uipc_socket2.c revision 1.128
1/*	$NetBSD: uipc_socket2.c,v 1.128 2018/03/19 16:26:26 roy Exp $	*/
2
3/*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 *    may be used to endorse or promote products derived from this software
43 *    without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58 */
59
60#include <sys/cdefs.h>
61__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.128 2018/03/19 16:26:26 roy Exp $");
62
63#ifdef _KERNEL_OPT
64#include "opt_mbuftrace.h"
65#include "opt_sb_max.h"
66#endif
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/proc.h>
71#include <sys/file.h>
72#include <sys/buf.h>
73#include <sys/mbuf.h>
74#include <sys/protosw.h>
75#include <sys/domain.h>
76#include <sys/poll.h>
77#include <sys/socket.h>
78#include <sys/socketvar.h>
79#include <sys/signalvar.h>
80#include <sys/kauth.h>
81#include <sys/pool.h>
82#include <sys/uidinfo.h>
83
84/*
85 * Primitive routines for operating on sockets and socket buffers.
86 *
87 * Connection life-cycle:
88 *
89 *	Normal sequence from the active (originating) side:
90 *
91 *	- soisconnecting() is called during processing of connect() call,
92 *	- resulting in an eventual call to soisconnected() if/when the
93 *	  connection is established.
94 *
95 *	When the connection is torn down during processing of disconnect():
96 *
97 *	- soisdisconnecting() is called and,
98 *	- soisdisconnected() is called when the connection to the peer
99 *	  is totally severed.
100 *
101 *	The semantics of these routines are such that connectionless protocols
102 *	can call soisconnected() and soisdisconnected() only, bypassing the
103 *	in-progress calls when setting up a ``connection'' takes no time.
104 *
105 *	From the passive side, a socket is created with two queues of sockets:
106 *
107 *	- so_q0 (0) for partial connections (i.e. connections in progress)
108 *	- so_q (1) for connections already made and awaiting user acceptance.
109 *
110 *	As a protocol is preparing incoming connections, it creates a socket
111 *	structure queued on so_q0 by calling sonewconn().  When the connection
112 *	is established, soisconnected() is called, and transfers the
113 *	socket structure to so_q, making it available to accept().
114 *
115 *	If a socket is closed with sockets on either so_q0 or so_q, these
116 *	sockets are dropped.
117 *
118 * Locking rules and assumptions:
119 *
120 * o socket::so_lock can change on the fly.  The low level routines used
121 *   to lock sockets are aware of this.  When so_lock is acquired, the
122 *   routine locking must check to see if so_lock still points to the
123 *   lock that was acquired.  If so_lock has changed in the meantime, the
124 *   now irrelevant lock that was acquired must be dropped and the lock
125 *   operation retried.  Although not proven here, this is completely safe
126 *   on a multiprocessor system, even with relaxed memory ordering, given
127 *   the next two rules:
128 *
129 * o In order to mutate so_lock, the lock pointed to by the current value
130 *   of so_lock must be held: i.e., the socket must be held locked by the
131 *   changing thread.  The thread must issue membar_exit() to prevent
132 *   memory accesses being reordered, and can set so_lock to the desired
133 *   value.  If the lock pointed to by the new value of so_lock is not
134 *   held by the changing thread, the socket must then be considered
135 *   unlocked.
136 *
137 * o If so_lock is mutated, and the previous lock referred to by so_lock
138 *   could still be visible to other threads in the system (e.g. via file
139 *   descriptor or protocol-internal reference), then the old lock must
140 *   remain valid until the socket and/or protocol control block has been
141 *   torn down.
142 *
143 * o If a socket has a non-NULL so_head value (i.e. is in the process of
144 *   connecting), then locking the socket must also lock the socket pointed
145 *   to by so_head: their lock pointers must match.
146 *
147 * o If a socket has connections in progress (so_q, so_q0 not empty) then
148 *   locking the socket must also lock the sockets attached to both queues.
149 *   Again, their lock pointers must match.
150 *
151 * o Beyond the initial lock assignment in socreate(), assigning locks to
152 *   sockets is the responsibility of the individual protocols / protocol
153 *   domains.
154 */
155
156static pool_cache_t	socket_cache;
157u_long			sb_max = SB_MAX;/* maximum socket buffer size */
158static u_long		sb_max_adj;	/* adjusted sb_max */
159
160void
161soisconnecting(struct socket *so)
162{
163
164	KASSERT(solocked(so));
165
166	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
167	so->so_state |= SS_ISCONNECTING;
168}
169
170void
171soisconnected(struct socket *so)
172{
173	struct socket	*head;
174
175	head = so->so_head;
176
177	KASSERT(solocked(so));
178	KASSERT(head == NULL || solocked2(so, head));
179
180	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
181	so->so_state |= SS_ISCONNECTED;
182	if (head && so->so_onq == &head->so_q0) {
183		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
184			/*
185			 * Re-enqueue and wake up any waiters, e.g.
186			 * processes blocking on accept().
187			 */
188			soqremque(so, 0);
189			soqinsque(head, so, 1);
190			sorwakeup(head);
191			cv_broadcast(&head->so_cv);
192		} else {
193			so->so_upcall =
194			    head->so_accf->so_accept_filter->accf_callback;
195			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
196			so->so_rcv.sb_flags |= SB_UPCALL;
197			so->so_options &= ~SO_ACCEPTFILTER;
198			(*so->so_upcall)(so, so->so_upcallarg,
199					 POLLIN|POLLRDNORM, M_DONTWAIT);
200		}
201	} else {
202		cv_broadcast(&so->so_cv);
203		sorwakeup(so);
204		sowwakeup(so);
205	}
206}
207
208void
209soisdisconnecting(struct socket *so)
210{
211
212	KASSERT(solocked(so));
213
214	so->so_state &= ~SS_ISCONNECTING;
215	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
216	cv_broadcast(&so->so_cv);
217	sowwakeup(so);
218	sorwakeup(so);
219}
220
221void
222soisdisconnected(struct socket *so)
223{
224
225	KASSERT(solocked(so));
226
227	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
228	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
229	cv_broadcast(&so->so_cv);
230	sowwakeup(so);
231	sorwakeup(so);
232}
233
234void
235soinit2(void)
236{
237
238	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
239	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
240}
241
242/*
243 * sonewconn: accept a new connection.
