there is not enough space, or if it cannot find mbufs
733 * to store additional information in.
734 *
735 * Reliable protocols may use the socket send buffer to hold data
736 * awaiting acknowledgement.  Data is normally copied from a socket
737 * send buffer in a protocol with m_copym for output to a peer,
738 * and then removing the data from the socket buffer with sbdrop()
739 * or sbdroprecord() when the data is acknowledged by the peer.
740 */
741
742#ifdef SOCKBUF_DEBUG
743void
744sblastrecordchk(struct sockbuf *sb, const char *where)
745{
746	struct mbuf *m = sb->sb_mb;
747
748	KASSERT(solocked(sb->sb_so));
749
750	while (m && m->m_nextpkt)
751		m = m->m_nextpkt;
752
753	if (m != sb->sb_lastrecord) {
754		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
755		    sb->sb_mb, sb->sb_lastrecord, m);
756		printf("packet chain:\n");
757		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
758			printf("\t%p\n", m);
759		panic("sblastrecordchk from %s", where);
760	}
761}
762
763void
764sblastmbufchk(struct sockbuf *sb, const char *where)
765{
766	struct mbuf *m = sb->sb_mb;
767	struct mbuf *n;
768
769	KASSERT(solocked(sb->sb_so));
770
771	while (m && m->m_nextpkt)
772		m = m->m_nextpkt;
773
774	while (m && m->m_next)
775		m = m->m_next;
776
777	if (m != sb->sb_mbtail) {
778		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
779		    sb->sb_mb, sb->sb_mbtail, m);
780		printf("packet tree:\n");
781		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
782			printf("\t");
783			for (n = m; n != NULL; n = n->m_next)
784				printf("%p ", n);
785			printf("\n");
786		}
787		panic("sblastmbufchk from %s", where);
788	}
789}
790#endif /* SOCKBUF_DEBUG */
791
792/*
793 * Link a chain of records onto a socket buffer
794 */
795#define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
796do {									\
797	if ((sb)->sb_lastrecord != NULL)				\
798		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
799	else								\
800		(sb)->sb_mb = (m0);					\
801	(sb)->sb_lastrecord = (mlast);					\
802} while (/*CONSTCOND*/0)
803
804
805#define	SBLINKRECORD(sb, m0)						\
806    SBLINKRECORDCHAIN(sb, m0, m0)
807
808/*
809 * Append mbuf chain m to the last record in the
810 * socket buffer sb.  The additional space associated
811 * the mbuf chain is recorded in sb.  Empty mbufs are
812 * discarded and mbufs are compacted where possible.
813 */
814void
815sbappend(struct sockbuf *sb, struct mbuf *m)
816{
817	struct mbuf	*n;
818
819	KASSERT(solocked(sb->sb_so));
820
821	if (m == NULL)
822		return;
823
824#ifdef MBUFTRACE
825	m_claimm(m, sb->sb_mowner);
826#endif
827
828	SBLASTRECORDCHK(sb, "sbappend 1");
829
830	if ((n = sb->sb_lastrecord) != NULL) {
831		/*
832		 * XXX Would like to simply use sb_mbtail here, but
833		 * XXX I need to verify that I won't miss an EOR that
834		 * XXX way.
835		 */
836		do {
837			if (n->m_flags & M_EOR) {
838				sbappendrecord(sb, m); /* XXXXXX!!!! */
839				return;
840			}
841		} while (n->m_next && (n = n->m_next));
842	} else {
843		/*
844		 * If this is the first record in the socket buffer, it's
845		 * also the last record.
846		 */
847		sb->sb_lastrecord = m;
848	}
849	sbcompress(sb, m, n);
850	SBLASTRECORDCHK(sb, "sbappend 2");
851}
852
853/*
854 * This version of sbappend() should only be used when the caller
855 * absolutely knows that there will never be more than one record
856 * in the socket buffer, that is, a stream protocol (such as TCP).
