uipc_socket2.c revision 1.137
1/*	$NetBSD: uipc_socket2.c,v 1.137 2020/05/23 23:42:43 ad Exp $	*/
2
3/*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 *    may be used to endorse or promote products derived from this software
43 *    without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58 */
59
60#include <sys/cdefs.h>
61__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.137 2020/05/23 23:42:43 ad Exp $");
62
63#ifdef _KERNEL_OPT
64#include "opt_ddb.h"
65#include "opt_mbuftrace.h"
66#include "opt_sb_max.h"
67#endif
68
69#include <sys/param.h>
70#include <sys/systm.h>
71#include <sys/proc.h>
72#include <sys/file.h>
73#include <sys/buf.h>
74#include <sys/mbuf.h>
75#include <sys/protosw.h>
76#include <sys/domain.h>
77#include <sys/poll.h>
78#include <sys/socket.h>
79#include <sys/socketvar.h>
80#include <sys/signalvar.h>
81#include <sys/kauth.h>
82#include <sys/pool.h>
83#include <sys/uidinfo.h>
84
85#ifdef DDB
86#include <sys/filedesc.h>
87#endif
88
89/*
90 * Primitive routines for operating on sockets and socket buffers.
91 *
92 * Connection life-cycle:
93 *
94 *	Normal sequence from the active (originating) side:
95 *
96 *	- soisconnecting() is called during processing of connect() call,
97 *	- resulting in an eventual call to soisconnected() if/when the
98 *	  connection is established.
99 *
100 *	When the connection is torn down during processing of disconnect():
101 *
102 *	- soisdisconnecting() is called and,
103 *	- soisdisconnected() is called when the connection to the peer
104 *	  is totally severed.
105 *
106 *	The semantics of these routines are such that connectionless protocols
107 *	can call soisconnected() and soisdisconnected() only, bypassing the
108 *	in-progress calls when setting up a ``connection'' takes no time.
109 *
110 *	From the passive side, a socket is created with two queues of sockets:
111 *
112 *	- so_q0 (0) for partial connections (i.e. connections in progress)
113 *	- so_q (1) for connections already made and awaiting user acceptance.
114 *
115 *	As a protocol is preparing incoming connections, it creates a socket
116 *	structure queued on so_q0 by calling sonewconn().  When the connection
117 *	is established, soisconnected() is called, and transfers the
118 *	socket structure to so_q, making it available to accept().
119 *
120 *	If a socket is closed with sockets on either so_q0 or so_q, these
121 *	sockets are dropped.
122 *
123 * Locking rules and assumptions:
124 *
125 * o socket::so_lock can change on the fly.  The low level routines used
126 *   to lock sockets are aware of this.  When so_lock is acquired, the
127 *   routine locking must check to see if so_lock still points to the
128 *   lock that was acquired.  If so_lock has changed in the meantime, the
129 *   now irrelevant lock that was acquired must be dropped and the lock
130 *   operation retried.  Although not proven here, this is completely safe
131 *   on a multiprocessor system, even with relaxed memory ordering, given
132 *   the next two rules:
133 *
134 * o In order to mutate so_lock, the lock pointed to by the current value
135 *   of so_lock must be held: i.e., the socket must be held locked by the
136 *   changing thread.  The thread must issue membar_exit() to prevent
137 *   memory accesses being reordered, and can set so_lock to the desired
138 *   value.  If the lock pointed to by the new value of so_lock is not
139 *   held by the changing thread, the socket must then be considered
140 *   unlocked.
141 *
142 * o If so_lock is mutated, and the previous lock referred to by so_lock
143 *   could still be visible to other threads in the system (e.g. via file
144 *   descriptor or protocol-internal reference), then the old lock must
145 *   remain valid until the socket and/or protocol control block has been
146 *   torn down.
147 *
148 * o If a socket has a non-NULL so_head value (i.e. is in the process of
149 *   connecting), then locking the socket must also lock the socket pointed
150 *   to by so_head: their lock pointers must match.
151 *
152 * o If a socket has connections in progress (so_q, so_q0 not empty) then
153 *   locking the socket must also lock the sockets attached to both queues.
154 *   Again, their lock pointers must match.
155 *
156 * o Beyond the initial lock assignment in socreate(), assigning locks to
157 *   sockets is the responsibility of the individual protocols / protocol
158 *   domains.
159 */
160
161static pool_cache_t	socket_cache;
162u_long			sb_max = SB_MAX;/* maximum socket buffer size */
163static u_long		sb_max_adj;	/* adjusted sb_max */
164
165void
166soisconnecting(struct socket *so)
167{
168
169	KASSERT(solocked(so));
170
171	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
172	so->so_state |= SS_ISCONNECTING;
173}
174
175void
176soisconnected(struct socket *so)
177{
178	struct socket	*head;
179
180	head = so->so_head;
181
182	KASSERT(solocked(so));
183	KASSERT(head == NULL || solocked2(so, head));
184
185	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
186	so->so_state |= SS_ISCONNECTED;
187	if (head && so->so_onq == &head->so_q0) {
188		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
189			/*
190			 * Re-enqueue and wake up any waiters, e.g.
191			 * processes blocking on accept().
192			 */
193			soqremque(so, 0);
194			soqinsque(head, so, 1);
195			sorwakeup(head);
196			cv_broadcast(&head->so_cv);
197		} else {
198			so->so_upcall =
199			    head->so_accf->so_accept_filter->accf_callback;
200			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
201			so->so_rcv.sb_flags |= SB_UPCALL;
202			so->so_options &= ~SO_ACCEPTFILTER;
203			(*so->so_upcall)(so, so->so_upcallarg,
204					 POLLIN|POLLRDNORM, M_DONTWAIT);
205		}
206	} else {
207		cv_broadcast(&so->so_cv);
208		sorwakeup(so);
209		sowwakeup(so);
210	}
211}
212
213void
214soisdisconnecting(struct socket *so)
215{
216
217	KASSERT(solocked(so));
218
219	so->so_state &= ~SS_ISCONNECTING;
220	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
221	cv_broadcast(&so->so_cv);
222	sowwakeup(so);
223	sorwakeup(so);
224}
225
226void
227soisdisconnected(struct socket *so)
228{
229
230	KASSERT(solocked(so));
231
232	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
233	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
234	cv_broadcast(&so->so_cv);
235	sowwakeup(so);
236	sorwakeup(so);
237}
238
239void
240soinit2(void)
241{
242
243	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
244	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
245}
246
247/*
248 * sonewconn: accept a new connection.