244 *
245 * When an attempt at a new connection is noted on a socket which accepts
246 * connections, sonewconn(9) is called.  If the connection is possible
247 * (subject to space constraints, etc) then we allocate a new structure,
248 * properly linked into the data structure of the original socket.
249 *
250 * => If 'soready' is true, then socket will become ready for accept() i.e.
251 *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
252 * => May be called from soft-interrupt context.
253 * => Listening socket should be locked.
254 * => Returns the new socket locked.
255 */
256struct socket *
257sonewconn(struct socket *head, bool soready)
258{
259	struct socket *so;
260	int soqueue, error;
261
262	KASSERT(solocked(head));
263
264	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
265		/*
266		 * Listen queue overflow.  If there is an accept filter
267		 * active, pass through the oldest cxn it's handling.
268		 */
269		if (head->so_accf == NULL) {
270			return NULL;
271		} else {
272			struct socket *so2, *next;
273
274			/* Pass the oldest connection waiting in the
275			   accept filter */
276			for (so2 = TAILQ_FIRST(&head->so_q0);
277			     so2 != NULL; so2 = next) {
278				next = TAILQ_NEXT(so2, so_qe);
279				if (so2->so_upcall == NULL) {
280					continue;
281				}
282				so2->so_upcall = NULL;
283				so2->so_upcallarg = NULL;
284				so2->so_options &= ~SO_ACCEPTFILTER;
285				so2->so_rcv.sb_flags &= ~SB_UPCALL;
286				soisconnected(so2);
287				break;
288			}
289
290			/* If nothing was nudged out of the acept filter, bail
291			 * out; otherwise proceed allocating the socket. */
292			if (so2 == NULL) {
293				return NULL;
294			}
295		}
296	}
297	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
298		soready = false;
299	}
300	soqueue = soready ? 1 : 0;
301
302	if ((so = soget(false)) == NULL) {
303		return NULL;
304	}
305	so->so_type = head->so_type;
306	so->so_options = head->so_options & ~SO_ACCEPTCONN;
307	so->so_linger = head->so_linger;
308	so->so_state = head->so_state | SS_NOFDREF;
309	so->so_proto = head->so_proto;
310	so->so_timeo = head->so_timeo;
311	so->so_pgid = head->so_pgid;
312	so->so_send = head->so_send;
313	so->so_receive = head->so_receive;
314	so->so_uidinfo = head->so_uidinfo;
315	so->so_cpid = head->so_cpid;
316
317	/*
318	 * Share the lock with the listening-socket, it may get unshared
319	 * once the connection is complete.
320	 */
321	mutex_obj_hold(head->so_lock);
322	so->so_lock = head->so_lock;
323
324	/*
325	 * Reserve the space for socket buffers.
326	 */
327#ifdef MBUFTRACE
328	so->so_mowner = head->so_mowner;
329	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
330	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
331#endif
332	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
333		goto out;
334	}
335	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
336	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
337	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
338	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
339	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
340	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
341
342	/*
343	 * Finally, perform the protocol attach.  Note: a new socket
344	 * lock may be assigned at this point (if so, it will be held).
345	 */
346	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
347	if (error) {
348out:
349		KASSERT(solocked(so));
350		KASSERT(so->so_accf == NULL);
351		soput(so);
352
353		/* Note: the listening socket shall stay locked. */
354		KASSERT(solocked(head));
355		return NULL;
356	}
357	KASSERT(solocked2(head, so));
358
359	/*
360	 * Insert into the queue.  If ready, update the connection status
361	 * and wake up any waiters, e.g. processes blocking on accept().
362	 */
363	soqinsque(head, so, soqueue);
364	if (soready) {
365		so->so_state |= SS_ISCONNECTED;
366		sorwakeup(head);
367		cv_broadcast(&head->so_cv);
368	}
369	return so;
370}
371
372struct socket *
373soget(bool waitok)
374{
375	struct socket *so;
376
377	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
378	if (__predict_false(so == NULL))
379		return (NULL);
380	memset(so, 0, sizeof(*so));
381	TAILQ_INIT(&so->so_q0);
382	TAILQ_INIT(&so->so_q);
383	cv_init(&so->so_cv, "socket");
384	cv_init(&so->so_rcv.sb_cv, "netio");
385	cv_init(&so->so_snd.sb_cv, "netio");
386	selinit(&so->so_rcv.sb_sel);
387	selinit(&so->so_snd.sb_sel);
388	so->so_rcv.sb_so = so;
389	so->so_snd.sb_so = so;
390	return so;
391}
392
393void
394soput(struct socket *so)
395{
396
397	KASSERT(!cv_has_waiters(&so->so_cv));
398	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
399	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
400	seldestroy(&so->so_rcv.sb_sel);
401	seldestroy(&so->so_snd.sb_sel);
402	mutex_obj_free(so->so_lock);
403	cv_destroy(&so->so_cv);
404	cv_destroy(&so->so_rcv.sb_cv);
405	cv_destroy(&so->so_snd.sb_cv);
406	pool_cache_put(socket_cache, so);
407}
408
409/*
410 * soqinsque: insert socket of a new connection into the specified
411 * accept queue of the listening socket (head).
