uipc_socket2.c revision 1.132
1/*	$NetBSD: uipc_socket2.c,v 1.132 2018/09/03 16:29:35 riastradh Exp $	*/
2
3/*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 *    may be used to endorse or promote products derived from this software
43 *    without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58 */
59
60#include <sys/cdefs.h>
61__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.132 2018/09/03 16:29:35 riastradh Exp $");
62
63#ifdef _KERNEL_OPT
64#include "opt_ddb.h"
65#include "opt_mbuftrace.h"
66#include "opt_sb_max.h"
67#endif
68
69#include <sys/param.h>
70#include <sys/systm.h>
71#include <sys/proc.h>
72#include <sys/file.h>
73#include <sys/buf.h>
74#include <sys/mbuf.h>
75#include <sys/protosw.h>
76#include <sys/domain.h>
77#include <sys/poll.h>
78#include <sys/socket.h>
79#include <sys/socketvar.h>
80#include <sys/signalvar.h>
81#include <sys/kauth.h>
82#include <sys/pool.h>
83#include <sys/uidinfo.h>
84
85#ifdef DDB
86#include <sys/filedesc.h>
87#endif
88
89/*
90 * Primitive routines for operating on sockets and socket buffers.
91 *
92 * Connection life-cycle:
93 *
94 *	Normal sequence from the active (originating) side:
95 *
96 *	- soisconnecting() is called during processing of connect() call,
97 *	- resulting in an eventual call to soisconnected() if/when the
98 *	  connection is established.
99 *
100 *	When the connection is torn down during processing of disconnect():
101 *
102 *	- soisdisconnecting() is called and,
103 *	- soisdisconnected() is called when the connection to the peer
104 *	  is totally severed.
105 *
106 *	The semantics of these routines are such that connectionless protocols
107 *	can call soisconnected() and soisdisconnected() only, bypassing the
108 *	in-progress calls when setting up a ``connection'' takes no time.
109 *
110 *	From the passive side, a socket is created with two queues of sockets:
111 *
112 *	- so_q0 (0) for partial connections (i.e. connections in progress)
113 *	- so_q (1) for connections already made and awaiting user acceptance.
114 *
115 *	As a protocol is preparing incoming connections, it creates a socket
116 *	structure queued on so_q0 by calling sonewconn().  When the connection
117 *	is established, soisconnected() is called, and transfers the
118 *	socket structure to so_q, making it available to accept().
119 *
120 *	If a socket is closed with sockets on either so_q0 or so_q, these
121 *	sockets are dropped.
122 *
123 * Locking rules and assumptions:
124 *
125 * o socket::so_lock can change on the fly.  The low level routines used
126 *   to lock sockets are aware of this.  When so_lock is acquired, the
127 *   routine locking must check to see if so_lock still points to the
128 *   lock that was acquired.  If so_lock has changed in the meantime, the
129 *   now irrelevant lock that was acquired must be dropped and the lock
130 *   operation retried.  Although not proven here, this is completely safe
131 *   on a multiprocessor system, even with relaxed memory ordering, given
132 *   the next two rules:
133 *
134 * o In order to mutate so_lock, the lock pointed to by the current value
135 *   of so_lock must be held: i.e., the socket must be held locked by the
136 *   changing thread.  The thread must issue membar_exit() to prevent
137 *   memory accesses being reordered, and can set so_lock to the desired
138 *   value.  If the lock pointed to by the new value of so_lock is not
139 *   held by the changing thread, the socket must then be considered
140 *   unlocked.
141 *
142 * o If so_lock is mutated, and the previous lock referred to by so_lock
143 *   could still be visible to other threads in the system (e.g. via file
144 *   descriptor or protocol-internal reference), then the old lock must
145 *   remain valid until the socket and/or protocol control block has been
146 *   torn down.
147 *
148 * o If a socket has a non-NULL so_head value (i.e. is in the process of
149 *   connecting), then locking the socket must also lock the socket pointed
150 *   to by so_head: their lock pointers must match.
151 *
152 * o If a socket has connections in progress (so_q, so_q0 not empty) then
153 *   locking the socket must also lock the sockets attached to both queues.
154 *   Again, their lock pointers must match.
155 *
156 * o Beyond the initial lock assignment in socreate(), assigning locks to
157 *   sockets is the responsibility of the individual protocols / protocol
158 *   domains.
159 */
160
161static pool_cache_t	socket_cache;
162u_long			sb_max = SB_MAX;/* maximum socket buffer size */
163static u_long		sb_max_adj;	/* adjusted sb_max */
164
165void
166soisconnecting(struct socket *so)
167{
168
169	KASSERT(solocked(so));
170
171	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
172	so->so_state |= SS_ISCONNECTING;
173}
174
175void
176soisconnected(struct socket *so)
177{
178	struct socket	*head;
179
180	head = so->so_head;
181
182	KASSERT(solocked(so));
183	KASSERT(head == NULL || solocked2(so, head));
184
185	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
186	so->so_state |= SS_ISCONNECTED;
187	if (head && so->so_onq == &head->so_q0) {
188		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
189			/*
190			 * Re-enqueue and wake up any waiters, e.g.
191			 * processes blocking on accept().
192			 */
193			soqremque(so, 0);
194			soqinsque(head, so, 1);
195			sorwakeup(head);
196			cv_broadcast(&head->so_cv);
197		} else {
198			so->so_upcall =
199			    head->so_accf->so_accept_filter->accf_callback;
200			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
201			so->so_rcv.sb_flags |= SB_UPCALL;
202			so->so_options &= ~SO_ACCEPTFILTER;
203			(*so->so_upcall)(so, so->so_upcallarg,
204					 POLLIN|POLLRDNORM, M_DONTWAIT);
205		}
206	} else {
207		cv_broadcast(&so->so_cv);
208		sorwakeup(so);
209		sowwakeup(so);
210	}
211}
212
213void
214soisdisconnecting(struct socket *so)
215{
216
217	KASSERT(solocked(so));
218
219	so->so_state &= ~SS_ISCONNECTING;
220	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
221	cv_broadcast(&so->so_cv);
222	sowwakeup(so);
223	sorwakeup(so);
224}
225
226void
227soisdisconnected(struct socket *so)
228{
229
230	KASSERT(solocked(so));
231
232	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
233	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
234	cv_broadcast(&so->so_cv);
235	sowwakeup(so);
236	sorwakeup(so);
237}
238
239void
240soinit2(void)
241{
242
243	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
244	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
245}
246
247/*
248 * sonewconn: accept a new connection.