249 *
250 * When an attempt at a new connection is noted on a socket which accepts
251 * connections, sonewconn(9) is called.  If the connection is possible
252 * (subject to space constraints, etc) then we allocate a new structure,
253 * properly linked into the data structure of the original socket.
254 *
255 * => If 'soready' is true, then socket will become ready for accept() i.e.
256 *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
257 * => May be called from soft-interrupt context.
258 * => Listening socket should be locked.
259 * => Returns the new socket locked.
260 */
261struct socket *
262sonewconn(struct socket *head, bool soready)
263{
264	struct socket *so;
265	int soqueue, error;
266
267	KASSERT(solocked(head));
268
269	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
270		/*
271		 * Listen queue overflow.  If there is an accept filter
272		 * active, pass through the oldest cxn it's handling.
273		 */
274		if (head->so_accf == NULL) {
275			return NULL;
276		} else {
277			struct socket *so2, *next;
278
279			/* Pass the oldest connection waiting in the
280			   accept filter */
281			for (so2 = TAILQ_FIRST(&head->so_q0);
282			     so2 != NULL; so2 = next) {
283				next = TAILQ_NEXT(so2, so_qe);
284				if (so2->so_upcall == NULL) {
285					continue;
286				}
287				so2->so_upcall = NULL;
288				so2->so_upcallarg = NULL;
289				so2->so_options &= ~SO_ACCEPTFILTER;
290				so2->so_rcv.sb_flags &= ~SB_UPCALL;
291				soisconnected(so2);
292				break;
293			}
294
295			/* If nothing was nudged out of the acept filter, bail
296			 * out; otherwise proceed allocating the socket. */
297			if (so2 == NULL) {
298				return NULL;
299			}
300		}
301	}
302	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
303		soready = false;
304	}
305	soqueue = soready ? 1 : 0;
306
307	if ((so = soget(false)) == NULL) {
308		return NULL;
309	}
310	so->so_type = head->so_type;
311	so->so_options = head->so_options & ~SO_ACCEPTCONN;
312	so->so_linger = head->so_linger;
313	so->so_state = head->so_state | SS_NOFDREF;
314	so->so_proto = head->so_proto;
315	so->so_timeo = head->so_timeo;
316	so->so_pgid = head->so_pgid;
317	so->so_send = head->so_send;
318	so->so_receive = head->so_receive;
319	so->so_uidinfo = head->so_uidinfo;
320	so->so_cpid = head->so_cpid;
321
322	/*
323	 * Share the lock with the listening-socket, it may get unshared
324	 * once the connection is complete.
325	 */
326	mutex_obj_hold(head->so_lock);
327	so->so_lock = head->so_lock;
328
329	/*
330	 * Reserve the space for socket buffers.
331	 */
332#ifdef MBUFTRACE
333	so->so_mowner = head->so_mowner;
334	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
335	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
336#endif
337	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
338		goto out;
339	}
340	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
341	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
342	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
343	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
344	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
345	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
346
347	/*
348	 * Finally, perform the protocol attach.  Note: a new socket
349	 * lock may be assigned at this point (if so, it will be held).
350	 */
351	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
352	if (error) {
353out:
354		KASSERT(solocked(so));
355		KASSERT(so->so_accf == NULL);
356		soput(so);
357
358		/* Note: the listening socket shall stay locked. */
359		KASSERT(solocked(head));
360		return NULL;
361	}
362	KASSERT(solocked2(head, so));
363
364	/*
365	 * Insert into the queue.  If ready, update the connection status
366	 * and wake up any waiters, e.g. processes blocking on accept().
367	 */
368	soqinsque(head, so, soqueue);
369	if (soready) {
370		so->so_state |= SS_ISCONNECTED;
371		sorwakeup(head);
372		cv_broadcast(&head->so_cv);
373	}
374	return so;
375}
376
377struct socket *
378soget(bool waitok)
379{
380	struct socket *so;
381
382	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
383	if (__predict_false(so == NULL))
384		return (NULL);
385	memset(so, 0, sizeof(*so));
386	TAILQ_INIT(&so->so_q0);
387	TAILQ_INIT(&so->so_q);
388	cv_init(&so->so_cv, "socket");
389	cv_init(&so->so_rcv.sb_cv, "netio");
390	cv_init(&so->so_snd.sb_cv, "netio");
391	selinit(&so->so_rcv.sb_sel);
392	selinit(&so->so_snd.sb_sel);
393	so->so_rcv.sb_so = so;
394	so->so_snd.sb_so = so;
395	return so;
396}
397
398void
399soput(struct socket *so)
400{
401
402	KASSERT(!cv_has_waiters(&so->so_cv));
403	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
404	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
405	seldestroy(&so->so_rcv.sb_sel);
406	seldestroy(&so->so_snd.sb_sel);
407	mutex_obj_free(so->so_lock);
408	cv_destroy(&so->so_cv);
409	cv_destroy(&so->so_rcv.sb_cv);
410	cv_destroy(&so->so_snd.sb_cv);
411	pool_cache_put(socket_cache, so);
412}
413
414/*
415 * soqinsque: insert socket of a new connection into the specified
416 * accept queue of the listening socket (head).
417 *
418 *	q = 0: queue of partial connections
419 *	q = 1: queue of incoming connections
420 */
421void
422soqinsque(struct socket *head, struct socket *so, int q)
423{
424	KASSERT(q == 0 || q == 1);
425	KASSERT(solocked2(head, so));
426	KASSERT(so->so_onq == NULL);
427	KASSERT(so->so_head == NULL);
428
429	so->so_head = head;
430	if (q == 0) {
431		head->so_q0len++;
432		so->so_onq = &head->so_q0;
433	} else {
434		head->so_qlen++;
435		so->so_onq = &head->so_q;
436	}
437	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
438}
439
440/*
441 * soqremque: remove socket from the specified queue.
442 *
443 * => Returns true if socket was removed from the specified queue.
444 * => False if socket was not removed (because it was in other queue).