412 *
413 *	q = 0: queue of partial connections
414 *	q = 1: queue of incoming connections
415 */
416void
417soqinsque(struct socket *head, struct socket *so, int q)
418{
419	KASSERT(q == 0 || q == 1);
420	KASSERT(solocked2(head, so));
421	KASSERT(so->so_onq == NULL);
422	KASSERT(so->so_head == NULL);
423
424	so->so_head = head;
425	if (q == 0) {
426		head->so_q0len++;
427		so->so_onq = &head->so_q0;
428	} else {
429		head->so_qlen++;
430		so->so_onq = &head->so_q;
431	}
432	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
433}
434
435/*
436 * soqremque: remove socket from the specified queue.
437 *
438 * => Returns true if socket was removed from the specified queue.
439 * => False if socket was not removed (because it was in other queue).
440 */
441bool
442soqremque(struct socket *so, int q)
443{
444	struct socket *head = so->so_head;
445
446	KASSERT(q == 0 || q == 1);
447	KASSERT(solocked(so));
448	KASSERT(so->so_onq != NULL);
449	KASSERT(head != NULL);
450
451	if (q == 0) {
452		if (so->so_onq != &head->so_q0)
453			return false;
454		head->so_q0len--;
455	} else {
456		if (so->so_onq != &head->so_q)
457			return false;
458		head->so_qlen--;
459	}
460	KASSERT(solocked2(so, head));
461	TAILQ_REMOVE(so->so_onq, so, so_qe);
462	so->so_onq = NULL;
463	so->so_head = NULL;
464	return true;
465}
466
467/*
468 * socantsendmore: indicates that no more data will be sent on the
469 * socket; it would normally be applied to a socket when the user
470 * informs the system that no more data is to be sent, by the protocol
471 * code (in case pr_shutdown()).
472 */
473void
474socantsendmore(struct socket *so)
475{
476	KASSERT(solocked(so));
477
478	so->so_state |= SS_CANTSENDMORE;
479	sowwakeup(so);
480}
481
482/*
483 * socantrcvmore(): indicates that no more data will be received and
484 * will normally be applied to the socket by a protocol when it detects
485 * that the peer will send no more data.  Data queued for reading in
486 * the socket may yet be read.
487 */
488void
489socantrcvmore(struct socket *so)
490{
491	KASSERT(solocked(so));
492
493	so->so_state |= SS_CANTRCVMORE;
494	sorwakeup(so);
495}
496
497/*
498 * soroverflow(): indicates that data was attempted to be sent
499 * but the receiving buffer overflowed.
500 */
501void
502soroverflow(struct socket *so)
503{
504	KASSERT(solocked(so));
505
506	so->so_rcv.sb_overflowed++;
507	so->so_error = ENOBUFS;
508	sorwakeup(so);
509}
510
511/*
512 * Wait for data to arrive at/drain from a socket buffer.
513 */
514int
515sbwait(struct sockbuf *sb)
516{
517	struct socket *so;
518	kmutex_t *lock;
519	int error;
520
521	so = sb->sb_so;
522
523	KASSERT(solocked(so));
524
525	sb->sb_flags |= SB_NOTIFY;
526	lock = so->so_lock;
527	if ((sb->sb_flags & SB_NOINTR) != 0)
528		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
529	else
530		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
531	if (__predict_false(lock != so->so_lock))
532		solockretry(so, lock);
533	return error;
534}
535
536/*
537 * Wakeup processes waiting on a socket buffer.
538 * Do asynchronous notification via SIGIO
539 * if the socket buffer has the SB_ASYNC flag set.
540 */
541void
542sowakeup(struct socket *so, struct sockbuf *sb, int code)
543{
544	int band;
545
546	KASSERT(solocked(so));
547	KASSERT(sb->sb_so == so);
548
549	if (code == POLL_IN)
550		band = POLLIN|POLLRDNORM;
551	else
552		band = POLLOUT|POLLWRNORM;
553	sb->sb_flags &= ~SB_NOTIFY;
554	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
555	cv_broadcast(&sb->sb_cv);
556	if (sb->sb_flags & SB_ASYNC)
557		fownsignal(so->so_pgid, SIGIO, code, band, so);
558	if (sb->sb_flags & SB_UPCALL)
559		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
560}
561
562/*
563 * Reset a socket's lock pointer.  Wake all threads waiting on the
564 * socket's condition variables so that they can restart their waits
565 * using the new lock.  The existing lock must be held.
566 */
567void
568solockreset(struct socket *so, kmutex_t *lock)
569{
570
571	KASSERT(solocked(so));
572
573	so->so_lock = lock;
574	cv_broadcast(&so->so_snd.sb_cv);
575	cv_broadcast(&so->so_rcv.sb_cv);
576	cv_broadcast(&so->so_cv);
577}
578
579/*
580 * Socket buffer (struct sockbuf) utility routines.
581 *
582 * Each socket contains two socket buffers: one for sending data and
583 * one for receiving data.  Each buffer contains a queue of mbufs,
584 * information about the number of mbufs and amount of data in the
585 * queue, and other fields allowing poll() statements and notification
586 * on data availability to be implemented.
587 *
588 * Data stored in a socket buffer is maintained as a list of records.
589 * Each record is a list of mbufs chained together with the m_next
590 * field.  Records are chained together with the m_nextpkt field. The upper
591 * level routine soreceive() expects the following conventions to be
592 * observed when placing information in the receive buffer:
593 *
594 * 1. If the protocol requires each message be preceded by the sender's
595 *    name, then a record containing that name must be present before
596 *    any associated data (mbuf's must be of type MT_SONAME).