857 */
858void
859sbappendstream(struct sockbuf *sb, struct mbuf *m)
860{
861
862	KASSERT(solocked(sb->sb_so));
863	KDASSERT(m->m_nextpkt == NULL);
864	KASSERT(sb->sb_mb == sb->sb_lastrecord);
865
866	SBLASTMBUFCHK(sb, __func__);
867
868#ifdef MBUFTRACE
869	m_claimm(m, sb->sb_mowner);
870#endif
871
872	sbcompress(sb, m, sb->sb_mbtail);
873
874	sb->sb_lastrecord = sb->sb_mb;
875	SBLASTRECORDCHK(sb, __func__);
876}
877
878#ifdef SOCKBUF_DEBUG
879void
880sbcheck(struct sockbuf *sb)
881{
882	struct mbuf	*m, *m2;
883	u_long		len, mbcnt;
884
885	KASSERT(solocked(sb->sb_so));
886
887	len = 0;
888	mbcnt = 0;
889	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
890		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
891			len += m2->m_len;
892			mbcnt += MSIZE;
893			if (m2->m_flags & M_EXT)
894				mbcnt += m2->m_ext.ext_size;
895			if (m2->m_nextpkt != NULL)
896				panic("sbcheck nextpkt");
897		}
898	}
899	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
900		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
901		    mbcnt, sb->sb_mbcnt);
902		panic("sbcheck");
903	}
904}
905#endif
906
907/*
908 * As above, except the mbuf chain
909 * begins a new record.
910 */
911void
912sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
913{
914	struct mbuf	*m;
915
916	KASSERT(solocked(sb->sb_so));
917
918	if (m0 == NULL)
919		return;
920
921#ifdef MBUFTRACE
922	m_claimm(m0, sb->sb_mowner);
923#endif
924	/*
925	 * Put the first mbuf on the queue.
926	 * Note this permits zero length records.
927	 */
928	sballoc(sb, m0);
929	SBLASTRECORDCHK(sb, "sbappendrecord 1");
930	SBLINKRECORD(sb, m0);
931	m = m0->m_next;
932	m0->m_next = 0;
933	if (m && (m0->m_flags & M_EOR)) {
934		m0->m_flags &= ~M_EOR;
935		m->m_flags |= M_EOR;
936	}
937	sbcompress(sb, m, m0);
938	SBLASTRECORDCHK(sb, "sbappendrecord 2");
939}
940
941/*
942 * As above except that OOB data
943 * is inserted at the beginning of the sockbuf,
944 * but after any other OOB data.
945 */
946void
947sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
948{
949	struct mbuf	*m, **mp;
950
951	KASSERT(solocked(sb->sb_so));
952
953	if (m0 == NULL)
954		return;
955
956	SBLASTRECORDCHK(sb, "sbinsertoob 1");
957
958	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
959	    again:
960		switch (m->m_type) {
961
962		case MT_OOBDATA:
963			continue;		/* WANT next train */
964
965		case MT_CONTROL:
966			if ((m = m->m_next) != NULL)
967				goto again;	/* inspect THIS train further */
968		}
969		break;
970	}
971	/*
972	 * Put the first mbuf on the queue.
973	 * Note this permits zero length records.
974	 */
975	sballoc(sb, m0);
976	m0->m_nextpkt = *mp;
977	if (*mp == NULL) {
978		/* m0 is actually the new tail */
979		sb->sb_lastrecord = m0;
980	}
981	*mp = m0;
982	m = m0->m_next;
983	m0->m_next = 0;
984	if (m && (m0->m_flags & M_EOR)) {
985		m0->m_flags &= ~M_EOR;
986		m->m_flags |= M_EOR;
987	}
988	sbcompress(sb, m, m0);
989	SBLASTRECORDCHK(sb, "sbinsertoob 2");
990}
991
992/*
993 * Append address and data, and optionally, control (ancillary) data
994 * to the receive queue of a socket.  If present,
995 * m0 must include a packet header with total length.
996 * Returns 0 if no space in sockbuf or insufficient mbufs.
997 */
998int
999sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
1000	struct mbuf *control)
1001{
1002	struct mbuf	*m, *n, *nlast;
1003	int		space, len;
1004
1005	KASSERT(solocked(sb->sb_so));
1006
1007	space = asa->sa_len;
1008
1009	if (m0 != NULL) {
1010		if ((m0->m_flags & M_PKTHDR) == 0)
1011			panic("sbappendaddr");
1012		space += m0->m_pkthdr.len;
1013#ifdef MBUFTRACE
1014		m_claimm(m0, sb->sb_mowner);
1015#endif
1016	}
1017	for (n = control; n; n = n->m_next) {
1018		space += n->m_len;
1019		MCLAIM(n, sb->sb_mowner);
1020		if (n->m_next == NULL)	/* keep pointer to last control buf */
1021			break;
1022	}
1023	if (space > sbspace(sb))
1024		return (0);
1025	m = m_get(M_DONTWAIT, MT_SONAME);
1026	if (m == NULL)
1027		return (0);
1028	MCLAIM(m, sb->sb_mowner);
1029	/*
1030	 * XXX avoid 'comparison always true' warning which isn't easily
1031	 * avoided.