445 */
446bool
447soqremque(struct socket *so, int q)
448{
449	struct socket *head = so->so_head;
450
451	KASSERT(q == 0 || q == 1);
452	KASSERT(solocked(so));
453	KASSERT(so->so_onq != NULL);
454	KASSERT(head != NULL);
455
456	if (q == 0) {
457		if (so->so_onq != &head->so_q0)
458			return false;
459		head->so_q0len--;
460	} else {
461		if (so->so_onq != &head->so_q)
462			return false;
463		head->so_qlen--;
464	}
465	KASSERT(solocked2(so, head));
466	TAILQ_REMOVE(so->so_onq, so, so_qe);
467	so->so_onq = NULL;
468	so->so_head = NULL;
469	return true;
470}
471
472/*
473 * socantsendmore: indicates that no more data will be sent on the
474 * socket; it would normally be applied to a socket when the user
475 * informs the system that no more data is to be sent, by the protocol
476 * code (in case pr_shutdown()).
477 */
478void
479socantsendmore(struct socket *so)
480{
481	KASSERT(solocked(so));
482
483	so->so_state |= SS_CANTSENDMORE;
484	sowwakeup(so);
485}
486
487/*
488 * socantrcvmore(): indicates that no more data will be received and
489 * will normally be applied to the socket by a protocol when it detects
490 * that the peer will send no more data.  Data queued for reading in
491 * the socket may yet be read.
492 */
493void
494socantrcvmore(struct socket *so)
495{
496	KASSERT(solocked(so));
497
498	so->so_state |= SS_CANTRCVMORE;
499	sorwakeup(so);
500}
501
502/*
503 * soroverflow(): indicates that data was attempted to be sent
504 * but the receiving buffer overflowed.
505 */
506void
507soroverflow(struct socket *so)
508{
509	KASSERT(solocked(so));
510
511	so->so_rcv.sb_overflowed++;
512	if (so->so_options & SO_RERROR)  {
513		so->so_rerror = ENOBUFS;
514		sorwakeup(so);
515	}
516}
517
518/*
519 * Wait for data to arrive at/drain from a socket buffer.
520 */
521int
522sbwait(struct sockbuf *sb)
523{
524	struct socket *so;
525	kmutex_t *lock;
526	int error;
527
528	so = sb->sb_so;
529
530	KASSERT(solocked(so));
531
532	sb->sb_flags |= SB_NOTIFY;
533	lock = so->so_lock;
534	if ((sb->sb_flags & SB_NOINTR) != 0)
535		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
536	else
537		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
538	if (__predict_false(lock != so->so_lock))
539		solockretry(so, lock);
540	return error;
541}
542
543/*
544 * Wakeup processes waiting on a socket buffer.
545 * Do asynchronous notification via SIGIO
546 * if the socket buffer has the SB_ASYNC flag set.
547 */
548void
549sowakeup(struct socket *so, struct sockbuf *sb, int code)
550{
551	int band;
552
553	KASSERT(solocked(so));
554	KASSERT(sb->sb_so == so);
555
556	if (code == POLL_IN)
557		band = POLLIN|POLLRDNORM;
558	else
559		band = POLLOUT|POLLWRNORM;
560	sb->sb_flags &= ~SB_NOTIFY;
561	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
562	cv_broadcast(&sb->sb_cv);
563	if (sb->sb_flags & SB_ASYNC)
564		fownsignal(so->so_pgid, SIGIO, code, band, so);
565	if (sb->sb_flags & SB_UPCALL)
566		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
567}
568
569/*
570 * Reset a socket's lock pointer.  Wake all threads waiting on the
571 * socket's condition variables so that they can restart their waits
572 * using the new lock.  The existing lock must be held.
573 */
574void
575solockreset(struct socket *so, kmutex_t *lock)
576{
577
578	KASSERT(solocked(so));
579
580	so->so_lock = lock;
581	cv_broadcast(&so->so_snd.sb_cv);
582	cv_broadcast(&so->so_rcv.sb_cv);
583	cv_broadcast(&so->so_cv);
584}
585
586/*
587 * Socket buffer (struct sockbuf) utility routines.
588 *
589 * Each socket contains two socket buffers: one for sending data and
590 * one for receiving data.  Each buffer contains a queue of mbufs,
591 * information about the number of mbufs and amount of data in the
592 * queue, and other fields allowing poll() statements and notification
593 * on data availability to be implemented.
594 *
595 * Data stored in a socket buffer is maintained as a list of records.
596 * Each record is a list of mbufs chained together with the m_next
597 * field.  Records are chained together with the m_nextpkt field. The upper
598 * level routine soreceive() expects the following conventions to be
599 * observed when placing information in the receive buffer:
600 *
601 * 1. If the protocol requires each message be preceded by the sender's
602 *    name, then a record containing that name must be present before
603 *    any associated data (mbuf's must be of type MT_SONAME).
604 * 2. If the protocol supports the exchange of ``access rights'' (really
605 *    just additional data associated with the message), and there are
606 *    ``rights'' to be received, then a record containing this data
607 *    should be present (mbuf's must be of type MT_CONTROL).
608 * 3. If a name or rights record exists, then it must be followed by
609 *    a data record, perhaps of zero length.
610 *
611 * Before using a new socket structure it is first necessary to reserve
612 * buffer space to the socket, by calling sbreserve().  This should commit
613 * some of the available buffer space in the system buffer pool for the
614 * socket (currently, it does nothing but enforce limits).  The space
615 * should be released by calling sbrelease() when the socket is destroyed.
616 */
617
618int
619sb_max_set(u_long new_sbmax)
620{
621	int s;
622
623	if (new_sbmax < (16 * 1024))
624		return (EINVAL);
625
626	s = splsoftnet();
627	sb_max = new_sbmax;
628	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
629	splx(s);
630
631	return (0);
632}
633
634int
635soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
636{
637	KASSERT(so->so_pcb == NULL || solocked(so));
638
639	/*
640	 * there's at least one application (a configure script of screen)
641	 * which expects a fifo is writable even if it has "some" bytes
642	 * in its buffer.
643	 * so we want to make sure (hiwat - lowat) >= (some bytes).
644	 *
645	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
646	 * we expect it's large enough for such applications.
647	 */
648	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
649	u_long  hiwat = lowat + PIPE_BUF;
650
651	if (sndcc < hiwat)
652		sndcc = hiwat;
653	if (sbreserve(&so->so_snd, sndcc, so) == 0)
654		goto bad;
655	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
656		goto bad2;
657	if (so->so_rcv.sb_lowat == 0)
658		so->so_rcv.sb_lowat = 1;
659	if (so->so_snd.sb_lowat == 0)
660		so->so_snd.sb_lowat = lowat;
661	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
662		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
663	return (0);
664 bad2:
665	sbrelease(&so->so_snd, so);
666 bad:
667	return (ENOBUFS);
668}
669
670/*
671 * Allot mbufs to a sockbuf.