597 * 2. If the protocol supports the exchange of ``access rights'' (really
598 *    just additional data associated with the message), and there are
599 *    ``rights'' to be received, then a record containing this data
600 *    should be present (mbuf's must be of type MT_CONTROL).
601 * 3. If a name or rights record exists, then it must be followed by
602 *    a data record, perhaps of zero length.
603 *
604 * Before using a new socket structure it is first necessary to reserve
605 * buffer space to the socket, by calling sbreserve().  This should commit
606 * some of the available buffer space in the system buffer pool for the
607 * socket (currently, it does nothing but enforce limits).  The space
608 * should be released by calling sbrelease() when the socket is destroyed.
609 */
610
611int
612sb_max_set(u_long new_sbmax)
613{
614	int s;
615
616	if (new_sbmax < (16 * 1024))
617		return (EINVAL);
618
619	s = splsoftnet();
620	sb_max = new_sbmax;
621	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
622	splx(s);
623
624	return (0);
625}
626
627int
628soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
629{
630	KASSERT(so->so_pcb == NULL || solocked(so));
631
632	/*
633	 * there's at least one application (a configure script of screen)
634	 * which expects a fifo is writable even if it has "some" bytes
635	 * in its buffer.
636	 * so we want to make sure (hiwat - lowat) >= (some bytes).
637	 *
638	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
639	 * we expect it's large enough for such applications.
640	 */
641	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
642	u_long  hiwat = lowat + PIPE_BUF;
643
644	if (sndcc < hiwat)
645		sndcc = hiwat;
646	if (sbreserve(&so->so_snd, sndcc, so) == 0)
647		goto bad;
648	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
649		goto bad2;
650	if (so->so_rcv.sb_lowat == 0)
651		so->so_rcv.sb_lowat = 1;
652	if (so->so_snd.sb_lowat == 0)
653		so->so_snd.sb_lowat = lowat;
654	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
655		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
656	return (0);
657 bad2:
658	sbrelease(&so->so_snd, so);
659 bad:
660	return (ENOBUFS);
661}
662
663/*
664 * Allot mbufs to a sockbuf.
665 * Attempt to scale mbmax so that mbcnt doesn't become limiting
666 * if buffering efficiency is near the normal case.
667 */
668int
669sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
670{
671	struct lwp *l = curlwp; /* XXX */
672	rlim_t maxcc;
673	struct uidinfo *uidinfo;
674
675	KASSERT(so->so_pcb == NULL || solocked(so));
676	KASSERT(sb->sb_so == so);
677	KASSERT(sb_max_adj != 0);
678
679	if (cc == 0 || cc > sb_max_adj)
680		return (0);
681
682	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
683
684	uidinfo = so->so_uidinfo;
685	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
686		return 0;
687	sb->sb_mbmax = min(cc * 2, sb_max);
688	if (sb->sb_lowat > sb->sb_hiwat)
689		sb->sb_lowat = sb->sb_hiwat;
690	return (1);
691}
692
693/*
694 * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
695 * that the socket is held locked here: see sorflush().
696 */
697void
698sbrelease(struct sockbuf *sb, struct socket *so)
699{
700
701	KASSERT(sb->sb_so == so);
702
703	sbflush(sb);
704	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
705	sb->sb_mbmax = 0;
706}
707
708/*
709 * Routines to add and remove
710 * data from an mbuf queue.
711 *
712 * The routines sbappend() or sbappendrecord() are normally called to
713 * append new mbufs to a socket buffer, after checking that adequate
714 * space is available, comparing the function sbspace() with the amount
715 * of data to be added.  sbappendrecord() differs from sbappend() in
716 * that data supplied is treated as the beginning of a new record.
717 * To place a sender's address, optional access rights, and data in a
718 * socket receive buffer, sbappendaddr() should be used.  To place
719 * access rights and data in a socket receive buffer, sbappendrights()
720 * should be used.  In either case, the new data begins a new record.
721 * Note that unlike sbappend() and sbappendrecord(), these routines check
722 * for the caller that there will be enough space to store the data.
723 * Each fails if there is not enough space, or if it cannot find mbufs
724 * to store additional information in.
725 *
726 * Reliable protocols may use the socket send buffer to hold data
727 * awaiting acknowledgement.  Data is normally copied from a socket
728 * send buffer in a protocol with m_copy for output to a peer,
729 * and then removing the data from the socket buffer with sbdrop()
730 * or sbdroprecord() when the data is acknowledged by the peer.
731 */
732
733#ifdef SOCKBUF_DEBUG
734void
735sblastrecordchk(struct sockbuf *sb, const char *where)
736{
737	struct mbuf *m = sb->sb_mb;
738
739	KASSERT(solocked(sb->sb_so));
740
741	while (m && m->m_nextpkt)
742		m = m->m_nextpkt;
743
744	if (m != sb->sb_lastrecord) {
745		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
746		    sb->sb_mb, sb->sb_lastrecord, m);
747		printf("packet chain:\n");
748		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
749			printf("\t%p\n", m);
750		panic("sblastrecordchk from %s", where);
751	}
752}
753
754void
755sblastmbufchk(struct sockbuf *sb, const char *where)
756{
757	struct mbuf *m = sb->sb_mb;
758	struct mbuf *n;
759
760	KASSERT(solocked(sb->sb_so));
761
762	while (m && m->m_nextpkt)
763		m = m->m_nextpkt;
764
765	while (m && m->m_next)
766		m = m->m_next;
767
768	if (m != sb->sb_mbtail) {
769		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
770		    sb->sb_mb, sb->sb_mbtail, m);
771		printf("packet tree:\n");
772		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
773			printf("\t");
774			for (n = m; n != NULL; n = n->m_next)
775				printf("%p ", n);
776			printf("\n");
777		}
778		panic("sblastmbufchk from %s", where);
779	}
780}
781#endif /* SOCKBUF_DEBUG */
782
783/*
784 * Link a chain of records onto a socket buffer
785 */
786#define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
787do {									\
788	if ((sb)->sb_lastrecord != NULL)				\
789		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
790	else								\
791		(sb)->sb_mb = (m0);					\
792	(sb)->sb_lastrecord = (mlast);					\
793} while (/*CONSTCOND*/0)
794
795
796#define	SBLINKRECORD(sb, m0)						\
797    SBLINKRECORDCHAIN(sb, m0, m0)
798
799/*
800 * Append mbuf chain m to the last record in the
801 * socket buffer sb.  The additional space associated
802 * the mbuf chain is recorded in sb.  Empty mbufs are
803 * discarded and mbufs are compacted where possible.
