uipc_socket2.c revision 1.117
1/*	$NetBSD: uipc_socket2.c,v 1.117 2014/05/17 23:55:24 rmind Exp $	*/
2
3/*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 *    may be used to endorse or promote products derived from this software
43 *    without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58 */
59
60#include <sys/cdefs.h>
61__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.117 2014/05/17 23:55:24 rmind Exp $");
62
63#include "opt_mbuftrace.h"
64#include "opt_sb_max.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/proc.h>
69#include <sys/file.h>
70#include <sys/buf.h>
71#include <sys/mbuf.h>
72#include <sys/protosw.h>
73#include <sys/domain.h>
74#include <sys/poll.h>
75#include <sys/socket.h>
76#include <sys/socketvar.h>
77#include <sys/signalvar.h>
78#include <sys/kauth.h>
79#include <sys/pool.h>
80#include <sys/uidinfo.h>
81
82/*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Connection life-cycle:
86 *
87 *	Normal sequence from the active (originating) side:
88 *
89 *	- soisconnecting() is called during processing of connect() call,
90 *	- resulting in an eventual call to soisconnected() if/when the
91 *	  connection is established.
92 *
93 *	When the connection is torn down during processing of disconnect():
94 *
95 *	- soisdisconnecting() is called and,
96 *	- soisdisconnected() is called when the connection to the peer
97 *	  is totally severed.
98 *
99 *	The semantics of these routines are such that connectionless protocols
100 *	can call soisconnected() and soisdisconnected() only, bypassing the
101 *	in-progress calls when setting up a ``connection'' takes no time.
102 *
103 *	From the passive side, a socket is created with two queues of sockets:
104 *
105 *	- so_q0 (0) for partial connections (i.e. connections in progress)
106 *	- so_q (1) for connections already made and awaiting user acceptance.
107 *
108 *	As a protocol is preparing incoming connections, it creates a socket
109 *	structure queued on so_q0 by calling sonewconn().  When the connection
110 *	is established, soisconnected() is called, and transfers the
111 *	socket structure to so_q, making it available to accept().
112 *
113 *	If a socket is closed with sockets on either so_q0 or so_q, these
114 *	sockets are dropped.
115 *
116 * Locking rules and assumptions:
117 *
118 * o socket::so_lock can change on the fly.  The low level routines used
119 *   to lock sockets are aware of this.  When so_lock is acquired, the
120 *   routine locking must check to see if so_lock still points to the
121 *   lock that was acquired.  If so_lock has changed in the meantime, the
122 *   now irrelevant lock that was acquired must be dropped and the lock
123 *   operation retried.  Although not proven here, this is completely safe
124 *   on a multiprocessor system, even with relaxed memory ordering, given
125 *   the next two rules:
126 *
127 * o In order to mutate so_lock, the lock pointed to by the current value
128 *   of so_lock must be held: i.e., the socket must be held locked by the
129 *   changing thread.  The thread must issue membar_exit() to prevent
130 *   memory accesses being reordered, and can set so_lock to the desired
131 *   value.  If the lock pointed to by the new value of so_lock is not
132 *   held by the changing thread, the socket must then be considered
133 *   unlocked.
134 *
135 * o If so_lock is mutated, and the previous lock referred to by so_lock
136 *   could still be visible to other threads in the system (e.g. via file
137 *   descriptor or protocol-internal reference), then the old lock must
138 *   remain valid until the socket and/or protocol control block has been
139 *   torn down.
140 *
141 * o If a socket has a non-NULL so_head value (i.e. is in the process of
142 *   connecting), then locking the socket must also lock the socket pointed
143 *   to by so_head: their lock pointers must match.
144 *
145 * o If a socket has connections in progress (so_q, so_q0 not empty) then
146 *   locking the socket must also lock the sockets attached to both queues.
147 *   Again, their lock pointers must match.
148 *
149 * o Beyond the initial lock assignment in socreate(), assigning locks to
150 *   sockets is the responsibility of the individual protocols / protocol
151 *   domains.
152 */
153
154static pool_cache_t	socket_cache;
155u_long			sb_max = SB_MAX;/* maximum socket buffer size */
156static u_long		sb_max_adj;	/* adjusted sb_max */
157
158void
159soisconnecting(struct socket *so)
160{
161
162	KASSERT(solocked(so));
163
164	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165	so->so_state |= SS_ISCONNECTING;
166}
167
168void
169soisconnected(struct socket *so)
170{
171	struct socket	*head;
172
173	head = so->so_head;
174
175	KASSERT(solocked(so));
176	KASSERT(head == NULL || solocked2(so, head));
177
178	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
179	so->so_state |= SS_ISCONNECTED;
180	if (head && so->so_onq == &head->so_q0) {
181		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182			/*
183			 * Re-enqueue and wake up any waiters, e.g.
184			 * processes blocking on accept().