672 * Attempt to scale mbmax so that mbcnt doesn't become limiting
673 * if buffering efficiency is near the normal case.
674 */
675int
676sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
677{
678	struct lwp *l = curlwp; /* XXX */
679	rlim_t maxcc;
680	struct uidinfo *uidinfo;
681
682	KASSERT(so->so_pcb == NULL || solocked(so));
683	KASSERT(sb->sb_so == so);
684	KASSERT(sb_max_adj != 0);
685
686	if (cc == 0 || cc > sb_max_adj)
687		return (0);
688
689	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
690
691	uidinfo = so->so_uidinfo;
692	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
693		return 0;
694	sb->sb_mbmax = uimin(cc * 2, sb_max);
695	if (sb->sb_lowat > sb->sb_hiwat)
696		sb->sb_lowat = sb->sb_hiwat;
697
698	return (1);
699}
700
701/*
702 * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
703 * that the socket is held locked here: see sorflush().
704 */
705void
706sbrelease(struct sockbuf *sb, struct socket *so)
707{
708
709	KASSERT(sb->sb_so == so);
710
711	sbflush(sb);
712	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
713	sb->sb_mbmax = 0;
714}
715
716/*
717 * Routines to add and remove
718 * data from an mbuf queue.
719 *
720 * The routines sbappend() or sbappendrecord() are normally called to
721 * append new mbufs to a socket buffer, after checking that adequate
722 * space is available, comparing the function sbspace() with the amount
723 * of data to be added.  sbappendrecord() differs from sbappend() in
724 * that data supplied is treated as the beginning of a new record.
725 * To place a sender's address, optional access rights, and data in a
726 * socket receive buffer, sbappendaddr() should be used.  To place
727 * access rights and data in a socket receive buffer, sbappendrights()
728 * should be used.  In either case, the new data begins a new record.
729 * Note that unlike sbappend() and sbappendrecord(), these routines check
730 * for the caller that there will be enough space to store the data.
731 * Each fails if there is not enough space, or if it cannot find mbufs
732 * to store additional information in.
733 *
734 * Reliable protocols may use the socket send buffer to hold data
735 * awaiting acknowledgement.  Data is normally copied from a socket
736 * send buffer in a protocol with m_copym for output to a peer,
737 * and then removing the data from the socket buffer with sbdrop()
738 * or sbdroprecord() when the data is acknowledged by the peer.
739 */
740
741#ifdef SOCKBUF_DEBUG
742void
743sblastrecordchk(struct sockbuf *sb, const char *where)
744{
745	struct mbuf *m = sb->sb_mb;
746
747	KASSERT(solocked(sb->sb_so));
748
749	while (m && m->m_nextpkt)
750		m = m->m_nextpkt;
751
752	if (m != sb->sb_lastrecord) {
753		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
754		    sb->sb_mb, sb->sb_lastrecord, m);
755		printf("packet chain:\n");
756		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
757			printf("\t%p\n", m);
758		panic("sblastrecordchk from %s", where);
759	}
760}
761
762void
763sblastmbufchk(struct sockbuf *sb, const char *where)
764{
765	struct mbuf *m = sb->sb_mb;
766	struct mbuf *n;
767
768	KASSERT(solocked(sb->sb_so));
769
770	while (m && m->m_nextpkt)
771		m = m->m_nextpkt;
772
773	while (m && m->m_next)
774		m = m->m_next;
775
776	if (m != sb->sb_mbtail) {
777		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
778		    sb->sb_mb, sb->sb_mbtail, m);
779		printf("packet tree:\n");
780		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
781			printf("\t");
782			for (n = m; n != NULL; n = n->m_next)
783				printf("%p ", n);
784			printf("\n");
785		}
786		panic("sblastmbufchk from %s", where);
787	}
788}
789#endif /* SOCKBUF_DEBUG */
790
791/*
792 * Link a chain of records onto a socket buffer
793 */
794#define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
795do {									\
796	if ((sb)->sb_lastrecord != NULL)				\
797		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
798	else								\
799		(sb)->sb_mb = (m0);					\
800	(sb)->sb_lastrecord = (mlast);					\
801} while (/*CONSTCOND*/0)
802
803
804#define	SBLINKRECORD(sb, m0)						\
805    SBLINKRECORDCHAIN(sb, m0, m0)
806
807/*
808 * Append mbuf chain m to the last record in the
809 * socket buffer sb.  The additional space associated
810 * the mbuf chain is recorded in sb.  Empty mbufs are
811 * discarded and mbufs are compacted where possible.
812 */
813void
814sbappend(struct sockbuf *sb, struct mbuf *m)
815{
816	struct mbuf	*n;
817
818	KASSERT(solocked(sb->sb_so));
819
820	if (m == NULL)
821		return;
822
823#ifdef MBUFTRACE
824	m_claimm(m, sb->sb_mowner);
825#endif
826
827	SBLASTRECORDCHK(sb, "sbappend 1");
828
829	if ((n = sb->sb_lastrecord) != NULL) {
830		/*
831		 * XXX Would like to simply use sb_mbtail here, but
832		 * XXX I need to verify that I won't miss an EOR that
833		 * XXX way.
834		 */
835		do {
836			if (n->m_flags & M_EOR) {
837				sbappendrecord(sb, m); /* XXXXXX!!!! */
838				return;
839			}
840		} while (n->m_next && (n = n->m_next));
841	} else {
842		/*
843		 * If this is the first record in the socket buffer, it's
844		 * also the last record.
845		 */
846		sb->sb_lastrecord = m;
847	}
848	sbcompress(sb, m, n);
849	SBLASTRECORDCHK(sb, "sbappend 2");
850}
851
852/*
853 * This version of sbappend() should only be used when the caller
854 * absolutely knows that there will never be more than one record
855 * in the socket buffer, that is, a stream protocol (such as TCP).