804 */
805void
806sbappend(struct sockbuf *sb, struct mbuf *m)
807{
808	struct mbuf	*n;
809
810	KASSERT(solocked(sb->sb_so));
811
812	if (m == NULL)
813		return;
814
815#ifdef MBUFTRACE
816	m_claimm(m, sb->sb_mowner);
817#endif
818
819	SBLASTRECORDCHK(sb, "sbappend 1");
820
821	if ((n = sb->sb_lastrecord) != NULL) {
822		/*
823		 * XXX Would like to simply use sb_mbtail here, but
824		 * XXX I need to verify that I won't miss an EOR that
825		 * XXX way.
826		 */
827		do {
828			if (n->m_flags & M_EOR) {
829				sbappendrecord(sb, m); /* XXXXXX!!!! */
830				return;
831			}
832		} while (n->m_next && (n = n->m_next));
833	} else {
834		/*
835		 * If this is the first record in the socket buffer, it's
836		 * also the last record.
837		 */
838		sb->sb_lastrecord = m;
839	}
840	sbcompress(sb, m, n);
841	SBLASTRECORDCHK(sb, "sbappend 2");
842}
843
844/*
845 * This version of sbappend() should only be used when the caller
846 * absolutely knows that there will never be more than one record
847 * in the socket buffer, that is, a stream protocol (such as TCP).
848 */
849void
850sbappendstream(struct sockbuf *sb, struct mbuf *m)
851{
852
853	KASSERT(solocked(sb->sb_so));
854	KDASSERT(m->m_nextpkt == NULL);
855	KASSERT(sb->sb_mb == sb->sb_lastrecord);
856
857	SBLASTMBUFCHK(sb, __func__);
858
859#ifdef MBUFTRACE
860	m_claimm(m, sb->sb_mowner);
861#endif
862
863	sbcompress(sb, m, sb->sb_mbtail);
864
865	sb->sb_lastrecord = sb->sb_mb;
866	SBLASTRECORDCHK(sb, __func__);
867}
868
869#ifdef SOCKBUF_DEBUG
870void
871sbcheck(struct sockbuf *sb)
872{
873	struct mbuf	*m, *m2;
874	u_long		len, mbcnt;
875
876	KASSERT(solocked(sb->sb_so));
877
878	len = 0;
879	mbcnt = 0;
880	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
881		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
882			len += m2->m_len;
883			mbcnt += MSIZE;
884			if (m2->m_flags & M_EXT)
885				mbcnt += m2->m_ext.ext_size;
886			if (m2->m_nextpkt != NULL)
887				panic("sbcheck nextpkt");
888		}
889	}
890	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
891		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
892		    mbcnt, sb->sb_mbcnt);
893		panic("sbcheck");
894	}
895}
896#endif
897
898/*
899 * As above, except the mbuf chain
900 * begins a new record.
901 */
902void
903sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
904{
905	struct mbuf	*m;
906
907	KASSERT(solocked(sb->sb_so));
908
909	if (m0 == NULL)
910		return;
911
912#ifdef MBUFTRACE
913	m_claimm(m0, sb->sb_mowner);
914#endif
915	/*
916	 * Put the first mbuf on the queue.
917	 * Note this permits zero length records.
918	 */
919	sballoc(sb, m0);
920	SBLASTRECORDCHK(sb, "sbappendrecord 1");
921	SBLINKRECORD(sb, m0);
922	m = m0->m_next;
923	m0->m_next = 0;
924	if (m && (m0->m_flags & M_EOR)) {
925		m0->m_flags &= ~M_EOR;
926		m->m_flags |= M_EOR;
927	}
928	sbcompress(sb, m, m0);
929	SBLASTRECORDCHK(sb, "sbappendrecord 2");
930}
931
932/*
933 * As above except that OOB data
934 * is inserted at the beginning of the sockbuf,
935 * but after any other OOB data.
936 */
937void
938sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
939{
940	struct mbuf	*m, **mp;
941
942	KASSERT(solocked(sb->sb_so));
943
944	if (m0 == NULL)
945		return;
946
947	SBLASTRECORDCHK(sb, "sbinsertoob 1");
948
949	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
950	    again:
951		switch (m->m_type) {
952
953		case MT_OOBDATA:
954			continue;		/* WANT next train */
955
956		case MT_CONTROL:
957			if ((m = m->m_next) != NULL)
958				goto again;	/* inspect THIS train further */
959		}
960		break;
961	}
962	/*
963	 * Put the first mbuf on the queue.
964	 * Note this permits zero length records.