249 *
250 * When an attempt at a new connection is noted on a socket which accepts
251 * connections, sonewconn(9) is called.  If the connection is possible
252 * (subject to space constraints, etc) then we allocate a new structure,
253 * properly linked into the data structure of the original socket.
254 *
255 * => If 'soready' is true, then socket will become ready for accept() i.e.
256 *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
257 * => May be called from soft-interrupt context.
258 * => Listening socket should be locked.
259 * => Returns the new socket locked.
260 */
261struct socket *
262sonewconn(struct socket *head, bool soready)
263{
264	struct socket *so;
265	int soqueue, error;
266
267	KASSERT(solocked(head));
268
269	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
270		/*
271		 * Listen queue overflow.  If there is an accept filter
272		 * active, pass through the oldest cxn it's handling.
273		 */
274		if (head->so_accf == NULL) {
275			return NULL;
276		} else {
277			struct socket *so2, *next;
278
279			/* Pass the oldest connection waiting in the
280			   accept filter */
281			for (so2 = TAILQ_FIRST(&head->so_q0);
282			     so2 != NULL; so2 = next) {
283				next = TAILQ_NEXT(so2, so_qe);
284				if (so2->so_upcall == NULL) {
285					continue;
286				}
287				so2->so_upcall = NULL;
288				so2->so_upcallarg = NULL;
289				so2->so_options &= ~SO_ACCEPTFILTER;
290				so2->so_rcv.sb_flags &= ~SB_UPCALL;
291				soisconnected(so2);
292				break;
293			}
294
295			/* If nothing was nudged out of the acept filter, bail
296			 * out; otherwise proceed allocating the socket. */
297			if (so2 == NULL) {
298				return NULL;
299			}
300		}
301	}
302	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
303		soready = false;
304	}
305	soqueue = soready ? 1 : 0;
306
307	if ((so = soget(false)) == NULL) {
308		return NULL;
309	}
310	so->so_type = head->so_type;
311	so->so_options = head->so_options & ~SO_ACCEPTCONN;
312	so->so_linger = head->so_linger;
313	so->so_state = head->so_state | SS_NOFDREF;
314	so->so_proto = head->so_proto;
315	so->so_timeo = head->so_timeo;
316	so->so_pgid = head->so_pgid;
317	so->so_send = head->so_send;
318	so->so_receive = head->so_receive;
319	so->so_uidinfo = head->so_uidinfo;
320	so->so_cpid = head->so_cpid;
321
322	/*
323	 * Share the lock with the listening-socket, it may get unshared
324	 * once the connection is complete.
325	 */
326	mutex_obj_hold(head->so_lock);
327	so->so_lock = head->so_lock;
328
329	/*
330	 * Reserve the space for socket buffers.
331	 */
332#ifdef MBUFTRACE
333	so->so_mowner = head->so_mowner;
334	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
335	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
336#endif
337	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
338		goto out;
339	}
340	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
341	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
342	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
343	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
344	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
345	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
346
347	/*
348	 * Finally, perform the protocol attach.  Note: a new socket
349	 * lock may be assigned at this point (if so, it will be held).
350	 */
351	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
352	if (error) {
353out:
354		KASSERT(solocked(so));
355		KASSERT(so->so_accf == NULL);
356		soput(so);
357
358		/* Note: the listening socket shall stay locked. */
359		KASSERT(solocked(head));
360		return NULL;
361	}
362	KASSERT(solocked2(head, so));
363
364	/*
365	 * Insert into the queue.  If ready, update the connection status
366	 * and wake up any waiters, e.g. processes blocking on accept().
367	 */
368	soqinsque(head, so, soqueue);
369	if (soready) {
370		so->so_state |= SS_ISCONNECTED;
371		sorwakeup(head);
372		cv_broadcast(&head->so_cv);
373	}
374	return so;
375}
376
377struct socket *
378soget(bool waitok)
379{
380	struct socket *so;
381
382	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
383	if (__predict_false(so == NULL))
384		return (NULL);
385	memset(so, 0, sizeof(*so));
386	TAILQ_INIT(&so->so_q0);
387	TAILQ_INIT(&so->so_q);
388	cv_init(&so->so_cv, "socket");
389	cv_init(&so->so_rcv.sb_cv, "netio");
390	cv_init(&so->so_snd.sb_cv, "netio");
391	selinit(&so->so_rcv.sb_sel);
392	selinit(&so->so_snd.sb_sel);
393	so->so_rcv.sb_so = so;
394	so->so_snd.sb_so = so;
395	return so;
396}
397
398void
399soput(struct socket *so)
400{
401
402	KASSERT(!cv_has_waiters(&so->so_cv));
403	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
404	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
405	seldestroy(&so->so_rcv.sb_sel);
406	seldestroy(&so->so_snd.sb_sel);
407	mutex_obj_free(so->so_lock);
408	cv_destroy(&so->so_cv);
409	cv_destroy(&so->so_rcv.sb_cv);
410	cv_destroy(&so->so_snd.sb_cv);
411	pool_cache_put(socket_cache, so);
412}
413
414/*
415 * soqinsque: insert socket of a new connection into the specified
416 * accept queue of the listening socket (head).
417 *
418 *	q = 0: queue of partial connections
419 *	q = 1: queue of incoming connections
420 */
421void
422soqinsque(struct socket *head, struct socket *so, int q)
423{
424	KASSERT(q == 0 || q == 1);
425	KASSERT(solocked2(head, so));
426	KASSERT(so->so_onq == NULL);
427	KASSERT(so->so_head == NULL);
428
429	so->so_head = head;
430	if (q == 0) {
431		head->so_q0len++;
432		so->so_onq = &head->so_q0;
433	} else {
434		head->so_qlen++;
435		so->so_onq = &head->so_q;
436	}
437	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
438}
439
440/*
441 * soqremque: remove socket from the specified queue.
442 *
443 * => Returns true if socket was removed from the specified queue.
444 * => False if socket was not removed (because it was in other queue).