856 */
857void
858sbappendstream(struct sockbuf *sb, struct mbuf *m)
859{
860
861	KASSERT(solocked(sb->sb_so));
862	KDASSERT(m->m_nextpkt == NULL);
863	KASSERT(sb->sb_mb == sb->sb_lastrecord);
864
865	SBLASTMBUFCHK(sb, __func__);
866
867#ifdef MBUFTRACE
868	m_claimm(m, sb->sb_mowner);
869#endif
870
871	sbcompress(sb, m, sb->sb_mbtail);
872
873	sb->sb_lastrecord = sb->sb_mb;
874	SBLASTRECORDCHK(sb, __func__);
875}
876
877#ifdef SOCKBUF_DEBUG
878void
879sbcheck(struct sockbuf *sb)
880{
881	struct mbuf	*m, *m2;
882	u_long		len, mbcnt;
883
884	KASSERT(solocked(sb->sb_so));
885
886	len = 0;
887	mbcnt = 0;
888	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
889		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
890			len += m2->m_len;
891			mbcnt += MSIZE;
892			if (m2->m_flags & M_EXT)
893				mbcnt += m2->m_ext.ext_size;
894			if (m2->m_nextpkt != NULL)
895				panic("sbcheck nextpkt");
896		}
897	}
898	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
899		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
900		    mbcnt, sb->sb_mbcnt);
901		panic("sbcheck");
902	}
903}
904#endif
905
906/*
907 * As above, except the mbuf chain
908 * begins a new record.
909 */
910void
911sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
912{
913	struct mbuf	*m;
914
915	KASSERT(solocked(sb->sb_so));
916
917	if (m0 == NULL)
918		return;
919
920#ifdef MBUFTRACE
921	m_claimm(m0, sb->sb_mowner);
922#endif
923	/*
924	 * Put the first mbuf on the queue.
925	 * Note this permits zero length records.
926	 */
927	sballoc(sb, m0);
928	SBLASTRECORDCHK(sb, "sbappendrecord 1");
929	SBLINKRECORD(sb, m0);
930	m = m0->m_next;
931	m0->m_next = 0;
932	if (m && (m0->m_flags & M_EOR)) {
933		m0->m_flags &= ~M_EOR;
934		m->m_flags |= M_EOR;
935	}
936	sbcompress(sb, m, m0);
937	SBLASTRECORDCHK(sb, "sbappendrecord 2");
938}
939
940/*
941 * As above except that OOB data
942 * is inserted at the beginning of the sockbuf,
943 * but after any other OOB data.
944 */
945void
946sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
947{
948	struct mbuf	*m, **mp;
949
950	KASSERT(solocked(sb->sb_so));
951
952	if (m0 == NULL)
953		return;
954
955	SBLASTRECORDCHK(sb, "sbinsertoob 1");
956
957	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
958	    again:
959		switch (m->m_type) {
960
961		case MT_OOBDATA:
962			continue;		/* WANT next train */
963
964		case MT_CONTROL:
965			if ((m = m->m_next) != NULL)
966				goto again;	/* inspect THIS train further */
967		}
968		break;
969	}
970	/*
971	 * Put the first mbuf on the queue.
972	 * Note this permits zero length records.
973	 */
974	sballoc(sb, m0);
975	m0->m_nextpkt = *mp;
976	if (*mp == NULL) {
977		/* m0 is actually the new tail */
978		sb->sb_lastrecord = m0;
979	}
980	*mp = m0;
981	m = m0->m_next;
982	m0->m_next = 0;
983	if (m && (m0->m_flags & M_EOR)) {
984		m0->m_flags &= ~M_EOR;
985		m->m_flags |= M_EOR;
986	}
987	sbcompress(sb, m, m0);
988	SBLASTRECORDCHK(sb, "sbinsertoob 2");
989}
990
991/*
992 * Append address and data, and optionally, control (ancillary) data
993 * to the receive queue of a socket.  If present,
994 * m0 must include a packet header with total length.
995 * Returns 0 if no space in sockbuf or insufficient mbufs.
996 */
997int
998sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
999	struct mbuf *control)
1000{
1001	struct mbuf	*m, *n, *nlast;
1002	int		space, len;
1003
1004	KASSERT(solocked(sb->sb_so));
1005
1006	space = asa->sa_len;
1007
1008	if (m0 != NULL) {
1009		if ((m0->m_flags & M_PKTHDR) == 0)
1010			panic("sbappendaddr");
1011		space += m0->m_pkthdr.len;
1012#ifdef MBUFTRACE
1013		m_claimm(m0, sb->sb_mowner);
1014#endif
1015	}
1016	for (n = control; n; n = n->m_next) {
1017		space += n->m_len;
1018		MCLAIM(n, sb->sb_mowner);
1019		if (n->m_next == NULL)	/* keep pointer to last control buf */
1020			break;
1021	}
1022	if (space > sbspace(sb))
1023		return (0);
1024	m = m_get(M_DONTWAIT, MT_SONAME);
1025	if (m == NULL)
1026		return (0);
1027	MCLAIM(m, sb->sb_mowner);
1028	/*
1029	 * XXX avoid 'comparison always true' warning which isn't easily
1030	 * avoided.
1031	 */
1032	len = asa->sa_len;
1033	if (len > MLEN) {
1034		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1035		if ((m->m_flags & M_EXT) == 0) {
1036			m_free(m);
1037			return (0);
1038		}
1039	}
1040	m->m_len = asa->sa_len;
1041	memcpy(mtod(m, void *), asa, asa->sa_len);
1042	if (n)
1043		n->m_next = m0;		/* concatenate data to control */
1044	else
1045		control = m0;
1046	m->m_next = control;
1047
1048	SBLASTRECORDCHK(sb, "sbappendaddr 1");
1049
1050	for (n = m; n->m_next != NULL; n = n->m_next)
1051		sballoc(sb, n);
1052	sballoc(sb, n);
1053	nlast = n;
1054	SBLINKRECORD(sb, m);
1055
1056	sb->sb_mbtail = nlast;
1057	SBLASTMBUFCHK(sb, "sbappendaddr");
1058	SBLASTRECORDCHK(sb, "sbappendaddr 2");
1059
1060	return (1);
1061}
1062
1063/*
1064 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1065 * an mbuf chain.