185			 */
186			soqremque(so, 0);
187			soqinsque(head, so, 1);
188			sorwakeup(head);
189			cv_broadcast(&head->so_cv);
190		} else {
191			so->so_upcall =
192			    head->so_accf->so_accept_filter->accf_callback;
193			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
194			so->so_rcv.sb_flags |= SB_UPCALL;
195			so->so_options &= ~SO_ACCEPTFILTER;
196			(*so->so_upcall)(so, so->so_upcallarg,
197					 POLLIN|POLLRDNORM, M_DONTWAIT);
198		}
199	} else {
200		cv_broadcast(&so->so_cv);
201		sorwakeup(so);
202		sowwakeup(so);
203	}
204}
205
206void
207soisdisconnecting(struct socket *so)
208{
209
210	KASSERT(solocked(so));
211
212	so->so_state &= ~SS_ISCONNECTING;
213	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
214	cv_broadcast(&so->so_cv);
215	sowwakeup(so);
216	sorwakeup(so);
217}
218
219void
220soisdisconnected(struct socket *so)
221{
222
223	KASSERT(solocked(so));
224
225	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
226	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
227	cv_broadcast(&so->so_cv);
228	sowwakeup(so);
229	sorwakeup(so);
230}
231
232void
233soinit2(void)
234{
235
236	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
237	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
238}
239
240/*
241 * sonewconn: accept a new connection.
242 *
243 * When an attempt at a new connection is noted on a socket which accepts
244 * connections, sonewconn(9) is called.  If the connection is possible
245 * (subject to space constraints, etc) then we allocate a new structure,
246 * properly linked into the data structure of the original socket.
247 *
248 * => If 'soready' is true, then socket will become ready for accept() i.e.
249 *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
250 * => May be called from soft-interrupt context.
251 * => Listening socket should be locked.
252 * => Returns the new socket locked.
253 */
254struct socket *
255sonewconn(struct socket *head, bool soready)
256{
257	struct socket *so;
258	int soqueue, error;
259
260	KASSERT(solocked(head));
261
262	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
263		/* Listen queue overflow. */
264		return NULL;
265	}
266	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
267		soready = false;
268	}
269	soqueue = soready ? 1 : 0;
270
271	if ((so = soget(false)) == NULL) {
272		return NULL;
273	}
274	so->so_type = head->so_type;
275	so->so_options = head->so_options & ~SO_ACCEPTCONN;
276	so->so_linger = head->so_linger;
277	so->so_state = head->so_state | SS_NOFDREF;
278	so->so_proto = head->so_proto;
279	so->so_timeo = head->so_timeo;
280	so->so_pgid = head->so_pgid;
281	so->so_send = head->so_send;
282	so->so_receive = head->so_receive;
283	so->so_uidinfo = head->so_uidinfo;
284	so->so_cpid = head->so_cpid;
285#ifdef MBUFTRACE
286	so->so_mowner = head->so_mowner;
287	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
288	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
289#endif
290	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
291		goto out;
292	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
293	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
294	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
295	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
296	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
297	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
298
299	/*
300	 * Share the lock with the listening-socket, it may get unshared
301	 * once the connection is complete.
302	 */
303	mutex_obj_hold(head->so_lock);
304	so->so_lock = head->so_lock;
305
306	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
307	    NULL, NULL);
308	KASSERT(solocked(so));
309	if (error) {
310out:
311		KASSERT(so->so_accf == NULL);
312		soput(so);
313
314		/* Note: the listening socket shall stay locked. */
315		KASSERT(solocked(head));
316		return NULL;
317	}
318
319	/*
320	 * Insert into the queue.  If ready, update the connection status
321	 * and wake up any waiters, e.g. processes blocking on accept().
322	 */
323	soqinsque(head, so, soqueue);
324	if (soready) {
325		so->so_state |= SS_ISCONNECTED;
326		sorwakeup(head);
327		cv_broadcast(&head->so_cv);
328	}
329	KASSERT(solocked2(head, so));
330	return so;
331}
332
333struct socket *
334soget(bool waitok)
335{
336	struct socket *so;
337
338	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
339	if (__predict_false(so == NULL))
340		return (NULL);
341	memset(so, 0, sizeof(*so));
342	TAILQ_INIT(&so->so_q0);
343	TAILQ_INIT(&so->so_q);
344	cv_init(&so->so_cv, "socket");
345	cv_init(&so->so_rcv.sb_cv, "netio");
346	cv_init(&so->so_snd.sb_cv, "netio");
347	selinit(&so->so_rcv.sb_sel);
348	selinit(&so->so_snd.sb_sel);
349	so->so_rcv.sb_so = so;
350	so->so_snd.sb_so = so;
351	return so;
352}
353
354void
355soput(struct socket *so)
356{
357
358	KASSERT(!cv_has_waiters(&so->so_cv));
359	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
360	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
361	seldestroy(&so->so_rcv.sb_sel);
362	seldestroy(&so->so_snd.sb_sel);
363	mutex_obj_free(so->so_lock);
364	cv_destroy(&so->so_cv);
365	cv_destroy(&so->so_rcv.sb_cv);
366	cv_destroy(&so->so_snd.sb_cv);
367	pool_cache_put(socket_cache, so);
368}
369
370/*
371 * soqinsque: insert socket of a new connection into the specified
372 * accept queue of the listening socket (head).
373 *
374 *	q = 0: queue of partial connections
375 *	q = 1: queue of incoming connections
376 */
377void
378soqinsque(struct socket *head, struct socket *so, int q)
379{
380	KASSERT(q == 0 || q == 1);
381	KASSERT(solocked2(head, so));
382	KASSERT(so->so_onq == NULL);
383	KASSERT(so->so_head == NULL);
384
385	so->so_head = head;
386	if (q == 0) {
387		head->so_q0len++;
388		so->so_onq = &head->so_q0;
389	} else {
390		head->so_qlen++;
391		so->so_onq = &head->so_q;
392	}
393	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
394}
395
396/*
397 * soqremque: remove socket from the specified queue.