445 */
446bool
447soqremque(struct socket *so, int q)
448{
449	struct socket *head = so->so_head;
450
451	KASSERT(q == 0 || q == 1);
452	KASSERT(solocked(so));
453	KASSERT(so->so_onq != NULL);
454	KASSERT(head != NULL);
455
456	if (q == 0) {
457		if (so->so_onq != &head->so_q0)
458			return false;
459		head->so_q0len--;
460	} else {
461		if (so->so_onq != &head->so_q)
462			return false;
463		head->so_qlen--;
464	}
465	KASSERT(solocked2(so, head));
466	TAILQ_REMOVE(so->so_onq, so, so_qe);
467	so->so_onq = NULL;
468	so->so_head = NULL;
469	return true;
470}
471
472/*
473 * socantsendmore: indicates that no more data will be sent on the
474 * socket; it would normally be applied to a socket when the user
475 * informs the system that no more data is to be sent, by the protocol
476 * code (in case pr_shutdown()).
477 */
478void
479socantsendmore(struct socket *so)
480{
481	KASSERT(solocked(so));
482
483	so->so_state |= SS_CANTSENDMORE;
484	sowwakeup(so);
485}
486
487/*
488 * socantrcvmore(): indicates that no more data will be received and
489 * will normally be applied to the socket by a protocol when it detects
490 * that the peer will send no more data.  Data queued for reading in
491 * the socket may yet be read.
492 */
493void
494socantrcvmore(struct socket *so)
495{
496	KASSERT(solocked(so));
497
498	so->so_state |= SS_CANTRCVMORE;
499	sorwakeup(so);
500}
501
502/*
503 * soroverflow(): indicates that data was attempted to be sent
504 * but the receiving buffer overflowed.
505 */
506void
507soroverflow(struct socket *so)
508{
509	KASSERT(solocked(so));
510
511	so->so_rcv.sb_overflowed++;
512	so->so_rerror = ENOBUFS;
513	sorwakeup(so);
514}
515
516/*
517 * Wait for data to arrive at/drain from a socket buffer.
518 */
519int
520sbwait(struct sockbuf *sb)
521{
522	struct socket *so;
523	kmutex_t *lock;
524	int error;
525
526	so = sb->sb_so;
527
528	KASSERT(solocked(so));
529
530	sb->sb_flags |= SB_NOTIFY;
531	lock = so->so_lock;
532	if ((sb->sb_flags & SB_NOINTR) != 0)
533		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
534	else
535		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
536	if (__predict_false(lock != so->so_lock))
537		solockretry(so, lock);
538	return error;
539}
540
541/*
542 * Wakeup processes waiting on a socket buffer.
543 * Do asynchronous notification via SIGIO
544 * if the socket buffer has the SB_ASYNC flag set.
545 */
546void
547sowakeup(struct socket *so, struct sockbuf *sb, int code)
548{
549	int band;
550
551	KASSERT(solocked(so));
552	KASSERT(sb->sb_so == so);
553
554	if (code == POLL_IN)
555		band = POLLIN|POLLRDNORM;
556	else
557		band = POLLOUT|POLLWRNORM;
558	sb->sb_flags &= ~SB_NOTIFY;
559	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
560	cv_broadcast(&sb->sb_cv);
561	if (sb->sb_flags & SB_ASYNC)
562		fownsignal(so->so_pgid, SIGIO, code, band, so);
563	if (sb->sb_flags & SB_UPCALL)
564		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
565}
566
567/*
568 * Reset a socket's lock pointer.  Wake all threads waiting on the
569 * socket's condition variables so that they can restart their waits
570 * using the new lock.  The existing lock must be held.
571 */
572void
573solockreset(struct socket *so, kmutex_t *lock)
574{
575
576	KASSERT(solocked(so));
577
578	so->so_lock = lock;
579	cv_broadcast(&so->so_snd.sb_cv);
580	cv_broadcast(&so->so_rcv.sb_cv);
581	cv_broadcast(&so->so_cv);
582}
583
584/*
585 * Socket buffer (struct sockbuf) utility routines.
586 *
587 * Each socket contains two socket buffers: one for sending data and
588 * one for receiving data.  Each buffer contains a queue of mbufs,
589 * information about the number of mbufs and amount of data in the
590 * queue, and other fields allowing poll() statements and notification
591 * on data availability to be implemented.
592 *
593 * Data stored in a socket buffer is maintained as a list of records.
594 * Each record is a list of mbufs chained together with the m_next
595 * field.  Records are chained together with the m_nextpkt field. The upper
596 * level routine soreceive() expects the following conventions to be
597 * observed when placing information in the receive buffer:
598 *
599 * 1. If the protocol requires each message be preceded by the sender's
600 *    name, then a record containing that name must be present before
601 *    any associated data (mbuf's must be of type MT_SONAME).
602 * 2. If the protocol supports the exchange of ``access rights'' (really
603 *    just additional data associated with the message), and there are
604 *    ``rights'' to be received, then a record containing this data
605 *    should be present (mbuf's must be of type MT_CONTROL).
606 * 3. If a name or rights record exists, then it must be followed by
607 *    a data record, perhaps of zero length.
608 *
609 * Before using a new socket structure it is first necessary to reserve
610 * buffer space to the socket, by calling sbreserve().  This should commit
611 * some of the available buffer space in the system buffer pool for the
612 * socket (currently, it does nothing but enforce limits).  The space
613 * should be released by calling sbrelease() when the socket is destroyed.
614 */
615
616int
617sb_max_set(u_long new_sbmax)
618{
619	int s;
620
621	if (new_sbmax < (16 * 1024))
622		return (EINVAL);
623
624	s = splsoftnet();
625	sb_max = new_sbmax;
626	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
627	splx(s);
628
629	return (0);
630}
631
632int
633soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
634{
635	KASSERT(so->so_pcb == NULL || solocked(so));
636
637	/*
638	 * there's at least one application (a configure script of screen)
639	 * which expects a fifo is writable even if it has "some" bytes
640	 * in its buffer.
641	 * so we want to make sure (hiwat - lowat) >= (some bytes).
642	 *
643	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
644	 * we expect it's large enough for such applications.
645	 */
646	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
647	u_long  hiwat = lowat + PIPE_BUF;
648
649	if (sndcc < hiwat)
650		sndcc = hiwat;
651	if (sbreserve(&so->so_snd, sndcc, so) == 0)
652		goto bad;
653	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
654		goto bad2;
655	if (so->so_rcv.sb_lowat == 0)
656		so->so_rcv.sb_lowat = 1;
657	if (so->so_snd.sb_lowat == 0)
658		so->so_snd.sb_lowat = lowat;
659	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
660		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
661	return (0);
662 bad2:
663	sbrelease(&so->so_snd, so);
664 bad:
665	return (ENOBUFS);
666}
667
668/*
669 * Allot mbufs to a sockbuf.