1066 */
1067static inline struct mbuf *
1068m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1069		   const struct sockaddr *asa)
1070{
1071	struct mbuf *m;
1072	const int salen = asa->sa_len;
1073
1074	KASSERT(solocked(sb->sb_so));
1075
1076	/* only the first in each chain need be a pkthdr */
1077	m = m_gethdr(M_DONTWAIT, MT_SONAME);
1078	if (m == NULL)
1079		return NULL;
1080	MCLAIM(m, sb->sb_mowner);
1081#ifdef notyet
1082	if (salen > MHLEN) {
1083		MEXTMALLOC(m, salen, M_NOWAIT);
1084		if ((m->m_flags & M_EXT) == 0) {
1085			m_free(m);
1086			return NULL;
1087		}
1088	}
1089#else
1090	KASSERT(salen <= MHLEN);
1091#endif
1092	m->m_len = salen;
1093	memcpy(mtod(m, void *), asa, salen);
1094	m->m_next = m0;
1095	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1096
1097	return m;
1098}
1099
1100int
1101sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1102		  struct mbuf *m0, int sbprio)
1103{
1104	struct mbuf *m, *n, *n0, *nlast;
1105	int error;
1106
1107	KASSERT(solocked(sb->sb_so));
1108
1109	/*
1110	 * XXX sbprio reserved for encoding priority of this* request:
1111	 *  SB_PRIO_NONE --> honour normal sb limits
1112	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1113	 *	take whole chain. Intended for large requests
1114	 *      that should be delivered atomically (all, or none).
1115	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1116	 *       over normal socket limits, for messages indicating
1117	 *       buffer overflow in earlier normal/lower-priority messages
1118	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1119	 *       Intended for  kernel-generated messages only.
1120	 *        Up to generator to avoid total mbuf resource exhaustion.
1121	 */
1122	(void)sbprio;
1123
1124	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1125		panic("sbappendaddrchain");
1126
1127#ifdef notyet
1128	space = sbspace(sb);
1129
1130	/*
1131	 * Enforce SB_PRIO_* limits as described above.
1132	 */
1133#endif
1134
1135	n0 = NULL;
1136	nlast = NULL;
1137	for (m = m0; m; m = m->m_nextpkt) {
1138		struct mbuf *np;
1139
1140#ifdef MBUFTRACE
1141		m_claimm(m, sb->sb_mowner);
1142#endif
1143
1144		/* Prepend sockaddr to this record (m) of input chain m0 */
1145	  	n = m_prepend_sockaddr(sb, m, asa);
1146		if (n == NULL) {
1147			error = ENOBUFS;
1148			goto bad;
1149		}
1150
1151		/* Append record (asa+m) to end of new chain n0 */
1152		if (n0 == NULL) {
1153			n0 = n;
1154		} else {
1155			nlast->m_nextpkt = n;
1156		}
1157		/* Keep track of last record on new chain */
1158		nlast = n;
1159
1160		for (np = n; np; np = np->m_next)
1161			sballoc(sb, np);
1162	}
1163
1164	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1165
1166	/* Drop the entire chain of (asa+m) records onto the socket */
1167	SBLINKRECORDCHAIN(sb, n0, nlast);
1168
1169	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1170
1171	for (m = nlast; m->m_next; m = m->m_next)
1172		;
1173	sb->sb_mbtail = m;
1174	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1175
1176	return (1);
1177
1178bad:
1179	/*
1180	 * On error, free the prepended addreseses. For consistency
1181	 * with sbappendaddr(), leave it to our caller to free
1182	 * the input record chain passed to us as m0.
1183	 */
1184	while ((n = n0) != NULL) {
1185	  	struct mbuf *np;
1186
1187		/* Undo the sballoc() of this record */
1188		for (np = n; np; np = np->m_next)
1189			sbfree(sb, np);
1190
1191		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1192		np = m_free(n);		/* free prepended address (not data) */
1193	}
1194	return error;
1195}
1196
1197
1198int
1199sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1200{
1201	struct mbuf	*m, *mlast, *n;
1202	int		space;
1203
1204	KASSERT(solocked(sb->sb_so));
1205
1206	space = 0;
1207	if (control == NULL)
1208		panic("sbappendcontrol");
1209	for (m = control; ; m = m->m_next) {
1210		space += m->m_len;
1211		MCLAIM(m, sb->sb_mowner);
1212		if (m->m_next == NULL)
1213			break;
1214	}
1215	n = m;			/* save pointer to last control buffer */
1216	for (m = m0; m; m = m->m_next) {
1217		MCLAIM(m, sb->sb_mowner);
1218		space += m->m_len;
1219	}
1220	if (space > sbspace(sb))
1221		return (0);
1222	n->m_next = m0;			/* concatenate data to control */
1223
1224	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1225
1226	for (m = control; m->m_next != NULL; m = m->m_next)
1227		sballoc(sb, m);
1228	sballoc(sb, m);
1229	mlast = m;
1230	SBLINKRECORD(sb, control);
1231
1232	sb->sb_mbtail = mlast;
1233	SBLASTMBUFCHK(sb, "sbappendcontrol");
1234	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1235
1236	return (1);
1237}
1238
1239/*
1240 * Compress mbuf chain m into the socket
1241 * buffer sb following mbuf n.  If n
1242 * is null, the buffer is presumed empty.
1243 */
1244void
1245sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1246{
1247	int		eor;
1248	struct mbuf	*o;
1249
1250	KASSERT(solocked(sb->sb_so));
1251
1252	eor = 0;
1253	while (m) {
1254		eor |= m->m_flags & M_EOR;
1255		if (m->m_len == 0 &&
1256		    (eor == 0 ||
1257		     (((o = m->m_next) || (o = n)) &&
1258		      o->m_type == m->m_type))) {
1259			if (sb->sb_lastrecord == m)
1260				sb->sb_lastrecord = m->m_next;
1261			m = m_free(m);
1262			continue;
1263		}
1264		if (n && (n->m_flags & M_EOR) == 0 &&
1265		    /* M_TRAILINGSPACE() checks buffer writeability */
1266		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1267		    m->m_len <= M_TRAILINGSPACE(n) &&
1268		    n->m_type == m->m_type) {
1269			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1270			    (unsigned)m->m_len);
1271			n->m_len += m->m_len;
1272			sb->sb_cc += m->m_len;
1273			m = m_free(m);
1274			continue;
1275		}
1276		if (n)
1277			n->m_next = m;
1278		else
1279			sb->sb_mb = m;
1280		sb->sb_mbtail = m;
1281		sballoc(sb, m);
1282		n = m;
1283		m->m_flags &= ~M_EOR;
1284		m = m->m_next;
1285		n->m_next = 0;
1286	}
1287	if (eor) {
1288		if (n)
1289			n->m_flags |= eor;
1290		else
1291			printf("semi-panic: sbcompress\n");
1292	}
1293	SBLASTMBUFCHK(sb, __func__);
1294}
1295
1296/*
1297 * Free all mbufs in a sockbuf.