1032	 */
1033	len = asa->sa_len;
1034	if (len > MLEN) {
1035		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1036		if ((m->m_flags & M_EXT) == 0) {
1037			m_free(m);
1038			return (0);
1039		}
1040	}
1041	m->m_len = asa->sa_len;
1042	memcpy(mtod(m, void *), asa, asa->sa_len);
1043	if (n)
1044		n->m_next = m0;		/* concatenate data to control */
1045	else
1046		control = m0;
1047	m->m_next = control;
1048
1049	SBLASTRECORDCHK(sb, "sbappendaddr 1");
1050
1051	for (n = m; n->m_next != NULL; n = n->m_next)
1052		sballoc(sb, n);
1053	sballoc(sb, n);
1054	nlast = n;
1055	SBLINKRECORD(sb, m);
1056
1057	sb->sb_mbtail = nlast;
1058	SBLASTMBUFCHK(sb, "sbappendaddr");
1059	SBLASTRECORDCHK(sb, "sbappendaddr 2");
1060
1061	return (1);
1062}
1063
1064/*
1065 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1066 * an mbuf chain.
1067 */
1068static inline struct mbuf *
1069m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1070		   const struct sockaddr *asa)
1071{
1072	struct mbuf *m;
1073	const int salen = asa->sa_len;
1074
1075	KASSERT(solocked(sb->sb_so));
1076
1077	/* only the first in each chain need be a pkthdr */
1078	m = m_gethdr(M_DONTWAIT, MT_SONAME);
1079	if (m == NULL)
1080		return NULL;
1081	MCLAIM(m, sb->sb_mowner);
1082#ifdef notyet
1083	if (salen > MHLEN) {
1084		MEXTMALLOC(m, salen, M_NOWAIT);
1085		if ((m->m_flags & M_EXT) == 0) {
1086			m_free(m);
1087			return NULL;
1088		}
1089	}
1090#else
1091	KASSERT(salen <= MHLEN);
1092#endif
1093	m->m_len = salen;
1094	memcpy(mtod(m, void *), asa, salen);
1095	m->m_next = m0;
1096	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1097
1098	return m;
1099}
1100
1101int
1102sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1103		  struct mbuf *m0, int sbprio)
1104{
1105	struct mbuf *m, *n, *n0, *nlast;
1106	int error;
1107
1108	KASSERT(solocked(sb->sb_so));
1109
1110	/*
1111	 * XXX sbprio reserved for encoding priority of this* request:
1112	 *  SB_PRIO_NONE --> honour normal sb limits
1113	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1114	 *	take whole chain. Intended for large requests
1115	 *      that should be delivered atomically (all, or none).
1116	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1117	 *       over normal socket limits, for messages indicating
1118	 *       buffer overflow in earlier normal/lower-priority messages
1119	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1120	 *       Intended for  kernel-generated messages only.
1121	 *        Up to generator to avoid total mbuf resource exhaustion.
1122	 */
1123	(void)sbprio;
1124
1125	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1126		panic("sbappendaddrchain");
1127
1128#ifdef notyet
1129	space = sbspace(sb);
1130
1131	/*
1132	 * Enforce SB_PRIO_* limits as described above.