670 * Attempt to scale mbmax so that mbcnt doesn't become limiting
671 * if buffering efficiency is near the normal case.
672 */
673int
674sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
675{
676	struct lwp *l = curlwp; /* XXX */
677	rlim_t maxcc;
678	struct uidinfo *uidinfo;
679
680	KASSERT(so->so_pcb == NULL || solocked(so));
681	KASSERT(sb->sb_so == so);
682	KASSERT(sb_max_adj != 0);
683
684	if (cc == 0 || cc > sb_max_adj)
685		return (0);
686
687	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
688
689	uidinfo = so->so_uidinfo;
690	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
691		return 0;
692	sb->sb_mbmax = uimin(cc * 2, sb_max);
693	if (sb->sb_lowat > sb->sb_hiwat)
694		sb->sb_lowat = sb->sb_hiwat;
695
696	return (1);
697}
698
699/*
700 * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
701 * that the socket is held locked here: see sorflush().
702 */
703void
704sbrelease(struct sockbuf *sb, struct socket *so)
705{
706
707	KASSERT(sb->sb_so == so);
708
709	sbflush(sb);
710	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
711	sb->sb_mbmax = 0;
712}
713
714/*
715 * Routines to add and remove
716 * data from an mbuf queue.
717 *
718 * The routines sbappend() or sbappendrecord() are normally called to
719 * append new mbufs to a socket buffer, after checking that adequate
720 * space is available, comparing the function sbspace() with the amount
721 * of data to be added.  sbappendrecord() differs from sbappend() in
722 * that data supplied is treated as the beginning of a new record.
723 * To place a sender's address, optional access rights, and data in a
724 * socket receive buffer, sbappendaddr() should be used.  To place
725 * access rights and data in a socket receive buffer, sbappendrights()
726 * should be used.  In either case, the new data begins a new record.
727 * Note that unlike sbappend() and sbappendrecord(), these routines check
728 * for the caller that there will be enough space to store the data.
729 * Each fails if there is not enough space, or if it cannot find mbufs
730 * to store additional information in.
731 *
732 * Reliable protocols may use the socket send buffer to hold data
733 * awaiting acknowledgement.  Data is normally copied from a socket
734 * send buffer in a protocol with m_copym for output to a peer,
735 * and then removing the data from the socket buffer with sbdrop()
736 * or sbdroprecord() when the data is acknowledged by the peer.
737 */
738
739#ifdef SOCKBUF_DEBUG
740void
741sblastrecordchk(struct sockbuf *sb, const char *where)
742{
743	struct mbuf *m = sb->sb_mb;
744
745	KASSERT(solocked(sb->sb_so));
746
747	while (m && m->m_nextpkt)
748		m = m->m_nextpkt;
749
750	if (m != sb->sb_lastrecord) {
751		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
752		    sb->sb_mb, sb->sb_lastrecord, m);
753		printf("packet chain:\n");
754		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
755			printf("\t%p\n", m);
756		panic("sblastrecordchk from %s", where);
757	}
758}
759
760void
761sblastmbufchk(struct sockbuf *sb, const char *where)
762{
763	struct mbuf *m = sb->sb_mb;
764	struct mbuf *n;
765
766	KASSERT(solocked(sb->sb_so));
767
768	while (m && m->m_nextpkt)
769		m = m->m_nextpkt;
770
771	while (m && m->m_next)
772		m = m->m_next;
773
774	if (m != sb->sb_mbtail) {
775		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
776		    sb->sb_mb, sb->sb_mbtail, m);
777		printf("packet tree:\n");
778		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
779			printf("\t");
780			for (n = m; n != NULL; n = n->m_next)
781				printf("%p ", n);
782			printf("\n");
783		}
784		panic("sblastmbufchk from %s", where);
785	}
786}
787#endif /* SOCKBUF_DEBUG */
788
789/*
790 * Link a chain of records onto a socket buffer
791 */
792#define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
793do {									\
794	if ((sb)->sb_lastrecord != NULL)				\
795		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
796	else								\
797		(sb)->sb_mb = (m0);					\
798	(sb)->sb_lastrecord = (mlast);					\
799} while (/*CONSTCOND*/0)
800
801
802#define	SBLINKRECORD(sb, m0)						\
803    SBLINKRECORDCHAIN(sb, m0, m0)
804
805/*
806 * Append mbuf chain m to the last record in the
807 * socket buffer sb.  The additional space associated
808 * the mbuf chain is recorded in sb.  Empty mbufs are
809 * discarded and mbufs are compacted where possible.
810 */
811void
812sbappend(struct sockbuf *sb, struct mbuf *m)
813{
814	struct mbuf	*n;
815
816	KASSERT(solocked(sb->sb_so));
817
818	if (m == NULL)
819		return;
820
821#ifdef MBUFTRACE
822	m_claimm(m, sb->sb_mowner);
823#endif
824
825	SBLASTRECORDCHK(sb, "sbappend 1");
826
827	if ((n = sb->sb_lastrecord) != NULL) {
828		/*
829		 * XXX Would like to simply use sb_mbtail here, but
830		 * XXX I need to verify that I won't miss an EOR that
831		 * XXX way.
832		 */
833		do {
834			if (n->m_flags & M_EOR) {
835				sbappendrecord(sb, m); /* XXXXXX!!!! */
836				return;
837			}
838		} while (n->m_next && (n = n->m_next));
839	} else {
840		/*
841		 * If this is the first record in the socket buffer, it's
842		 * also the last record.
843		 */
844		sb->sb_lastrecord = m;
845	}
846	sbcompress(sb, m, n);
847	SBLASTRECORDCHK(sb, "sbappend 2");
848}
849
850/*
851 * This version of sbappend() should only be used when the caller
852 * absolutely knows that there will never be more than one record
853 * in the socket buffer, that is, a stream protocol (such as TCP).