1298 * Check that all resources are reclaimed.
1299 */
1300void
1301sbflush(struct sockbuf *sb)
1302{
1303
1304	KASSERT(solocked(sb->sb_so));
1305	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1306
1307	while (sb->sb_mbcnt)
1308		sbdrop(sb, (int)sb->sb_cc);
1309
1310	KASSERT(sb->sb_cc == 0);
1311	KASSERT(sb->sb_mb == NULL);
1312	KASSERT(sb->sb_mbtail == NULL);
1313	KASSERT(sb->sb_lastrecord == NULL);
1314}
1315
1316/*
1317 * Drop data from (the front of) a sockbuf.
1318 */
1319void
1320sbdrop(struct sockbuf *sb, int len)
1321{
1322	struct mbuf	*m, *next;
1323
1324	KASSERT(solocked(sb->sb_so));
1325
1326	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1327	while (len > 0) {
1328		if (m == NULL) {
1329			if (next == NULL)
1330				panic("sbdrop(%p,%d): cc=%lu",
1331				    sb, len, sb->sb_cc);
1332			m = next;
1333			next = m->m_nextpkt;
1334			continue;
1335		}
1336		if (m->m_len > len) {
1337			m->m_len -= len;
1338			m->m_data += len;
1339			sb->sb_cc -= len;
1340			break;
1341		}
1342		len -= m->m_len;
1343		sbfree(sb, m);
1344		m = m_free(m);
1345	}
1346	while (m && m->m_len == 0) {
1347		sbfree(sb, m);
1348		m = m_free(m);
1349	}
1350	if (m) {
1351		sb->sb_mb = m;
1352		m->m_nextpkt = next;
1353	} else
1354		sb->sb_mb = next;
1355	/*
1356	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1357	 * makes sure sb_lastrecord is up-to-date if we dropped
1358	 * part of the last record.
1359	 */
1360	m = sb->sb_mb;
1361	if (m == NULL) {
1362		sb->sb_mbtail = NULL;
1363		sb->sb_lastrecord = NULL;
1364	} else if (m->m_nextpkt == NULL)
1365		sb->sb_lastrecord = m;
1366}
1367
1368/*
1369 * Drop a record off the front of a sockbuf
1370 * and move the next record to the front.
1371 */
1372void
1373sbdroprecord(struct sockbuf *sb)
1374{
1375	struct mbuf	*m, *mn;
1376
1377	KASSERT(solocked(sb->sb_so));
1378
1379	m = sb->sb_mb;
1380	if (m) {
1381		sb->sb_mb = m->m_nextpkt;
1382		do {
1383			sbfree(sb, m);
1384			mn = m_free(m);
1385		} while ((m = mn) != NULL);
1386	}
1387	SB_EMPTY_FIXUP(sb);
1388}
1389
1390/*
1391 * Create a "control" mbuf containing the specified data
1392 * with the specified type for presentation on a socket buffer.
1393 */
1394struct mbuf *
1395sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1396{
1397	struct cmsghdr	*cp;
1398	struct mbuf	*m;
1399	int space = CMSG_SPACE(size);
1400
1401	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1402		printf("%s: message too large %d\n", __func__, space);
1403		return NULL;
1404	}
1405
1406	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1407		return NULL;
1408	if (space > MLEN) {
1409		if (space > MCLBYTES)
1410			MEXTMALLOC(m, space, M_WAITOK);
1411		else
1412			MCLGET(m, flags);
1413		if ((m->m_flags & M_EXT) == 0) {
1414			m_free(m);
1415			return NULL;
1416		}
1417	}
1418	cp = mtod(m, struct cmsghdr *);
1419	*p = CMSG_DATA(cp);
1420	m->m_len = space;
1421	cp->cmsg_len = CMSG_LEN(size);
1422	cp->cmsg_level = level;
1423	cp->cmsg_type = type;
1424
1425	memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
1426	memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
1427
1428	return m;
1429}
1430
1431struct mbuf *
1432sbcreatecontrol(void *p, int size, int type, int level)
1433{
1434	struct mbuf *m;
1435	void *v;
1436
1437	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1438	if (m == NULL)
1439		return NULL;
1440	memcpy(v, p, size);
1441	return m;
1442}
1443
1444void
1445solockretry(struct socket *so, kmutex_t *lock)
1446{
1447
1448	while (lock != so->so_lock) {
1449		mutex_exit(lock);
1450		lock = so->so_lock;
1451		mutex_enter(lock);
1452	}
1453}
1454
1455bool
1456solocked(const struct socket *so)
1457{
1458
1459	return mutex_owned(so->so_lock);
1460}
1461
1462bool
1463solocked2(const struct socket *so1, const struct socket *so2)
1464{
1465	const kmutex_t *lock;
1466
1467	lock = so1->so_lock;
1468	if (lock != so2->so_lock)
1469		return false;
1470	return mutex_owned(lock);
1471}
1472
1473/*
1474 * sosetlock: assign a default lock to a new socket.
1475 */
1476void
1477sosetlock(struct socket *so)
1478{
1479	if (so->so_lock == NULL) {
1480		kmutex_t *lock = softnet_lock;
1481
1482		so->so_lock = lock;
1483		mutex_obj_hold(lock);
1484		mutex_enter(lock);
1485	}
1486	KASSERT(solocked(so));
1487}
1488
1489/*
1490 * Set lock on sockbuf sb; sleep if lock is already held.
1491 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1492 * Returns error without lock if sleep is interrupted.