965	 */
966	sballoc(sb, m0);
967	m0->m_nextpkt = *mp;
968	if (*mp == NULL) {
969		/* m0 is actually the new tail */
970		sb->sb_lastrecord = m0;
971	}
972	*mp = m0;
973	m = m0->m_next;
974	m0->m_next = 0;
975	if (m && (m0->m_flags & M_EOR)) {
976		m0->m_flags &= ~M_EOR;
977		m->m_flags |= M_EOR;
978	}
979	sbcompress(sb, m, m0);
980	SBLASTRECORDCHK(sb, "sbinsertoob 2");
981}
982
983/*
984 * Append address and data, and optionally, control (ancillary) data
985 * to the receive queue of a socket.  If present,
986 * m0 must include a packet header with total length.
987 * Returns 0 if no space in sockbuf or insufficient mbufs.
988 */
989int
990sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
991	struct mbuf *control)
992{
993	struct mbuf	*m, *n, *nlast;
994	int		space, len;
995
996	KASSERT(solocked(sb->sb_so));
997
998	space = asa->sa_len;
999
1000	if (m0 != NULL) {
1001		if ((m0->m_flags & M_PKTHDR) == 0)
1002			panic("sbappendaddr");
1003		space += m0->m_pkthdr.len;
1004#ifdef MBUFTRACE
1005		m_claimm(m0, sb->sb_mowner);
1006#endif
1007	}
1008	for (n = control; n; n = n->m_next) {
1009		space += n->m_len;
1010		MCLAIM(n, sb->sb_mowner);
1011		if (n->m_next == NULL)	/* keep pointer to last control buf */
1012			break;
1013	}
1014	if (space > sbspace(sb))
1015		return (0);
1016	m = m_get(M_DONTWAIT, MT_SONAME);
1017	if (m == NULL)
1018		return (0);
1019	MCLAIM(m, sb->sb_mowner);
1020	/*
1021	 * XXX avoid 'comparison always true' warning which isn't easily
1022	 * avoided.
1023	 */
1024	len = asa->sa_len;
1025	if (len > MLEN) {
1026		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1027		if ((m->m_flags & M_EXT) == 0) {
1028			m_free(m);
1029			return (0);
1030		}
1031	}
1032	m->m_len = asa->sa_len;
1033	memcpy(mtod(m, void *), asa, asa->sa_len);
1034	if (n)
1035		n->m_next = m0;		/* concatenate data to control */
1036	else
1037		control = m0;
1038	m->m_next = control;
1039
1040	SBLASTRECORDCHK(sb, "sbappendaddr 1");
1041
1042	for (n = m; n->m_next != NULL; n = n->m_next)
1043		sballoc(sb, n);
1044	sballoc(sb, n);
1045	nlast = n;
1046	SBLINKRECORD(sb, m);
1047
1048	sb->sb_mbtail = nlast;
1049	SBLASTMBUFCHK(sb, "sbappendaddr");
1050	SBLASTRECORDCHK(sb, "sbappendaddr 2");
1051
1052	return (1);
1053}
1054
1055/*
1056 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1057 * an mbuf chain.
1058 */
1059static inline struct mbuf *
1060m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1061		   const struct sockaddr *asa)
1062{
1063	struct mbuf *m;
1064	const int salen = asa->sa_len;
1065
1066	KASSERT(solocked(sb->sb_so));
1067
1068	/* only the first in each chain need be a pkthdr */
1069	m = m_gethdr(M_DONTWAIT, MT_SONAME);
1070	if (m == NULL)
1071		return NULL;
1072	MCLAIM(m, sb->sb_mowner);
1073#ifdef notyet
1074	if (salen > MHLEN) {
1075		MEXTMALLOC(m, salen, M_NOWAIT);
1076		if ((m->m_flags & M_EXT) == 0) {
1077			m_free(m);
1078			return NULL;
1079		}
1080	}
1081#else
1082	KASSERT(salen <= MHLEN);
1083#endif
1084	m->m_len = salen;
1085	memcpy(mtod(m, void *), asa, salen);
1086	m->m_next = m0;
1087	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1088
1089	return m;
1090}
1091
1092int
1093sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1094		  struct mbuf *m0, int sbprio)
1095{
1096	struct mbuf *m, *n, *n0, *nlast;
1097	int error;
1098
1099	KASSERT(solocked(sb->sb_so));
1100
1101	/*
1102	 * XXX sbprio reserved for encoding priority of this* request:
1103	 *  SB_PRIO_NONE --> honour normal sb limits
1104	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1105	 *	take whole chain. Intended for large requests
1106	 *      that should be delivered atomically (all, or none).
1107	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1108	 *       over normal socket limits, for messages indicating
1109	 *       buffer overflow in earlier normal/lower-priority messages
1110	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1111	 *       Intended for  kernel-generated messages only.
1112	 *        Up to generator to avoid total mbuf resource exhaustion.
1113	 */
1114	(void)sbprio;
1115
1116	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1117		panic("sbappendaddrchain");
1118
1119#ifdef notyet
1120	space = sbspace(sb);
1121
1122	/*
1123	 * Enforce SB_PRIO_* limits as described above.
1124	 */
1125#endif
1126
1127	n0 = NULL;
1128	nlast = NULL;
1129	for (m = m0; m; m = m->m_nextpkt) {
1130		struct mbuf *np;
1131
1132#ifdef MBUFTRACE
1133		m_claimm(m, sb->sb_mowner);
1134#endif
1135
1136		/* Prepend sockaddr to this record (m) of input chain m0 */
1137	  	n = m_prepend_sockaddr(sb, m, asa);
1138		if (n == NULL) {
1139			error = ENOBUFS;
1140			goto bad;
1141		}
1142
1143		/* Append record (asa+m) to end of new chain n0 */
1144		if (n0 == NULL) {
1145			n0 = n;
1146		} else {
1147			nlast->m_nextpkt = n;
1148		}
1149		/* Keep track of last record on new chain */
1150		nlast = n;
1151
1152		for (np = n; np; np = np->m_next)
1153			sballoc(sb, np);
1154	}
1155
1156	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1157
1158	/* Drop the entire chain of (asa+m) records onto the socket */
1159	SBLINKRECORDCHAIN(sb, n0, nlast);
1160
1161	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1162
1163	for (m = nlast; m->m_next; m = m->m_next)
1164		;
1165	sb->sb_mbtail = m;
1166	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1167
1168	return (1);
1169
1170bad:
1171	/*
1172	 * On error, free the prepended addreseses. For consistency
1173	 * with sbappendaddr(), leave it to our caller to free
1174	 * the input record chain passed to us as m0.