854 */
855void
856sbappendstream(struct sockbuf *sb, struct mbuf *m)
857{
858
859	KASSERT(solocked(sb->sb_so));
860	KDASSERT(m->m_nextpkt == NULL);
861	KASSERT(sb->sb_mb == sb->sb_lastrecord);
862
863	SBLASTMBUFCHK(sb, __func__);
864
865#ifdef MBUFTRACE
866	m_claimm(m, sb->sb_mowner);
867#endif
868
869	sbcompress(sb, m, sb->sb_mbtail);
870
871	sb->sb_lastrecord = sb->sb_mb;
872	SBLASTRECORDCHK(sb, __func__);
873}
874
875#ifdef SOCKBUF_DEBUG
876void
877sbcheck(struct sockbuf *sb)
878{
879	struct mbuf	*m, *m2;
880	u_long		len, mbcnt;
881
882	KASSERT(solocked(sb->sb_so));
883
884	len = 0;
885	mbcnt = 0;
886	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
887		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
888			len += m2->m_len;
889			mbcnt += MSIZE;
890			if (m2->m_flags & M_EXT)
891				mbcnt += m2->m_ext.ext_size;
892			if (m2->m_nextpkt != NULL)
893				panic("sbcheck nextpkt");
894		}
895	}
896	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
897		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
898		    mbcnt, sb->sb_mbcnt);
899		panic("sbcheck");
900	}
901}
902#endif
903
904/*
905 * As above, except the mbuf chain
906 * begins a new record.
907 */
908void
909sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
910{
911	struct mbuf	*m;
912
913	KASSERT(solocked(sb->sb_so));
914
915	if (m0 == NULL)
916		return;
917
918#ifdef MBUFTRACE
919	m_claimm(m0, sb->sb_mowner);
920#endif
921	/*
922	 * Put the first mbuf on the queue.
923	 * Note this permits zero length records.
924	 */
925	sballoc(sb, m0);
926	SBLASTRECORDCHK(sb, "sbappendrecord 1");
927	SBLINKRECORD(sb, m0);
928	m = m0->m_next;
929	m0->m_next = 0;
930	if (m && (m0->m_flags & M_EOR)) {
931		m0->m_flags &= ~M_EOR;
932		m->m_flags |= M_EOR;
933	}
934	sbcompress(sb, m, m0);
935	SBLASTRECORDCHK(sb, "sbappendrecord 2");
936}
937
938/*
939 * As above except that OOB data
940 * is inserted at the beginning of the sockbuf,
941 * but after any other OOB data.
942 */
943void
944sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
945{
946	struct mbuf	*m, **mp;
947
948	KASSERT(solocked(sb->sb_so));
949
950	if (m0 == NULL)
951		return;
952
953	SBLASTRECORDCHK(sb, "sbinsertoob 1");
954
955	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
956	    again:
957		switch (m->m_type) {
958
959		case MT_OOBDATA:
960			continue;		/* WANT next train */
961
962		case MT_CONTROL:
963			if ((m = m->m_next) != NULL)
964				goto again;	/* inspect THIS train further */
965		}
966		break;
967	}
968	/*
969	 * Put the first mbuf on the queue.
970	 * Note this permits zero length records.
971	 */
972	sballoc(sb, m0);
973	m0->m_nextpkt = *mp;
974	if (*mp == NULL) {
975		/* m0 is actually the new tail */
976		sb->sb_lastrecord = m0;
977	}
978	*mp = m0;
979	m = m0->m_next;
980	m0->m_next = 0;
981	if (m && (m0->m_flags & M_EOR)) {
982		m0->m_flags &= ~M_EOR;
983		m->m_flags |= M_EOR;
984	}
985	sbcompress(sb, m, m0);
986	SBLASTRECORDCHK(sb, "sbinsertoob 2");
987}
988
989/*
990 * Append address and data, and optionally, control (ancillary) data
991 * to the receive queue of a socket.  If present,
992 * m0 must include a packet header with total length.
993 * Returns 0 if no space in sockbuf or insufficient mbufs.
994 */
995int
996sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
997	struct mbuf *control)
998{
999	struct mbuf	*m, *n, *nlast;
1000	int		space, len;
1001
1002	KASSERT(solocked(sb->sb_so));
1003
1004	space = asa->sa_len;
1005
1006	if (m0 != NULL) {
1007		if ((m0->m_flags & M_PKTHDR) == 0)
1008			panic("sbappendaddr");
1009		space += m0->m_pkthdr.len;
1010#ifdef MBUFTRACE
1011		m_claimm(m0, sb->sb_mowner);
1012#endif
1013	}
1014	for (n = control; n; n = n->m_next) {
1015		space += n->m_len;
1016		MCLAIM(n, sb->sb_mowner);
1017		if (n->m_next == NULL)	/* keep pointer to last control buf */
1018			break;
1019	}
1020	if (space > sbspace(sb))
1021		return (0);
1022	m = m_get(M_DONTWAIT, MT_SONAME);
1023	if (m == NULL)
1024		return (0);
1025	MCLAIM(m, sb->sb_mowner);
1026	/*
1027	 * XXX avoid 'comparison always true' warning which isn't easily
1028	 * avoided.
1029	 */
1030	len = asa->sa_len;
1031	if (len > MLEN) {
1032		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1033		if ((m->m_flags & M_EXT) == 0) {
1034			m_free(m);
1035			return (0);
1036		}
1037	}
1038	m->m_len = asa->sa_len;
1039	memcpy(mtod(m, void *), asa, asa->sa_len);
1040	if (n)
1041		n->m_next = m0;		/* concatenate data to control */
1042	else
1043		control = m0;
1044	m->m_next = control;
1045
1046	SBLASTRECORDCHK(sb, "sbappendaddr 1");
1047
1048	for (n = m; n->m_next != NULL; n = n->m_next)
1049		sballoc(sb, n);
1050	sballoc(sb, n);
1051	nlast = n;
1052	SBLINKRECORD(sb, m);
1053
1054	sb->sb_mbtail = nlast;
1055	SBLASTMBUFCHK(sb, "sbappendaddr");
1056	SBLASTRECORDCHK(sb, "sbappendaddr 2");
1057
1058	return (1);
1059}
1060
1061/*
1062 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1063 * an mbuf chain.