1133	 */
1134#endif
1135
1136	n0 = NULL;
1137	nlast = NULL;
1138	for (m = m0; m; m = m->m_nextpkt) {
1139		struct mbuf *np;
1140
1141#ifdef MBUFTRACE
1142		m_claimm(m, sb->sb_mowner);
1143#endif
1144
1145		/* Prepend sockaddr to this record (m) of input chain m0 */
1146	  	n = m_prepend_sockaddr(sb, m, asa);
1147		if (n == NULL) {
1148			error = ENOBUFS;
1149			goto bad;
1150		}
1151
1152		/* Append record (asa+m) to end of new chain n0 */
1153		if (n0 == NULL) {
1154			n0 = n;
1155		} else {
1156			nlast->m_nextpkt = n;
1157		}
1158		/* Keep track of last record on new chain */
1159		nlast = n;
1160
1161		for (np = n; np; np = np->m_next)
1162			sballoc(sb, np);
1163	}
1164
1165	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1166
1167	/* Drop the entire chain of (asa+m) records onto the socket */
1168	SBLINKRECORDCHAIN(sb, n0, nlast);
1169
1170	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1171
1172	for (m = nlast; m->m_next; m = m->m_next)
1173		;
1174	sb->sb_mbtail = m;
1175	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1176
1177	return (1);
1178
1179bad:
1180	/*
1181	 * On error, free the prepended addreseses. For consistency
1182	 * with sbappendaddr(), leave it to our caller to free
1183	 * the input record chain passed to us as m0.
1184	 */
1185	while ((n = n0) != NULL) {
1186	  	struct mbuf *np;
1187
1188		/* Undo the sballoc() of this record */
1189		for (np = n; np; np = np->m_next)
1190			sbfree(sb, np);
1191
1192		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1193		np = m_free(n);		/* free prepended address (not data) */
1194	}
1195	return error;
1196}
1197
1198
1199int
1200sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1201{
1202	struct mbuf	*m, *mlast, *n;
1203	int		space;
1204
1205	KASSERT(solocked(sb->sb_so));
1206
1207	space = 0;
1208	if (control == NULL)
1209		panic("sbappendcontrol");
1210	for (m = control; ; m = m->m_next) {
1211		space += m->m_len;
1212		MCLAIM(m, sb->sb_mowner);
1213		if (m->m_next == NULL)
1214			break;
1215	}
1216	n = m;			/* save pointer to last control buffer */
1217	for (m = m0; m; m = m->m_next) {
1218		MCLAIM(m, sb->sb_mowner);
1219		space += m->m_len;
1220	}
1221	if (space > sbspace(sb))
1222		return (0);
1223	n->m_next = m0;			/* concatenate data to control */
1224
1225	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1226
1227	for (m = control; m->m_next != NULL; m = m->m_next)
1228		sballoc(sb, m);
1229	sballoc(sb, m);
1230	mlast = m;
1231	SBLINKRECORD(sb, control);
1232
1233	sb->sb_mbtail = mlast;
1234	SBLASTMBUFCHK(sb, "sbappendcontrol");
1235	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1236
1237	return (1);
1238}
1239
1240/*
1241 * Compress mbuf chain m into the socket
1242 * buffer sb following mbuf n.  If n
1243 * is null, the buffer is presumed empty.
1244 */
1245void
1246sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1247{
1248	int		eor;
1249	struct mbuf	*o;
1250
1251	KASSERT(solocked(sb->sb_so));
1252
1253	eor = 0;
1254	while (m) {
1255		eor |= m->m_flags & M_EOR;
1256		if (m->m_len == 0 &&
1257		    (eor == 0 ||
1258		     (((o = m->m_next) || (o = n)) &&
1259		      o->m_type == m->m_type))) {
1260			if (sb->sb_lastrecord == m)
1261				sb->sb_lastrecord = m->m_next;
1262			m = m_free(m);
1263			continue;
1264		}
1265		if (n && (n->m_flags & M_EOR) == 0 &&
1266		    /* M_TRAILINGSPACE() checks buffer writeability */
1267		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1268		    m->m_len <= M_TRAILINGSPACE(n) &&
1269		    n->m_type == m->m_type) {
1270			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1271			    (unsigned)m->m_len);
1272			n->m_len += m->m_len;
1273			sb->sb_cc += m->m_len;
1274			m = m_free(m);
1275			continue;
1276		}
1277		if (n)
1278			n->m_next = m;
1279		else
1280			sb->sb_mb = m;
1281		sb->sb_mbtail = m;
1282		sballoc(sb, m);
1283		n = m;
1284		m->m_flags &= ~M_EOR;
1285		m = m->m_next;
1286		n->m_next = 0;
1287	}
1288	if (eor) {
1289		if (n)
1290			n->m_flags |= eor;
1291		else
1292			printf("semi-panic: sbcompress\n");
1293	}
1294	SBLASTMBUFCHK(sb, __func__);
1295}
1296
1297/*
1298 * Free all mbufs in a sockbuf.