1175	 */
1176	while ((n = n0) != NULL) {
1177	  	struct mbuf *np;
1178
1179		/* Undo the sballoc() of this record */
1180		for (np = n; np; np = np->m_next)
1181			sbfree(sb, np);
1182
1183		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1184		np = m_free(n);		/* free prepended address (not data) */
1185	}
1186	return error;
1187}
1188
1189
1190int
1191sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1192{
1193	struct mbuf	*m, *mlast, *n;
1194	int		space;
1195
1196	KASSERT(solocked(sb->sb_so));
1197
1198	space = 0;
1199	if (control == NULL)
1200		panic("sbappendcontrol");
1201	for (m = control; ; m = m->m_next) {
1202		space += m->m_len;
1203		MCLAIM(m, sb->sb_mowner);
1204		if (m->m_next == NULL)
1205			break;
1206	}
1207	n = m;			/* save pointer to last control buffer */
1208	for (m = m0; m; m = m->m_next) {
1209		MCLAIM(m, sb->sb_mowner);
1210		space += m->m_len;
1211	}
1212	if (space > sbspace(sb))
1213		return (0);
1214	n->m_next = m0;			/* concatenate data to control */
1215
1216	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1217
1218	for (m = control; m->m_next != NULL; m = m->m_next)
1219		sballoc(sb, m);
1220	sballoc(sb, m);
1221	mlast = m;
1222	SBLINKRECORD(sb, control);
1223
1224	sb->sb_mbtail = mlast;
1225	SBLASTMBUFCHK(sb, "sbappendcontrol");
1226	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1227
1228	return (1);
1229}
1230
1231/*
1232 * Compress mbuf chain m into the socket
1233 * buffer sb following mbuf n.  If n
1234 * is null, the buffer is presumed empty.
1235 */
1236void
1237sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1238{
1239	int		eor;
1240	struct mbuf	*o;
1241
1242	KASSERT(solocked(sb->sb_so));
1243
1244	eor = 0;
1245	while (m) {
1246		eor |= m->m_flags & M_EOR;
1247		if (m->m_len == 0 &&
1248		    (eor == 0 ||
1249		     (((o = m->m_next) || (o = n)) &&
1250		      o->m_type == m->m_type))) {
1251			if (sb->sb_lastrecord == m)
1252				sb->sb_lastrecord = m->m_next;
1253			m = m_free(m);
1254			continue;
1255		}
1256		if (n && (n->m_flags & M_EOR) == 0 &&
1257		    /* M_TRAILINGSPACE() checks buffer writeability */
1258		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1259		    m->m_len <= M_TRAILINGSPACE(n) &&
1260		    n->m_type == m->m_type) {
1261			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1262			    (unsigned)m->m_len);
1263			n->m_len += m->m_len;
1264			sb->sb_cc += m->m_len;
1265			m = m_free(m);
1266			continue;
1267		}
1268		if (n)
1269			n->m_next = m;
1270		else
1271			sb->sb_mb = m;
1272		sb->sb_mbtail = m;
1273		sballoc(sb, m);
1274		n = m;
1275		m->m_flags &= ~M_EOR;
1276		m = m->m_next;
1277		n->m_next = 0;
1278	}
1279	if (eor) {
1280		if (n)
1281			n->m_flags |= eor;
1282		else
1283			printf("semi-panic: sbcompress\n");
1284	}
1285	SBLASTMBUFCHK(sb, __func__);
1286}
1287
1288/*
1289 * Free all mbufs in a sockbuf.
1290 * Check that all resources are reclaimed.
1291 */
1292void
1293sbflush(struct sockbuf *sb)
1294{
1295
1296	KASSERT(solocked(sb->sb_so));
1297	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1298
1299	while (sb->sb_mbcnt)
1300		sbdrop(sb, (int)sb->sb_cc);
1301
1302	KASSERT(sb->sb_cc == 0);
1303	KASSERT(sb->sb_mb == NULL);
1304	KASSERT(sb->sb_mbtail == NULL);
1305	KASSERT(sb->sb_lastrecord == NULL);
1306}
1307
1308/*
1309 * Drop data from (the front of) a sockbuf.
1310 */
1311void
1312sbdrop(struct sockbuf *sb, int len)
1313{
1314	struct mbuf	*m, *next;
1315
1316	KASSERT(solocked(sb->sb_so));
1317
1318	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1319	while (len > 0) {
1320		if (m == NULL) {
1321			if (next == NULL)
1322				panic("sbdrop(%p,%d): cc=%lu",
1323				    sb, len, sb->sb_cc);
1324			m = next;
1325			next = m->m_nextpkt;
1326			continue;
1327		}
1328		if (m->m_len > len) {
1329			m->m_len -= len;
1330			m->m_data += len;
1331			sb->sb_cc -= len;
1332			break;
1333		}
1334		len -= m->m_len;
1335		sbfree(sb, m);
1336		m = m_free(m);
1337	}
1338	while (m && m->m_len == 0) {
1339		sbfree(sb, m);
1340		m = m_free(m);
1341	}
1342	if (m) {
1343		sb->sb_mb = m;
1344		m->m_nextpkt = next;
1345	} else
1346		sb->sb_mb = next;
1347	/*
1348	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1349	 * makes sure sb_lastrecord is up-to-date if we dropped
1350	 * part of the last record.