1064 */
1065static inline struct mbuf *
1066m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1067		   const struct sockaddr *asa)
1068{
1069	struct mbuf *m;
1070	const int salen = asa->sa_len;
1071
1072	KASSERT(solocked(sb->sb_so));
1073
1074	/* only the first in each chain need be a pkthdr */
1075	m = m_gethdr(M_DONTWAIT, MT_SONAME);
1076	if (m == NULL)
1077		return NULL;
1078	MCLAIM(m, sb->sb_mowner);
1079#ifdef notyet
1080	if (salen > MHLEN) {
1081		MEXTMALLOC(m, salen, M_NOWAIT);
1082		if ((m->m_flags & M_EXT) == 0) {
1083			m_free(m);
1084			return NULL;
1085		}
1086	}
1087#else
1088	KASSERT(salen <= MHLEN);
1089#endif
1090	m->m_len = salen;
1091	memcpy(mtod(m, void *), asa, salen);
1092	m->m_next = m0;
1093	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1094
1095	return m;
1096}
1097
1098int
1099sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1100		  struct mbuf *m0, int sbprio)
1101{
1102	struct mbuf *m, *n, *n0, *nlast;
1103	int error;
1104
1105	KASSERT(solocked(sb->sb_so));
1106
1107	/*
1108	 * XXX sbprio reserved for encoding priority of this* request:
1109	 *  SB_PRIO_NONE --> honour normal sb limits
1110	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1111	 *	take whole chain. Intended for large requests
1112	 *      that should be delivered atomically (all, or none).
1113	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1114	 *       over normal socket limits, for messages indicating
1115	 *       buffer overflow in earlier normal/lower-priority messages
1116	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1117	 *       Intended for  kernel-generated messages only.
1118	 *        Up to generator to avoid total mbuf resource exhaustion.
1119	 */
1120	(void)sbprio;
1121
1122	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1123		panic("sbappendaddrchain");
1124
1125#ifdef notyet
1126	space = sbspace(sb);
1127
1128	/*
1129	 * Enforce SB_PRIO_* limits as described above.
1130	 */
1131#endif
1132
1133	n0 = NULL;
1134	nlast = NULL;
1135	for (m = m0; m; m = m->m_nextpkt) {
1136		struct mbuf *np;
1137
1138#ifdef MBUFTRACE
1139		m_claimm(m, sb->sb_mowner);
1140#endif
1141
1142		/* Prepend sockaddr to this record (m) of input chain m0 */
1143	  	n = m_prepend_sockaddr(sb, m, asa);
1144		if (n == NULL) {
1145			error = ENOBUFS;
1146			goto bad;
1147		}
1148
1149		/* Append record (asa+m) to end of new chain n0 */
1150		if (n0 == NULL) {
1151			n0 = n;
1152		} else {
1153			nlast->m_nextpkt = n;
1154		}
1155		/* Keep track of last record on new chain */
1156		nlast = n;
1157
1158		for (np = n; np; np = np->m_next)
1159			sballoc(sb, np);
1160	}
1161
1162	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1163
1164	/* Drop the entire chain of (asa+m) records onto the socket */
1165	SBLINKRECORDCHAIN(sb, n0, nlast);
1166
1167	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1168
1169	for (m = nlast; m->m_next; m = m->m_next)
1170		;
1171	sb->sb_mbtail = m;
1172	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1173
1174	return (1);
1175
1176bad:
1177	/*
1178	 * On error, free the prepended addreseses. For consistency
1179	 * with sbappendaddr(), leave it to our caller to free
1180	 * the input record chain passed to us as m0.
1181	 */
1182	while ((n = n0) != NULL) {
1183	  	struct mbuf *np;
1184
1185		/* Undo the sballoc() of this record */
1186		for (np = n; np; np = np->m_next)
1187			sbfree(sb, np);
1188
1189		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1190		np = m_free(n);		/* free prepended address (not data) */
1191	}
1192	return error;
1193}
1194
1195
1196int
1197sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1198{
1199	struct mbuf	*m, *mlast, *n;
1200	int		space;
1201
1202	KASSERT(solocked(sb->sb_so));
1203
1204	space = 0;
1205	if (control == NULL)
1206		panic("sbappendcontrol");
1207	for (m = control; ; m = m->m_next) {
1208		space += m->m_len;
1209		MCLAIM(m, sb->sb_mowner);
1210		if (m->m_next == NULL)
1211			break;
1212	}
1213	n = m;			/* save pointer to last control buffer */
1214	for (m = m0; m; m = m->m_next) {
1215		MCLAIM(m, sb->sb_mowner);
1216		space += m->m_len;
1217	}
1218	if (space > sbspace(sb))
1219		return (0);
1220	n->m_next = m0;			/* concatenate data to control */
1221
1222	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1223
1224	for (m = control; m->m_next != NULL; m = m->m_next)
1225		sballoc(sb, m);
1226	sballoc(sb, m);
1227	mlast = m;
1228	SBLINKRECORD(sb, control);
1229
1230	sb->sb_mbtail = mlast;
1231	SBLASTMBUFCHK(sb, "sbappendcontrol");
1232	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1233
1234	return (1);
1235}
1236
1237/*
1238 * Compress mbuf chain m into the socket
1239 * buffer sb following mbuf n.  If n
1240 * is null, the buffer is presumed empty.
1241 */
1242void
1243sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1244{
1245	int		eor;
1246	struct mbuf	*o;
1247
1248	KASSERT(solocked(sb->sb_so));
1249
1250	eor = 0;
1251	while (m) {
1252		eor |= m->m_flags & M_EOR;
1253		if (m->m_len == 0 &&
1254		    (eor == 0 ||
1255		     (((o = m->m_next) || (o = n)) &&
1256		      o->m_type == m->m_type))) {
1257			if (sb->sb_lastrecord == m)
1258				sb->sb_lastrecord = m->m_next;
1259			m = m_free(m);
1260			continue;
1261		}
1262		if (n && (n->m_flags & M_EOR) == 0 &&
1263		    /* M_TRAILINGSPACE() checks buffer writeability */
1264		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1265		    m->m_len <= M_TRAILINGSPACE(n) &&
1266		    n->m_type == m->m_type) {
1267			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1268			    (unsigned)m->m_len);
1269			n->m_len += m->m_len;
1270			sb->sb_cc += m->m_len;
1271			m = m_free(m);
1272			continue;
1273		}
1274		if (n)
1275			n->m_next = m;
1276		else
1277			sb->sb_mb = m;
1278		sb->sb_mbtail = m;
1279		sballoc(sb, m);
1280		n = m;
1281		m->m_flags &= ~M_EOR;
1282		m = m->m_next;
1283		n->m_next = 0;
1284	}
1285	if (eor) {
1286		if (n)
1287			n->m_flags |= eor;
1288		else
1289			printf("semi-panic: sbcompress\n");
1290	}
1291	SBLASTMBUFCHK(sb, __func__);
1292}
1293
1294/*
1295 * Free all mbufs in a sockbuf.