398 *
399 * => Returns true if socket was removed from the specified queue.
400 * => False if socket was not removed (because it was in other queue).
401 */
402bool
403soqremque(struct socket *so, int q)
404{
405	struct socket *head = so->so_head;
406
407	KASSERT(q == 0 || q == 1);
408	KASSERT(solocked(so));
409	KASSERT(so->so_onq != NULL);
410	KASSERT(head != NULL);
411
412	if (q == 0) {
413		if (so->so_onq != &head->so_q0)
414			return false;
415		head->so_q0len--;
416	} else {
417		if (so->so_onq != &head->so_q)
418			return false;
419		head->so_qlen--;
420	}
421	KASSERT(solocked2(so, head));
422	TAILQ_REMOVE(so->so_onq, so, so_qe);
423	so->so_onq = NULL;
424	so->so_head = NULL;
425	return true;
426}
427
428/*
429 * socantsendmore: indicates that no more data will be sent on the
430 * socket; it would normally be applied to a socket when the user
431 * informs the system that no more data is to be sent, by the protocol
432 * code (in case PRU_SHUTDOWN).
433 */
434void
435socantsendmore(struct socket *so)
436{
437	KASSERT(solocked(so));
438
439	so->so_state |= SS_CANTSENDMORE;
440	sowwakeup(so);
441}
442
443/*
444 * socantrcvmore(): indicates that no more data will be received and
445 * will normally be applied to the socket by a protocol when it detects
446 * that the peer will send no more data.  Data queued for reading in
447 * the socket may yet be read.
448 */
449void
450socantrcvmore(struct socket *so)
451{
452	KASSERT(solocked(so));
453
454	so->so_state |= SS_CANTRCVMORE;
455	sorwakeup(so);
456}
457
458/*
459 * Wait for data to arrive at/drain from a socket buffer.
460 */
461int
462sbwait(struct sockbuf *sb)
463{
464	struct socket *so;
465	kmutex_t *lock;
466	int error;
467
468	so = sb->sb_so;
469
470	KASSERT(solocked(so));
471
472	sb->sb_flags |= SB_NOTIFY;
473	lock = so->so_lock;
474	if ((sb->sb_flags & SB_NOINTR) != 0)
475		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
476	else
477		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
478	if (__predict_false(lock != so->so_lock))
479		solockretry(so, lock);
480	return error;
481}
482
483/*
484 * Wakeup processes waiting on a socket buffer.
485 * Do asynchronous notification via SIGIO
486 * if the socket buffer has the SB_ASYNC flag set.
487 */
488void
489sowakeup(struct socket *so, struct sockbuf *sb, int code)
490{
491	int band;
492
493	KASSERT(solocked(so));
494	KASSERT(sb->sb_so == so);
495
496	if (code == POLL_IN)
497		band = POLLIN|POLLRDNORM;
498	else
499		band = POLLOUT|POLLWRNORM;
500	sb->sb_flags &= ~SB_NOTIFY;
501	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
502	cv_broadcast(&sb->sb_cv);
503	if (sb->sb_flags & SB_ASYNC)
504		fownsignal(so->so_pgid, SIGIO, code, band, so);
505	if (sb->sb_flags & SB_UPCALL)
506		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
507}
508
509/*
510 * Reset a socket's lock pointer.  Wake all threads waiting on the
511 * socket's condition variables so that they can restart their waits
512 * using the new lock.  The existing lock must be held.
513 */
514void
515solockreset(struct socket *so, kmutex_t *lock)
516{
517
518	KASSERT(solocked(so));
519
520	so->so_lock = lock;
521	cv_broadcast(&so->so_snd.sb_cv);
522	cv_broadcast(&so->so_rcv.sb_cv);
523	cv_broadcast(&so->so_cv);
524}
525
526/*
527 * Socket buffer (struct sockbuf) utility routines.
528 *
529 * Each socket contains two socket buffers: one for sending data and
530 * one for receiving data.  Each buffer contains a queue of mbufs,
531 * information about the number of mbufs and amount of data in the
532 * queue, and other fields allowing poll() statements and notification
533 * on data availability to be implemented.
534 *
535 * Data stored in a socket buffer is maintained as a list of records.
536 * Each record is a list of mbufs chained together with the m_next
537 * field.  Records are chained together with the m_nextpkt field. The upper
538 * level routine soreceive() expects the following conventions to be
539 * observed when placing information in the receive buffer:
540 *
541 * 1. If the protocol requires each message be preceded by the sender's
542 *    name, then a record containing that name must be present before
543 *    any associated data (mbuf's must be of type MT_SONAME).
544 * 2. If the protocol supports the exchange of ``access rights'' (really
545 *    just additional data associated with the message), and there are
546 *    ``rights'' to be received, then a record containing this data
547 *    should be present (mbuf's must be of type MT_CONTROL).
548 * 3. If a name or rights record exists, then it must be followed by
549 *    a data record, perhaps of zero length.
550 *
551 * Before using a new socket structure it is first necessary to reserve
552 * buffer space to the socket, by calling sbreserve().  This should commit
553 * some of the available buffer space in the system buffer pool for the
554 * socket (currently, it does nothing but enforce limits).  The space
555 * should be released by calling sbrelease() when the socket is destroyed.