1351	 */
1352	m = sb->sb_mb;
1353	if (m == NULL) {
1354		sb->sb_mbtail = NULL;
1355		sb->sb_lastrecord = NULL;
1356	} else if (m->m_nextpkt == NULL)
1357		sb->sb_lastrecord = m;
1358}
1359
1360/*
1361 * Drop a record off the front of a sockbuf
1362 * and move the next record to the front.
1363 */
1364void
1365sbdroprecord(struct sockbuf *sb)
1366{
1367	struct mbuf	*m, *mn;
1368
1369	KASSERT(solocked(sb->sb_so));
1370
1371	m = sb->sb_mb;
1372	if (m) {
1373		sb->sb_mb = m->m_nextpkt;
1374		do {
1375			sbfree(sb, m);
1376			mn = m_free(m);
1377		} while ((m = mn) != NULL);
1378	}
1379	SB_EMPTY_FIXUP(sb);
1380}
1381
1382/*
1383 * Create a "control" mbuf containing the specified data
1384 * with the specified type for presentation on a socket buffer.
1385 */
1386struct mbuf *
1387sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1388{
1389	struct cmsghdr	*cp;
1390	struct mbuf	*m;
1391	int space = CMSG_SPACE(size);
1392
1393	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1394		printf("%s: message too large %d\n", __func__, space);
1395		return NULL;
1396	}
1397
1398	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1399		return NULL;
1400	if (space > MLEN) {
1401		if (space > MCLBYTES)
1402			MEXTMALLOC(m, space, M_WAITOK);
1403		else
1404			MCLGET(m, flags);
1405		if ((m->m_flags & M_EXT) == 0) {
1406			m_free(m);
1407			return NULL;
1408		}
1409	}
1410	cp = mtod(m, struct cmsghdr *);
1411	*p = CMSG_DATA(cp);
1412	m->m_len = space;
1413	cp->cmsg_len = CMSG_LEN(size);
1414	cp->cmsg_level = level;
1415	cp->cmsg_type = type;
1416	return m;
1417}
1418
1419struct mbuf *
1420sbcreatecontrol(void *p, int size, int type, int level)
1421{
1422	struct mbuf *m;
1423	void *v;
1424
1425	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1426	if (m == NULL)
1427		return NULL;
1428	memcpy(v, p, size);
1429	return m;
1430}
1431
1432void
1433solockretry(struct socket *so, kmutex_t *lock)
1434{
1435
1436	while (lock != so->so_lock) {
1437		mutex_exit(lock);
1438		lock = so->so_lock;
1439		mutex_enter(lock);
1440	}
1441}
1442
1443bool
1444solocked(const struct socket *so)
1445{
1446
1447	return mutex_owned(so->so_lock);
1448}
1449
1450bool
1451solocked2(const struct socket *so1, const struct socket *so2)
1452{
1453	const kmutex_t *lock;
1454
1455	lock = so1->so_lock;
1456	if (lock != so2->so_lock)
1457		return false;
1458	return mutex_owned(lock);
1459}
1460
1461/*
1462 * sosetlock: assign a default lock to a new socket.
1463 */
1464void
1465sosetlock(struct socket *so)
1466{
1467	if (so->so_lock == NULL) {
1468		kmutex_t *lock = softnet_lock;
1469
1470		so->so_lock = lock;
1471		mutex_obj_hold(lock);
1472		mutex_enter(lock);
1473	}
1474	KASSERT(solocked(so));
1475}
1476
1477/*
1478 * Set lock on sockbuf sb; sleep if lock is already held.
1479 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1480 * Returns error without lock if sleep is interrupted.
1481 */
1482int
1483sblock(struct sockbuf *sb, int wf)
1484{
1485	struct socket *so;
1486	kmutex_t *lock;
1487	int error;
1488
1489	KASSERT(solocked(sb->sb_so));
1490
1491	for (;;) {
1492		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1493			sb->sb_flags |= SB_LOCK;
1494			return 0;
1495		}
1496		if (wf != M_WAITOK)
1497			return EWOULDBLOCK;
1498		so = sb->sb_so;
1499		lock = so->so_lock;
1500		if ((sb->sb_flags & SB_NOINTR) != 0) {
1501			cv_wait(&so->so_cv, lock);
1502			error = 0;
1503		} else
1504			error = cv_wait_sig(&so->so_cv, lock);
1505		if (__predict_false(lock != so->so_lock))
1506			solockretry(so, lock);
1507		if (error != 0)
1508			return error;
1509	}
1510}
1511
1512void
1513sbunlock(struct sockbuf *sb)
1514{
1515	struct socket *so;
1516
1517	so = sb->sb_so;
1518
1519	KASSERT(solocked(so));
1520	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1521
1522	sb->sb_flags &= ~SB_LOCK;
1523	cv_broadcast(&so->so_cv);
1524}
1525
1526int
1527sowait(struct socket *so, bool catch_p, int timo)
1528{
1529	kmutex_t *lock;
1530	int error;
1531
1532	KASSERT(solocked(so));
1533	KASSERT(catch_p || timo != 0);
1534
1535	lock = so->so_lock;
1536	if (catch_p)
1537		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1538	else
1539		error = cv_timedwait(&so->so_cv, lock, timo);
1540	if (__predict_false(lock != so->so_lock))
1541		solockretry(so, lock);
1542	return error;
1543}
1544