1299 * Check that all resources are reclaimed.
1300 */
1301void
1302sbflush(struct sockbuf *sb)
1303{
1304
1305	KASSERT(solocked(sb->sb_so));
1306	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1307
1308	while (sb->sb_mbcnt)
1309		sbdrop(sb, (int)sb->sb_cc);
1310
1311	KASSERT(sb->sb_cc == 0);
1312	KASSERT(sb->sb_mb == NULL);
1313	KASSERT(sb->sb_mbtail == NULL);
1314	KASSERT(sb->sb_lastrecord == NULL);
1315}
1316
1317/*
1318 * Drop data from (the front of) a sockbuf.
1319 */
1320void
1321sbdrop(struct sockbuf *sb, int len)
1322{
1323	struct mbuf	*m, *next;
1324
1325	KASSERT(solocked(sb->sb_so));
1326
1327	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1328	while (len > 0) {
1329		if (m == NULL) {
1330			if (next == NULL)
1331				panic("sbdrop(%p,%d): cc=%lu",
1332				    sb, len, sb->sb_cc);
1333			m = next;
1334			next = m->m_nextpkt;
1335			continue;
1336		}
1337		if (m->m_len > len) {
1338			m->m_len -= len;
1339			m->m_data += len;
1340			sb->sb_cc -= len;
1341			break;
1342		}
1343		len -= m->m_len;
1344		sbfree(sb, m);
1345		m = m_free(m);
1346	}
1347	while (m && m->m_len == 0) {
1348		sbfree(sb, m);
1349		m = m_free(m);
1350	}
1351	if (m) {
1352		sb->sb_mb = m;
1353		m->m_nextpkt = next;
1354	} else
1355		sb->sb_mb = next;
1356	/*
1357	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1358	 * makes sure sb_lastrecord is up-to-date if we dropped
1359	 * part of the last record.
1360	 */
1361	m = sb->sb_mb;
1362	if (m == NULL) {
1363		sb->sb_mbtail = NULL;
1364		sb->sb_lastrecord = NULL;
1365	} else if (m->m_nextpkt == NULL)
1366		sb->sb_lastrecord = m;
1367}
1368
1369/*
1370 * Drop a record off the front of a sockbuf
1371 * and move the next record to the front.
1372 */
1373void
1374sbdroprecord(struct sockbuf *sb)
1375{
1376	struct mbuf	*m, *mn;
1377
1378	KASSERT(solocked(sb->sb_so));
1379
1380	m = sb->sb_mb;
1381	if (m) {
1382		sb->sb_mb = m->m_nextpkt;
1383		do {
1384			sbfree(sb, m);
1385			mn = m_free(m);
1386		} while ((m = mn) != NULL);
1387	}
1388	SB_EMPTY_FIXUP(sb);
1389}
1390
1391/*
1392 * Create a "control" mbuf containing the specified data
1393 * with the specified type for presentation on a socket buffer.
1394 */
1395struct mbuf *
1396sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1397{
1398	struct cmsghdr	*cp;
1399	struct mbuf	*m;
1400	int space = CMSG_SPACE(size);
1401
1402	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1403		printf("%s: message too large %d\n", __func__, space);
1404		return NULL;
1405	}
1406
1407	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1408		return NULL;
1409	if (space > MLEN) {
1410		if (space > MCLBYTES)
1411			MEXTMALLOC(m, space, M_WAITOK);
1412		else
1413			MCLGET(m, flags);
1414		if ((m->m_flags & M_EXT) == 0) {
1415			m_free(m);
1416			return NULL;
1417		}
1418	}
1419	cp = mtod(m, struct cmsghdr *);
1420	*p = CMSG_DATA(cp);
1421	m->m_len = space;
1422	cp->cmsg_len = CMSG_LEN(size);
1423	cp->cmsg_level = level;
1424	cp->cmsg_type = type;
1425
1426	memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
1427	memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
1428
1429	return m;
1430}
1431
1432struct mbuf *
1433sbcreatecontrol(void *p, int size, int type, int level)
1434{
1435	struct mbuf *m;
1436	void *v;
1437
1438	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1439	if (m == NULL)
1440		return NULL;
1441	memcpy(v, p, size);
1442	return m;
1443}
1444
1445void
1446solockretry(struct socket *so, kmutex_t *lock)
1447{
1448
1449	while (lock != so->so_lock) {
1450		mutex_exit(lock);
1451		lock = so->so_lock;
1452		mutex_enter(lock);
1453	}
1454}
1455
1456bool
1457solocked(const struct socket *so)
1458{
1459
1460	return mutex_owned(so->so_lock);
1461}
1462
1463bool
1464solocked2(const struct socket *so1, const struct socket *so2)
1465{
1466	const kmutex_t *lock;
1467
1468	lock = so1->so_lock;
1469	if (lock != so2->so_lock)
1470		return false;
1471	return mutex_owned(lock);
1472}
1473
1474/*
1475 * sosetlock: assign a default lock to a new socket.