556 */
557
558int
559sb_max_set(u_long new_sbmax)
560{
561	int s;
562
563	if (new_sbmax < (16 * 1024))
564		return (EINVAL);
565
566	s = splsoftnet();
567	sb_max = new_sbmax;
568	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
569	splx(s);
570
571	return (0);
572}
573
574int
575soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
576{
577	KASSERT(so->so_pcb == NULL || solocked(so));
578
579	/*
580	 * there's at least one application (a configure script of screen)
581	 * which expects a fifo is writable even if it has "some" bytes
582	 * in its buffer.
583	 * so we want to make sure (hiwat - lowat) >= (some bytes).
584	 *
585	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
586	 * we expect it's large enough for such applications.
587	 */
588	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
589	u_long  hiwat = lowat + PIPE_BUF;
590
591	if (sndcc < hiwat)
592		sndcc = hiwat;
593	if (sbreserve(&so->so_snd, sndcc, so) == 0)
594		goto bad;
595	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
596		goto bad2;
597	if (so->so_rcv.sb_lowat == 0)
598		so->so_rcv.sb_lowat = 1;
599	if (so->so_snd.sb_lowat == 0)
600		so->so_snd.sb_lowat = lowat;
601	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
602		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
603	return (0);
604 bad2:
605	sbrelease(&so->so_snd, so);
606 bad:
607	return (ENOBUFS);
608}
609
610/*
611 * Allot mbufs to a sockbuf.
612 * Attempt to scale mbmax so that mbcnt doesn't become limiting
613 * if buffering efficiency is near the normal case.
614 */
615int
616sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
617{
618	struct lwp *l = curlwp; /* XXX */
619	rlim_t maxcc;
620	struct uidinfo *uidinfo;
621
622	KASSERT(so->so_pcb == NULL || solocked(so));
623	KASSERT(sb->sb_so == so);
624	KASSERT(sb_max_adj != 0);
625
626	if (cc == 0 || cc > sb_max_adj)
627		return (0);
628
629	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
630
631	uidinfo = so->so_uidinfo;
632	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
633		return 0;
634	sb->sb_mbmax = min(cc * 2, sb_max);
635	if (sb->sb_lowat > sb->sb_hiwat)
636		sb->sb_lowat = sb->sb_hiwat;
637	return (1);
638}
639
640/*
641 * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
642 * that the socket is held locked here: see sorflush().
643 */
644void
645sbrelease(struct sockbuf *sb, struct socket *so)
646{
647
648	KASSERT(sb->sb_so == so);
649
650	sbflush(sb);
651	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
652	sb->sb_mbmax = 0;
653}
654
655/*
656 * Routines to add and remove
657 * data from an mbuf queue.
658 *
659 * The routines sbappend() or sbappendrecord() are normally called to
660 * append new mbufs to a socket buffer, after checking that adequate
661 * space is available, comparing the function sbspace() with the amount
662 * of data to be added.  sbappendrecord() differs from sbappend() in
663 * that data supplied is treated as the beginning of a new record.
664 * To place a sender's address, optional access rights, and data in a
665 * socket receive buffer, sbappendaddr() should be used.  To place
666 * access rights and data in a socket receive buffer, sbappendrights()
667 * should be used.  In either case, the new data begins a new record.
668 * Note that unlike sbappend() and sbappendrecord(), these routines check
669 * for the caller that there will be enough space to store the data.
670 * Each fails if there is not enough space, or if it cannot find mbufs
671 * to store additional information in.
672 *
673 * Reliable protocols may use the socket send buffer to hold data
674 * awaiting acknowledgement.  Data is normally copied from a socket
675 * send buffer in a protocol with m_copy for output to a peer,
676 * and then removing the data from the socket buffer with sbdrop()
677 * or sbdroprecord() when the data is acknowledged by the peer.
678 */
679
680#ifdef SOCKBUF_DEBUG
681void
682sblastrecordchk(struct sockbuf *sb, const char *where)
683{
684	struct mbuf *m = sb->sb_mb;
685
686	KASSERT(solocked(sb->sb_so));
687
688	while (m && m->m_nextpkt)
689		m = m->m_nextpkt;
690
691	if (m != sb->sb_lastrecord) {
692		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
693		    sb->sb_mb, sb->sb_lastrecord, m);
694		printf("packet chain:\n");
695		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
696			printf("\t%p\n", m);
697		panic("sblastrecordchk from %s", where);
698	}
699}
700
701void
702sblastmbufchk(struct sockbuf *sb, const char *where)
703{
704	struct mbuf *m = sb->sb_mb;
705	struct mbuf *n;
706
707	KASSERT(solocked(sb->sb_so));
708
709	while (m && m->m_nextpkt)
710		m = m->m_nextpkt;
711
712	while (m && m->m_next)
713		m = m->m_next;
714
715	if (m != sb->sb_mbtail) {
716		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
717		    sb->sb_mb, sb->sb_mbtail, m);
718		printf("packet tree:\n");
719		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
720			printf("\t");
721			for (n = m; n != NULL; n = n->m_next)
722				printf("%p ", n);
723			printf("\n");
724		}
725		panic("sblastmbufchk from %s", where);
726	}
727}
728#endif /* SOCKBUF_DEBUG */
729
730/*
731 * Link a chain of records onto a socket buffer
732 */
733#define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
734do {									\
735	if ((sb)->sb_lastrecord != NULL)				\
736		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
737	else								\
738		(sb)->sb_mb = (m0);					\
739	(sb)->sb_lastrecord = (mlast);					\
740} while (/*CONSTCOND*/0)
741
742
743#define	SBLINKRECORD(sb, m0)						\
744    SBLINKRECORDCHAIN(sb, m0, m0)
745
746/*
747 * Append mbuf chain m to the last record in the
748 * socket buffer sb.  The additional space associated
749 * the mbuf chain is recorded in sb.  Empty mbufs are
750 * discarded and mbufs are compacted where possible.