1493 */
1494int
1495sblock(struct sockbuf *sb, int wf)
1496{
1497	struct socket *so;
1498	kmutex_t *lock;
1499	int error;
1500
1501	KASSERT(solocked(sb->sb_so));
1502
1503	for (;;) {
1504		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1505			sb->sb_flags |= SB_LOCK;
1506			return 0;
1507		}
1508		if (wf != M_WAITOK)
1509			return EWOULDBLOCK;
1510		so = sb->sb_so;
1511		lock = so->so_lock;
1512		if ((sb->sb_flags & SB_NOINTR) != 0) {
1513			cv_wait(&so->so_cv, lock);
1514			error = 0;
1515		} else
1516			error = cv_wait_sig(&so->so_cv, lock);
1517		if (__predict_false(lock != so->so_lock))
1518			solockretry(so, lock);
1519		if (error != 0)
1520			return error;
1521	}
1522}
1523
1524void
1525sbunlock(struct sockbuf *sb)
1526{
1527	struct socket *so;
1528
1529	so = sb->sb_so;
1530
1531	KASSERT(solocked(so));
1532	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1533
1534	sb->sb_flags &= ~SB_LOCK;
1535	cv_broadcast(&so->so_cv);
1536}
1537
1538int
1539sowait(struct socket *so, bool catch_p, int timo)
1540{
1541	kmutex_t *lock;
1542	int error;
1543
1544	KASSERT(solocked(so));
1545	KASSERT(catch_p || timo != 0);
1546
1547	lock = so->so_lock;
1548	if (catch_p)
1549		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1550	else
1551		error = cv_timedwait(&so->so_cv, lock, timo);
1552	if (__predict_false(lock != so->so_lock))
1553		solockretry(so, lock);
1554	return error;
1555}
1556
1557#ifdef DDB
1558
1559/*
1560 * Currently, sofindproc() is used only from DDB. It could be used from others
1561 * by using db_mutex_enter()
1562 */
1563
1564static inline int
1565db_mutex_enter(kmutex_t *mtx)
1566{
1567	extern int db_active;
1568	int rv;
1569
1570	if (!db_active) {
1571		mutex_enter(mtx);
1572		rv = 1;
1573	} else
1574		rv = mutex_tryenter(mtx);
1575
1576	return rv;
1577}
1578
1579int
1580sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1581{
1582	proc_t *p;
1583	filedesc_t *fdp;
1584	fdtab_t *dt;
1585	fdfile_t *ff;
1586	file_t *fp = NULL;
1587	int found = 0;
1588	int i, t;
1589
1590	if (so == NULL)
1591		return 0;
1592
1593	t = db_mutex_enter(&proc_lock);
1594	if (!t) {
1595		pr("could not acquire proc_lock mutex\n");
1596		return 0;
1597	}
1598	PROCLIST_FOREACH(p, &allproc) {
1599		if (p->p_stat == SIDL)
1600			continue;
1601		fdp = p->p_fd;
1602		t = db_mutex_enter(&fdp->fd_lock);
1603		if (!t) {
1604			pr("could not acquire fd_lock mutex\n");
1605			continue;
1606		}
1607		dt = atomic_load_consume(&fdp->fd_dt);
1608		for (i = 0; i < dt->dt_nfiles; i++) {
1609			ff = dt->dt_ff[i];
1610			if (ff == NULL)
1611				continue;
1612
1613			fp = atomic_load_consume(&ff->ff_file);
1614			if (fp == NULL)
1615				continue;
1616
1617			t = db_mutex_enter(&fp->f_lock);
1618			if (!t) {
1619				pr("could not acquire f_lock mutex\n");
1620				continue;
1621			}
1622			if ((struct socket *)fp->f_data != so) {
1623				mutex_exit(&fp->f_lock);
1624				continue;
1625			}
1626			found++;
1627			if (pr)
1628				pr("socket %p: owner %s(pid=%d)\n",
1629				    so, p->p_comm, p->p_pid);
1630			mutex_exit(&fp->f_lock);
1631			if (all == 0)
1632				break;
1633		}
1634		mutex_exit(&fdp->fd_lock);
1635		if (all == 0 && found != 0)
1636			break;
1637	}
1638	mutex_exit(&proc_lock);
1639
1640	return found;
1641}
1642
1643void
1644socket_print(const char *modif, void (*pr)(const char *, ...))
1645{
1646	file_t *fp;
1647	struct socket *so;
1648	struct sockbuf *sb_snd, *sb_rcv;
1649	struct mbuf *m_rec, *m;
1650	bool opt_v = false;
1651	bool opt_m = false;
1652	bool opt_a = false;
1653	bool opt_p = false;
1654	int nrecs, nmbufs;
1655	char ch;
1656	const char *family;
1657
1658	while ( (ch = *(modif++)) != '\0') {
1659		switch (ch) {
1660		case 'v':
1661			opt_v = true;
1662			break;
1663		case 'm':
1664			opt_m = true;
1665			break;
1666		case 'a':
1667			opt_a = true;
1668			break;
1669		case 'p':
1670			opt_p = true;
1671			break;
1672		}
1673	}
1674	if (opt_v == false && pr)
1675		(pr)("Ignore empty sockets. use /v to print all.\n");
1676	if (opt_p == true && pr)
1677		(pr)("Don't search owner process.\n");
1678
1679	LIST_FOREACH(fp, &filehead, f_list) {
1680		if (fp->f_type != DTYPE_SOCKET)
1681			continue;
1682		so = (struct socket *)fp->f_data;
1683		if (so == NULL)
1684			continue;
1685
1686		if (so->so_proto->pr_domain->dom_family == AF_INET)
1687			family = "INET";
1688#ifdef INET6
1689		else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1690			family = "INET6";
1691#endif
1692		else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1693			family = "KEY";
1694		else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1695			family = "ROUTE";
1696		else
1697			continue;
1698
1699		sb_snd = &so->so_snd;
1700		sb_rcv = &so->so_rcv;
1701
1702		if (opt_v != true &&
1703		    sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1704			continue;
1705
1706		pr("---SOCKET %p: type %s\n", so, family);
1707		if (opt_p != true)
1708			sofindproc(so, opt_a == true ? 1 : 0, pr);
1709		pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1710		pr("Send Buffer mbufs:\n");
1711		m_rec = m = sb_snd->sb_mb;
1712		nrecs = 0;
1713		nmbufs = 0;
1714		while (m_rec) {
1715			nrecs++;
1716			if (opt_m == true)
1717				pr(" mbuf chain %p\n", m_rec);
1718			while (m) {
1719				nmbufs++;
1720				m = m->m_next;
1721			}
1722			m_rec = m = m_rec->m_nextpkt;
1723		}
1724		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1725
1726		pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1727		pr("Recv Buffer mbufs:\n");
1728		m_rec = m = sb_rcv->sb_mb;
1729		nrecs = 0;
1730		nmbufs = 0;
1731		while (m_rec) {
1732			nrecs++;
1733			if (opt_m == true)
1734				pr(" mbuf chain %p\n", m_rec);
1735			while (m) {
1736				nmbufs++;
1737				m = m->m_next;
1738			}
1739			m_rec = m = m_rec->m_nextpkt;
1740		}
1741		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1742	}
1743}
1744#endif /* DDB */
1745