1296 * Check that all resources are reclaimed.
1297 */
1298void
1299sbflush(struct sockbuf *sb)
1300{
1301
1302	KASSERT(solocked(sb->sb_so));
1303	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1304
1305	while (sb->sb_mbcnt)
1306		sbdrop(sb, (int)sb->sb_cc);
1307
1308	KASSERT(sb->sb_cc == 0);
1309	KASSERT(sb->sb_mb == NULL);
1310	KASSERT(sb->sb_mbtail == NULL);
1311	KASSERT(sb->sb_lastrecord == NULL);
1312}
1313
1314/*
1315 * Drop data from (the front of) a sockbuf.
1316 */
1317void
1318sbdrop(struct sockbuf *sb, int len)
1319{
1320	struct mbuf	*m, *next;
1321
1322	KASSERT(solocked(sb->sb_so));
1323
1324	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1325	while (len > 0) {
1326		if (m == NULL) {
1327			if (next == NULL)
1328				panic("sbdrop(%p,%d): cc=%lu",
1329				    sb, len, sb->sb_cc);
1330			m = next;
1331			next = m->m_nextpkt;
1332			continue;
1333		}
1334		if (m->m_len > len) {
1335			m->m_len -= len;
1336			m->m_data += len;
1337			sb->sb_cc -= len;
1338			break;
1339		}
1340		len -= m->m_len;
1341		sbfree(sb, m);
1342		m = m_free(m);
1343	}
1344	while (m && m->m_len == 0) {
1345		sbfree(sb, m);
1346		m = m_free(m);
1347	}
1348	if (m) {
1349		sb->sb_mb = m;
1350		m->m_nextpkt = next;
1351	} else
1352		sb->sb_mb = next;
1353	/*
1354	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1355	 * makes sure sb_lastrecord is up-to-date if we dropped
1356	 * part of the last record.
1357	 */
1358	m = sb->sb_mb;
1359	if (m == NULL) {
1360		sb->sb_mbtail = NULL;
1361		sb->sb_lastrecord = NULL;
1362	} else if (m->m_nextpkt == NULL)
1363		sb->sb_lastrecord = m;
1364}
1365
1366/*
1367 * Drop a record off the front of a sockbuf
1368 * and move the next record to the front.
1369 */
1370void
1371sbdroprecord(struct sockbuf *sb)
1372{
1373	struct mbuf	*m, *mn;
1374
1375	KASSERT(solocked(sb->sb_so));
1376
1377	m = sb->sb_mb;
1378	if (m) {
1379		sb->sb_mb = m->m_nextpkt;
1380		do {
1381			sbfree(sb, m);
1382			mn = m_free(m);
1383		} while ((m = mn) != NULL);
1384	}
1385	SB_EMPTY_FIXUP(sb);
1386}
1387
1388/*
1389 * Create a "control" mbuf containing the specified data
1390 * with the specified type for presentation on a socket buffer.
1391 */
1392struct mbuf *
1393sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1394{
1395	struct cmsghdr	*cp;
1396	struct mbuf	*m;
1397	int space = CMSG_SPACE(size);
1398
1399	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1400		printf("%s: message too large %d\n", __func__, space);
1401		return NULL;
1402	}
1403
1404	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1405		return NULL;
1406	if (space > MLEN) {
1407		if (space > MCLBYTES)
1408			MEXTMALLOC(m, space, M_WAITOK);
1409		else
1410			MCLGET(m, flags);
1411		if ((m->m_flags & M_EXT) == 0) {
1412			m_free(m);
1413			return NULL;
1414		}
1415	}
1416	cp = mtod(m, struct cmsghdr *);
1417	*p = CMSG_DATA(cp);
1418	m->m_len = space;
1419	cp->cmsg_len = CMSG_LEN(size);
1420	cp->cmsg_level = level;
1421	cp->cmsg_type = type;
1422	return m;
1423}
1424
1425struct mbuf *
1426sbcreatecontrol(void *p, int size, int type, int level)
1427{
1428	struct mbuf *m;
1429	void *v;
1430
1431	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1432	if (m == NULL)
1433		return NULL;
1434	memcpy(v, p, size);
1435	return m;
1436}
1437
1438void
1439solockretry(struct socket *so, kmutex_t *lock)
1440{
1441
1442	while (lock != so->so_lock) {
1443		mutex_exit(lock);
1444		lock = so->so_lock;
1445		mutex_enter(lock);
1446	}
1447}
1448
1449bool
1450solocked(const struct socket *so)
1451{
1452
1453	return mutex_owned(so->so_lock);
1454}
1455
1456bool
1457solocked2(const struct socket *so1, const struct socket *so2)
1458{
1459	const kmutex_t *lock;
1460
1461	lock = so1->so_lock;
1462	if (lock != so2->so_lock)
1463		return false;
1464	return mutex_owned(lock);
1465}
1466
1467/*
1468 * sosetlock: assign a default lock to a new socket.
1469 */
1470void
1471sosetlock(struct socket *so)
1472{
1473	if (so->so_lock == NULL) {
1474		kmutex_t *lock = softnet_lock;
1475
1476		so->so_lock = lock;
1477		mutex_obj_hold(lock);
1478		mutex_enter(lock);
1479	}
1480	KASSERT(solocked(so));
1481}
1482
1483/*
1484 * Set lock on sockbuf sb; sleep if lock is already held.
1485 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1486 * Returns error without lock if sleep is interrupted.