751 */
752void
753sbappend(struct sockbuf *sb, struct mbuf *m)
754{
755	struct mbuf	*n;
756
757	KASSERT(solocked(sb->sb_so));
758
759	if (m == NULL)
760		return;
761
762#ifdef MBUFTRACE
763	m_claimm(m, sb->sb_mowner);
764#endif
765
766	SBLASTRECORDCHK(sb, "sbappend 1");
767
768	if ((n = sb->sb_lastrecord) != NULL) {
769		/*
770		 * XXX Would like to simply use sb_mbtail here, but
771		 * XXX I need to verify that I won't miss an EOR that
772		 * XXX way.
773		 */
774		do {
775			if (n->m_flags & M_EOR) {
776				sbappendrecord(sb, m); /* XXXXXX!!!! */
777				return;
778			}
779		} while (n->m_next && (n = n->m_next));
780	} else {
781		/*
782		 * If this is the first record in the socket buffer, it's
783		 * also the last record.
784		 */
785		sb->sb_lastrecord = m;
786	}
787	sbcompress(sb, m, n);
788	SBLASTRECORDCHK(sb, "sbappend 2");
789}
790
791/*
792 * This version of sbappend() should only be used when the caller
793 * absolutely knows that there will never be more than one record
794 * in the socket buffer, that is, a stream protocol (such as TCP).
795 */
796void
797sbappendstream(struct sockbuf *sb, struct mbuf *m)
798{
799
800	KASSERT(solocked(sb->sb_so));
801	KDASSERT(m->m_nextpkt == NULL);
802	KASSERT(sb->sb_mb == sb->sb_lastrecord);
803
804	SBLASTMBUFCHK(sb, __func__);
805
806#ifdef MBUFTRACE
807	m_claimm(m, sb->sb_mowner);
808#endif
809
810	sbcompress(sb, m, sb->sb_mbtail);
811
812	sb->sb_lastrecord = sb->sb_mb;
813	SBLASTRECORDCHK(sb, __func__);
814}
815
816#ifdef SOCKBUF_DEBUG
817void
818sbcheck(struct sockbuf *sb)
819{
820	struct mbuf	*m, *m2;
821	u_long		len, mbcnt;
822
823	KASSERT(solocked(sb->sb_so));
824
825	len = 0;
826	mbcnt = 0;
827	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
828		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
829			len += m2->m_len;
830			mbcnt += MSIZE;
831			if (m2->m_flags & M_EXT)
832				mbcnt += m2->m_ext.ext_size;
833			if (m2->m_nextpkt != NULL)
834				panic("sbcheck nextpkt");
835		}
836	}
837	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
838		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
839		    mbcnt, sb->sb_mbcnt);
840		panic("sbcheck");
841	}
842}
843#endif
844
845/*
846 * As above, except the mbuf chain
847 * begins a new record.
848 */
849void
850sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
851{
852	struct mbuf	*m;
853
854	KASSERT(solocked(sb->sb_so));
855
856	if (m0 == NULL)
857		return;
858
859#ifdef MBUFTRACE
860	m_claimm(m0, sb->sb_mowner);
861#endif
862	/*
863	 * Put the first mbuf on the queue.
864	 * Note this permits zero length records.
865	 */
866	sballoc(sb, m0);
867	SBLASTRECORDCHK(sb, "sbappendrecord 1");
868	SBLINKRECORD(sb, m0);
869	m = m0->m_next;
870	m0->m_next = 0;
871	if (m && (m0->m_flags & M_EOR)) {
872		m0->m_flags &= ~M_EOR;
873		m->m_flags |= M_EOR;
874	}
875	sbcompress(sb, m, m0);
876	SBLASTRECORDCHK(sb, "sbappendrecord 2");
877}
878
879/*
880 * As above except that OOB data
881 * is inserted at the beginning of the sockbuf,
882 * but after any other OOB data.
883 */
884void
885sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
886{
887	struct mbuf	*m, **mp;
888
889	KASSERT(solocked(sb->sb_so));
890
891	if (m0 == NULL)
892		return;
893
894	SBLASTRECORDCHK(sb, "sbinsertoob 1");
895
896	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
897	    again:
898		switch (m->m_type) {
899
900		case MT_OOBDATA:
901			continue;		/* WANT next train */
902
903		case MT_CONTROL:
904			if ((m = m->m_next) != NULL)
905				goto again;	/* inspect THIS train further */
906		}
907		break;
908	}
909	/*
910	 * Put the first mbuf on the queue.
911	 * Note this permits zero length records.
912	 */
913	sballoc(sb, m0);
914	m0->m_nextpkt = *mp;
915	if (*mp == NULL) {
916		/* m0 is actually the new tail */
917		sb->sb_lastrecord = m0;
918	}
919	*mp = m0;
920	m = m0->m_next;
921	m0->m_next = 0;
922	if (m && (m0->m_flags & M_EOR)) {
923		m0->m_flags &= ~M_EOR;
924		m->m_flags |= M_EOR;
925	}
926	sbcompress(sb, m, m0);
927	SBLASTRECORDCHK(sb, "sbinsertoob 2");
928}
929
930/*
931 * Append address and data, and optionally, control (ancillary) data
932 * to the receive queue of a socket.  If present,
933 * m0 must include a packet header with total length.