1476 */
1477void
1478sosetlock(struct socket *so)
1479{
1480	if (so->so_lock == NULL) {
1481		kmutex_t *lock = softnet_lock;
1482
1483		so->so_lock = lock;
1484		mutex_obj_hold(lock);
1485		mutex_enter(lock);
1486	}
1487	KASSERT(solocked(so));
1488}
1489
1490/*
1491 * Set lock on sockbuf sb; sleep if lock is already held.
1492 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1493 * Returns error without lock if sleep is interrupted.
1494 */
1495int
1496sblock(struct sockbuf *sb, int wf)
1497{
1498	struct socket *so;
1499	kmutex_t *lock;
1500	int error;
1501
1502	KASSERT(solocked(sb->sb_so));
1503
1504	for (;;) {
1505		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1506			sb->sb_flags |= SB_LOCK;
1507			return 0;
1508		}
1509		if (wf != M_WAITOK)
1510			return EWOULDBLOCK;
1511		so = sb->sb_so;
1512		lock = so->so_lock;
1513		if ((sb->sb_flags & SB_NOINTR) != 0) {
1514			cv_wait(&so->so_cv, lock);
1515			error = 0;
1516		} else
1517			error = cv_wait_sig(&so->so_cv, lock);
1518		if (__predict_false(lock != so->so_lock))
1519			solockretry(so, lock);
1520		if (error != 0)
1521			return error;
1522	}
1523}
1524
1525void
1526sbunlock(struct sockbuf *sb)
1527{
1528	struct socket *so;
1529
1530	so = sb->sb_so;
1531
1532	KASSERT(solocked(so));
1533	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1534
1535	sb->sb_flags &= ~SB_LOCK;
1536	cv_broadcast(&so->so_cv);
1537}
1538
1539int
1540sowait(struct socket *so, bool catch_p, int timo)
1541{
1542	kmutex_t *lock;
1543	int error;
1544
1545	KASSERT(solocked(so));
1546	KASSERT(catch_p || timo != 0);
1547
1548	lock = so->so_lock;
1549	if (catch_p)
1550		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1551	else
1552		error = cv_timedwait(&so->so_cv, lock, timo);
1553	if (__predict_false(lock != so->so_lock))
1554		solockretry(so, lock);
1555	return error;
1556}
1557
1558#ifdef DDB
1559
1560/*
1561 * Currently, sofindproc() is used only from DDB. It could be used from others
1562 * by using db_mutex_enter()
1563 */
1564
1565static inline int
1566db_mutex_enter(kmutex_t *mtx)
1567{
1568	extern int db_active;
1569	int rv;
1570
1571	if (!db_active) {
1572		mutex_enter(mtx);
1573		rv = 1;
1574	} else
1575		rv = mutex_tryenter(mtx);
1576
1577	return rv;
1578}
1579
1580int
1581sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1582{
1583	proc_t *p;
1584	filedesc_t *fdp;
1585	fdtab_t *dt;
1586	fdfile_t *ff;
1587	file_t *fp = NULL;
1588	int found = 0;
1589	int i, t;
1590
1591	if (so == NULL)
1592		return 0;
1593
1594	t = db_mutex_enter(&proc_lock);
1595	if (!t) {
1596		pr("could not acquire proc_lock mutex\n");
1597		return 0;
1598	}
1599	PROCLIST_FOREACH(p, &allproc) {
1600		if (p->p_stat == SIDL)
1601			continue;
1602		fdp = p->p_fd;
1603		t = db_mutex_enter(&fdp->fd_lock);
1604		if (!t) {
1605			pr("could not acquire fd_lock mutex\n");
1606			continue;
1607		}
1608		dt = atomic_load_consume(&fdp->fd_dt);
1609		for (i = 0; i < dt->dt_nfiles; i++) {
1610			ff = dt->dt_ff[i];
1611			if (ff == NULL)
1612				continue;
1613
1614			fp = atomic_load_consume(&ff->ff_file);
1615			if (fp == NULL)
1616				continue;
1617
1618			t = db_mutex_enter(&fp->f_lock);