1487 */
1488int
1489sblock(struct sockbuf *sb, int wf)
1490{
1491	struct socket *so;
1492	kmutex_t *lock;
1493	int error;
1494
1495	KASSERT(solocked(sb->sb_so));
1496
1497	for (;;) {
1498		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1499			sb->sb_flags |= SB_LOCK;
1500			return 0;
1501		}
1502		if (wf != M_WAITOK)
1503			return EWOULDBLOCK;
1504		so = sb->sb_so;
1505		lock = so->so_lock;
1506		if ((sb->sb_flags & SB_NOINTR) != 0) {
1507			cv_wait(&so->so_cv, lock);
1508			error = 0;
1509		} else
1510			error = cv_wait_sig(&so->so_cv, lock);
1511		if (__predict_false(lock != so->so_lock))
1512			solockretry(so, lock);
1513		if (error != 0)
1514			return error;
1515	}
1516}
1517
1518void
1519sbunlock(struct sockbuf *sb)
1520{
1521	struct socket *so;
1522
1523	so = sb->sb_so;
1524
1525	KASSERT(solocked(so));
1526	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1527
1528	sb->sb_flags &= ~SB_LOCK;
1529	cv_broadcast(&so->so_cv);
1530}
1531
1532int
1533sowait(struct socket *so, bool catch_p, int timo)
1534{
1535	kmutex_t *lock;
1536	int error;
1537
1538	KASSERT(solocked(so));
1539	KASSERT(catch_p || timo != 0);
1540
1541	lock = so->so_lock;
1542	if (catch_p)
1543		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1544	else
1545		error = cv_timedwait(&so->so_cv, lock, timo);
1546	if (__predict_false(lock != so->so_lock))
1547		solockretry(so, lock);
1548	return error;
1549}
1550
1551#ifdef DDB
1552
1553/*
1554 * Currently, sofindproc() is used only from DDB. It could be used from others
1555 * by using db_mutex_enter()
1556 */
1557
1558static inline int
1559db_mutex_enter(kmutex_t *mtx)
1560{
1561	extern int db_active;
1562	int rv;
1563
1564	if (!db_active) {
1565		mutex_enter(mtx);
1566		rv = 1;
1567	} else
1568		rv = mutex_tryenter(mtx);
1569
1570	return rv;
1571}
1572
1573int
1574sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1575{
1576	proc_t *p;
1577	filedesc_t *fdp;
1578	fdtab_t *dt;
1579	fdfile_t *ff;
1580	file_t *fp = NULL;
1581	int found = 0;
1582	int i, t;
1583
1584	if (so == NULL)
1585		return 0;
1586
1587	t = db_mutex_enter(proc_lock);
1588	if (!t) {
1589		pr("could not acquire proc_lock mutex\n");
1590		return 0;
1591	}
1592	PROCLIST_FOREACH(p, &allproc) {
1593		if (p->p_stat == SIDL)
1594			continue;
1595		fdp = p->p_fd;
1596		t = db_mutex_enter(&fdp->fd_lock);
1597		if (!t) {
1598			pr("could not acquire fd_lock mutex\n");
1599			continue;
1600		}
1601		dt = fdp->fd_dt;
1602		for (i = 0; i < dt->dt_nfiles; i++) {
1603			ff = dt->dt_ff[i];
1604			if (ff == NULL)
1605				continue;
1606
1607			fp = ff->ff_file;
1608			if (fp == NULL)
1609				continue;
1610
1611			t = db_mutex_enter(&fp->f_lock);
1612			if (!t) {
1613				pr("could not acquire f_lock mutex\n");
1614				continue;
1615			}
1616			if ((struct socket *)fp->f_data != so) {
1617				mutex_exit(&fp->f_lock);
1618				continue;
1619			}
1620			found++;
1621			if (pr)
1622				pr("socket %p: owner %s(pid=%d)\n",
1623				    so, p->p_comm, p->p_pid);
1624			mutex_exit(&fp->f_lock);
1625			if (all == 0)
1626				break;
1627		}
1628		mutex_exit(&fdp->fd_lock);
1629		if (all == 0 && found != 0)
1630			break;
1631	}
1632	mutex_exit(proc_lock);
1633
1634	return found;
1635}
1636
1637void
1638socket_print(const char *modif, void (*pr)(const char *, ...))
1639{
1640	file_t *fp;
1641	struct socket *so;
1642	struct sockbuf *sb_snd, *sb_rcv;
1643	struct mbuf *m_rec, *m;
1644	bool opt_v = false;
1645	bool opt_m = false;
1646	bool opt_a = false;
1647	bool opt_p = false;
1648	int nrecs, nmbufs;
1649	char ch;
1650	const char *family;
1651
1652	while ( (ch = *(modif++)) != '\0') {
1653		switch (ch) {
1654		case 'v':
1655			opt_v = true;
1656			break;
1657		case 'm':
1658			opt_m = true;
1659			break;
1660		case 'a':
1661			opt_a = true;
1662			break;
1663		case 'p':
1664			opt_p = true;
1665			break;
1666		}
1667	}
1668	if (opt_v == false && pr)
1669		(pr)("Ignore empty sockets. use /v to print all.\n");
1670	if (opt_p == true && pr)
1671		(pr)("Don't search owner process.\n");
1672
1673	LIST_FOREACH(fp, &filehead, f_list) {
1674		if (fp->f_type != DTYPE_SOCKET)
1675			continue;
1676		so = (struct socket *)fp->f_data;
1677		if (so == NULL)
1678			continue;
1679
1680		if (so->so_proto->pr_domain->dom_family == AF_INET)
1681			family = "INET";
1682#ifdef INET6
1683		else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1684			family = "INET6";
1685#endif
1686		else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1687			family = "KEY";
1688		else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1689			family = "ROUTE";
1690		else
1691			continue;
1692
1693		sb_snd = &so->so_snd;
1694		sb_rcv = &so->so_rcv;
1695
1696		if (opt_v != true &&
1697		    sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1698			continue;
1699
1700		pr("---SOCKET %p: type %s\n", so, family);
1701		if (opt_p != true)
1702			sofindproc(so, opt_a == true ? 1 : 0, pr);
1703		pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1704		pr("Send Buffer mbufs:\n");
1705		m_rec = m = sb_snd->sb_mb;
1706		nrecs = 0;
1707		nmbufs = 0;
1708		while (m_rec) {
1709			nrecs++;
1710			if (opt_m == true)
1711				pr(" mbuf chain %p\n", m_rec);
1712			while (m) {
1713				nmbufs++;
1714				m = m->m_next;
1715			}
1716			m_rec = m = m_rec->m_nextpkt;
1717		}
1718		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1719
1720		pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1721		pr("Recv Buffer mbufs:\n");
1722		m_rec = m = sb_rcv->sb_mb;
1723		nrecs = 0;
1724		nmbufs = 0;
1725		while (m_rec) {
1726			nrecs++;
1727			if (opt_m == true)
1728				pr(" mbuf chain %p\n", m_rec);
1729			while (m) {
1730				nmbufs++;
1731				m = m->m_next;
1732			}
1733			m_rec = m = m_rec->m_nextpkt;
1734		}
1735		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1736	}
1737}
1738#endif /* DDB */
1739