934 * Returns 0 if no space in sockbuf or insufficient mbufs.
935 */
936int
937sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
938	struct mbuf *control)
939{
940	struct mbuf	*m, *n, *nlast;
941	int		space, len;
942
943	KASSERT(solocked(sb->sb_so));
944
945	space = asa->sa_len;
946
947	if (m0 != NULL) {
948		if ((m0->m_flags & M_PKTHDR) == 0)
949			panic("sbappendaddr");
950		space += m0->m_pkthdr.len;
951#ifdef MBUFTRACE
952		m_claimm(m0, sb->sb_mowner);
953#endif
954	}
955	for (n = control; n; n = n->m_next) {
956		space += n->m_len;
957		MCLAIM(n, sb->sb_mowner);
958		if (n->m_next == NULL)	/* keep pointer to last control buf */
959			break;
960	}
961	if (space > sbspace(sb))
962		return (0);
963	m = m_get(M_DONTWAIT, MT_SONAME);
964	if (m == NULL)
965		return (0);
966	MCLAIM(m, sb->sb_mowner);
967	/*
968	 * XXX avoid 'comparison always true' warning which isn't easily
969	 * avoided.
970	 */
971	len = asa->sa_len;
972	if (len > MLEN) {
973		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
974		if ((m->m_flags & M_EXT) == 0) {
975			m_free(m);
976			return (0);
977		}
978	}
979	m->m_len = asa->sa_len;
980	memcpy(mtod(m, void *), asa, asa->sa_len);
981	if (n)
982		n->m_next = m0;		/* concatenate data to control */
983	else
984		control = m0;
985	m->m_next = control;
986
987	SBLASTRECORDCHK(sb, "sbappendaddr 1");
988
989	for (n = m; n->m_next != NULL; n = n->m_next)
990		sballoc(sb, n);
991	sballoc(sb, n);
992	nlast = n;
993	SBLINKRECORD(sb, m);
994
995	sb->sb_mbtail = nlast;
996	SBLASTMBUFCHK(sb, "sbappendaddr");
997	SBLASTRECORDCHK(sb, "sbappendaddr 2");
998
999	return (1);
1000}
1001
1002/*
1003 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1004 * an mbuf chain.
1005 */
1006static inline struct mbuf *
1007m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1008		   const struct sockaddr *asa)
1009{
1010	struct mbuf *m;
1011	const int salen = asa->sa_len;
1012
1013	KASSERT(solocked(sb->sb_so));
1014
1015	/* only the first in each chain need be a pkthdr */
1016	m = m_gethdr(M_DONTWAIT, MT_SONAME);
1017	if (m == NULL)
1018		return NULL;
1019	MCLAIM(m, sb->sb_mowner);
1020#ifdef notyet
1021	if (salen > MHLEN) {
1022		MEXTMALLOC(m, salen, M_NOWAIT);
1023		if ((m->m_flags & M_EXT) == 0) {
1024			m_free(m);
1025			return NULL;
1026		}
1027	}
1028#else
1029	KASSERT(salen <= MHLEN);
1030#endif
1031	m->m_len = salen;
1032	memcpy(mtod(m, void *), asa, salen);
1033	m->m_next = m0;
1034	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1035
1036	return m;
1037}
1038
1039int
1040sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1041		  struct mbuf *m0, int sbprio)
1042{
1043	struct mbuf *m, *n, *n0, *nlast;
1044	int error;
1045
1046	KASSERT(solocked(sb->sb_so));
1047
1048	/*
1049	 * XXX sbprio reserved for encoding priority of this* request:
1050	 *  SB_PRIO_NONE --> honour normal sb limits
1051	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1052	 *	take whole chain. Intended for large requests
1053	 *      that should be delivered atomically (all, or none).
1054	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1055	 *       over normal socket limits, for messages indicating
1056	 *       buffer overflow in earlier normal/lower-priority messages
1057	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1058	 *       Intended for  kernel-generated messages only.
1059	 *        Up to generator to avoid total mbuf resource exhaustion.
1060	 */
1061	(void)sbprio;
1062
1063	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1064		panic("sbappendaddrchain");
1065
1066#ifdef notyet
1067	space = sbspace(sb);
1068
1069	/*
1070	 * Enforce SB_PRIO_* limits as described above.
1071	 */
1072#endif
1073
1074	n0 = NULL;
1075	nlast = NULL;
1076	for (m = m0; m; m = m->m_nextpkt) {
1077		struct mbuf *np;
1078
1079#ifdef MBUFTRACE
1080		m_claimm(m, sb->sb_mowner);
1081#endif
1082
1083		/* Prepend sockaddr to this record (m) of input chain m0 */
1084	  	n = m_prepend_sockaddr(sb, m, asa);
1085		if (n == NULL) {
1086			error = ENOBUFS;
1087			goto bad;
1088		}
1089
1090		/* Append record (asa+m) to end of new chain n0 */
1091		if (n0 == NULL) {
1092			n0 = n;
1093		} else {
1094			nlast->m_nextpkt = n;
1095		}
1096		/* Keep track of last record on new chain */
1097		nlast = n;
1098
1099		for (np = n; np; np = np->m_next)
1100			sballoc(sb, np);
1101	}
1102
1103	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1104
1105	/* Drop the entire chain of (asa+m) records onto the socket */
1106	SBLINKRECORDCHAIN(sb, n0, nlast);
1107
1108	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1109
1110	for (m = nlast; m->m_next; m = m->m_next)
1111		;
1112	sb->sb_mbtail = m;
1113	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1114
1115	return (1);
1116
1117bad:
1118	/*
1119	 * On error, free the prepended addreseses. For consistency
1120	 * with sbappendaddr(), leave it to our caller to free
1121	 * the input record chain passed to us as m0.