1619			if (!t) {
1620				pr("could not acquire f_lock mutex\n");
1621				continue;
1622			}
1623			if ((struct socket *)fp->f_data != so) {
1624				mutex_exit(&fp->f_lock);
1625				continue;
1626			}
1627			found++;
1628			if (pr)
1629				pr("socket %p: owner %s(pid=%d)\n",
1630				    so, p->p_comm, p->p_pid);
1631			mutex_exit(&fp->f_lock);
1632			if (all == 0)
1633				break;
1634		}
1635		mutex_exit(&fdp->fd_lock);
1636		if (all == 0 && found != 0)
1637			break;
1638	}
1639	mutex_exit(&proc_lock);
1640
1641	return found;
1642}
1643
1644void
1645socket_print(const char *modif, void (*pr)(const char *, ...))
1646{
1647	file_t *fp;
1648	struct socket *so;
1649	struct sockbuf *sb_snd, *sb_rcv;
1650	struct mbuf *m_rec, *m;
1651	bool opt_v = false;
1652	bool opt_m = false;
1653	bool opt_a = false;
1654	bool opt_p = false;
1655	int nrecs, nmbufs;
1656	char ch;
1657	const char *family;
1658
1659	while ( (ch = *(modif++)) != '\0') {
1660		switch (ch) {
1661		case 'v':
1662			opt_v = true;
1663			break;
1664		case 'm':
1665			opt_m = true;
1666			break;
1667		case 'a':
1668			opt_a = true;
1669			break;
1670		case 'p':
1671			opt_p = true;
1672			break;
1673		}
1674	}
1675	if (opt_v == false && pr)
1676		(pr)("Ignore empty sockets. use /v to print all.\n");
1677	if (opt_p == true && pr)
1678		(pr)("Don't search owner process.\n");
1679
1680	LIST_FOREACH(fp, &filehead, f_list) {
1681		if (fp->f_type != DTYPE_SOCKET)
1682			continue;
1683		so = (struct socket *)fp->f_data;
1684		if (so == NULL)
1685			continue;
1686
1687		if (so->so_proto->pr_domain->dom_family == AF_INET)
1688			family = "INET";
1689#ifdef INET6
1690		else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1691			family = "INET6";
1692#endif
1693		else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1694			family = "KEY";
1695		else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1696			family = "ROUTE";
1697		else
1698			continue;
1699
1700		sb_snd = &so->so_snd;
1701		sb_rcv = &so->so_rcv;
1702
1703		if (opt_v != true &&
1704		    sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1705			continue;
1706
1707		pr("---SOCKET %p: type %s\n", so, family);
1708		if (opt_p != true)
1709			sofindproc(so, opt_a == true ? 1 : 0, pr);
1710		pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1711		pr("Send Buffer mbufs:\n");
1712		m_rec = m = sb_snd->sb_mb;
1713		nrecs = 0;
1714		nmbufs = 0;
1715		while (m_rec) {
1716			nrecs++;
1717			if (opt_m == true)
1718				pr(" mbuf chain %p\n", m_rec);
1719			while (m) {
1720				nmbufs++;
1721				m = m->m_next;
1722			}
1723			m_rec = m = m_rec->m_nextpkt;
1724		}
1725		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1726
1727		pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1728		pr("Recv Buffer mbufs:\n");
1729		m_rec = m = sb_rcv->sb_mb;
1730		nrecs = 0;
1731		nmbufs = 0;
1732		while (m_rec) {
1733			nrecs++;
1734			if (opt_m == true)
1735				pr(" mbuf chain %p\n", m_rec);
1736			while (m) {
1737				nmbufs++;
1738				m = m->m_next;
1739			}
1740			m_rec = m = m_rec->m_nextpkt;
1741		}
1742		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1743	}
1744}
1745#endif /* DDB */
1746