1122	 */
1123	while ((n = n0) != NULL) {
1124	  	struct mbuf *np;
1125
1126		/* Undo the sballoc() of this record */
1127		for (np = n; np; np = np->m_next)
1128			sbfree(sb, np);
1129
1130		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1131		MFREE(n, np);		/* free prepended address (not data) */
1132	}
1133	return error;
1134}
1135
1136
1137int
1138sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1139{
1140	struct mbuf	*m, *mlast, *n;
1141	int		space;
1142
1143	KASSERT(solocked(sb->sb_so));
1144
1145	space = 0;
1146	if (control == NULL)
1147		panic("sbappendcontrol");
1148	for (m = control; ; m = m->m_next) {
1149		space += m->m_len;
1150		MCLAIM(m, sb->sb_mowner);
1151		if (m->m_next == NULL)
1152			break;
1153	}
1154	n = m;			/* save pointer to last control buffer */
1155	for (m = m0; m; m = m->m_next) {
1156		MCLAIM(m, sb->sb_mowner);
1157		space += m->m_len;
1158	}
1159	if (space > sbspace(sb))
1160		return (0);
1161	n->m_next = m0;			/* concatenate data to control */
1162
1163	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1164
1165	for (m = control; m->m_next != NULL; m = m->m_next)
1166		sballoc(sb, m);
1167	sballoc(sb, m);
1168	mlast = m;
1169	SBLINKRECORD(sb, control);
1170
1171	sb->sb_mbtail = mlast;
1172	SBLASTMBUFCHK(sb, "sbappendcontrol");
1173	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1174
1175	return (1);
1176}
1177
1178/*
1179 * Compress mbuf chain m into the socket
1180 * buffer sb following mbuf n.  If n
1181 * is null, the buffer is presumed empty.
1182 */
1183void
1184sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1185{
1186	int		eor;
1187	struct mbuf	*o;
1188
1189	KASSERT(solocked(sb->sb_so));
1190
1191	eor = 0;
1192	while (m) {
1193		eor |= m->m_flags & M_EOR;
1194		if (m->m_len == 0 &&
1195		    (eor == 0 ||
1196		     (((o = m->m_next) || (o = n)) &&
1197		      o->m_type == m->m_type))) {
1198			if (sb->sb_lastrecord == m)
1199				sb->sb_lastrecord = m->m_next;
1200			m = m_free(m);
1201			continue;
1202		}
1203		if (n && (n->m_flags & M_EOR) == 0 &&
1204		    /* M_TRAILINGSPACE() checks buffer writeability */
1205		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1206		    m->m_len <= M_TRAILINGSPACE(n) &&
1207		    n->m_type == m->m_type) {
1208			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1209			    (unsigned)m->m_len);
1210			n->m_len += m->m_len;
1211			sb->sb_cc += m->m_len;
1212			m = m_free(m);
1213			continue;
1214		}
1215		if (n)
1216			n->m_next = m;
1217		else
1218			sb->sb_mb = m;
1219		sb->sb_mbtail = m;
1220		sballoc(sb, m);
1221		n = m;
1222		m->m_flags &= ~M_EOR;
1223		m = m->m_next;
1224		n->m_next = 0;
1225	}
1226	if (eor) {
1227		if (n)
1228			n->m_flags |= eor;
1229		else
1230			printf("semi-panic: sbcompress\n");
1231	}
1232	SBLASTMBUFCHK(sb, __func__);
1233}
1234
1235/*
1236 * Free all mbufs in a sockbuf.
1237 * Check that all resources are reclaimed.
1238 */
1239void
1240sbflush(struct sockbuf *sb)
1241{
1242
1243	KASSERT(solocked(sb->sb_so));
1244	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1245
1246	while (sb->sb_mbcnt)
1247		sbdrop(sb, (int)sb->sb_cc);
1248
1249	KASSERT(sb->sb_cc == 0);
1250	KASSERT(sb->sb_mb == NULL);
1251	KASSERT(sb->sb_mbtail == NULL);
1252	KASSERT(sb->sb_lastrecord == NULL);
1253}
1254
1255/*
1256 * Drop data from (the front of) a sockbuf.
1257 */
1258void
1259sbdrop(struct sockbuf *sb, int len)
1260{
1261	struct mbuf	*m, *mn, *next;
1262
1263	KASSERT(solocked(sb->sb_so));
1264
1265	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1266	while (len > 0) {
1267		if (m == NULL) {
1268			if (next == NULL)
1269				panic("sbdrop(%p,%d): cc=%lu",
1270				    sb, len, sb->sb_cc);
1271			m = next;
1272			next = m->m_nextpkt;
1273			continue;
1274		}
1275		if (m->m_len > len) {
1276			m->m_len -= len;
1277			m->m_data += len;
1278			sb->sb_cc -= len;
1279			break;
1280		}
1281		len -= m->m_len;
1282		sbfree(sb, m);
1283		MFREE(m, mn);
1284		m = mn;
1285	}
1286	while (m && m->m_len == 0) {
1287		sbfree(sb, m);
1288		MFREE(m, mn);
1289		m = mn;
1290	}
1291	if (m) {
1292		sb->sb_mb = m;
1293		m->m_nextpkt = next;
1294	} else
1295		sb->sb_mb = next;
1296	/*
1297	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1298	 * makes sure sb_lastrecord is up-to-date if we dropped
1299	 * part of the last record.
1300	 */
1301	m = sb->sb_mb;
1302	if (m == NULL) {
1303		sb->sb_mbtail = NULL;
1304		sb->sb_lastrecord = NULL;
1305	} else if (m->m_nextpkt == NULL)
1306		sb->sb_lastrecord = m;
1307}
1308
1309/*
1310 * Drop a record off the front of a sockbuf
1311 * and move the next record to the front.
1312 */
1313void
1314sbdroprecord(struct sockbuf *sb)
1315{
1316	struct mbuf	*m, *mn;
1317
1318	KASSERT(solocked(sb->sb_so));
1319
1320	m = sb->sb_mb;
1321	if (m) {
1322		sb->sb_mb = m->m_nextpkt;
1323		do {
1324			sbfree(sb, m);
1325			MFREE(m, mn);
1326		} while ((m = mn) != NULL);
1327	}
1328	SB_EMPTY_FIXUP(sb);
1329}
1330
1331/*
1332 * Create a "control" mbuf containing the specified data
1333 * with the specified type for presentation on a socket buffer.
1334 */
1335struct mbuf *
1336sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1337{
1338	struct cmsghdr	*cp;
1339	struct mbuf	*m;
1340	int space = CMSG_SPACE(size);
1341
1342	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1343		printf("%s: message too large %d\n", __func__, space);
1344		return NULL;
1345	}
1346
1347	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1348		return NULL;
1349	if (space > MLEN) {
1350		if (space > MCLBYTES)
1351			MEXTMALLOC(m, space, M_WAITOK);
1352		else
1353			MCLGET(m, flags);
1354		if ((m->m_flags & M_EXT) == 0) {
1355			m_free(m);
1356			return NULL;
1357		}
1358	}
1359	cp = mtod(m, struct cmsghdr *);
1360	*p = CMSG_DATA(cp);
1361	m->m_len = space;
1362	cp->cmsg_len = CMSG_LEN(size);
1363	cp->cmsg_level = level;
1364	cp->cmsg_type = type;
1365	return m;
1366}
1367
1368struct mbuf *
1369sbcreatecontrol(void *p, int size, int type, int level)
1370{
1371	struct mbuf *m;
1372	void *v;
1373
1374	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1375	if (m == NULL)
1376		return NULL;
1377	memcpy(v, p, size);
1378	return m;
1379}
1380
1381void
1382solockretry(struct socket *so, kmutex_t *lock)
1383{
1384
1385	while (lock != so->so_lock) {
1386		mutex_exit(lock);
1387		lock = so->so_lock;
1388		mutex_enter(lock);
1389	}
1390}
1391
1392bool
1393solocked(struct socket *so)
1394{
1395
1396	return mutex_owned(so->so_lock);
1397}
1398
1399bool
1400solocked2(struct socket *so1, struct socket *so2)
1401{
1402	kmutex_t *lock;
1403
1404	lock = so1->so_lock;
1405	if (lock != so2->so_lock)
1406		return false;
1407	return mutex_owned(lock);
1408}
1409
1410/*
1411 * sosetlock: assign a default lock to a new socket.
1412 */
1413void
1414sosetlock(struct socket *so)
1415{
1416	if (so->so_lock == NULL) {
1417		kmutex_t *lock = softnet_lock;
1418
1419		so->so_lock = lock;
1420		mutex_obj_hold(lock);
1421		mutex_enter(lock);
1422	}
1423
1424	/* In all cases, lock must be held on return from PRU_ATTACH. */
1425	KASSERT(solocked(so));
1426}
1427
1428/*
1429 * Set lock on sockbuf sb; sleep if lock is already held.
1430 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1431 * Returns error without lock if sleep is interrupted.
1432 */
1433int
1434sblock(struct sockbuf *sb, int wf)
1435{
1436	struct socket *so;
1437	kmutex_t *lock;
1438	int error;
1439
1440	KASSERT(solocked(sb->sb_so));
1441
1442	for (;;) {
1443		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1444			sb->sb_flags |= SB_LOCK;
1445			return 0;
1446		}
1447		if (wf != M_WAITOK)
1448			return EWOULDBLOCK;
1449		so = sb->sb_so;
1450		lock = so->so_lock;
1451		if ((sb->sb_flags & SB_NOINTR) != 0) {
1452			cv_wait(&so->so_cv, lock);
1453			error = 0;
1454		} else
1455			error = cv_wait_sig(&so->so_cv, lock);
1456		if (__predict_false(lock != so->so_lock))
1457			solockretry(so, lock);
1458		if (error != 0)
1459			return error;
1460	}
1461}
1462
1463void
1464sbunlock(struct sockbuf *sb)
1465{
1466	struct socket *so;
1467
1468	so = sb->sb_so;
1469
1470	KASSERT(solocked(so));
1471	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1472
1473	sb->sb_flags &= ~SB_LOCK;
1474	cv_broadcast(&so->so_cv);
1475}
1476
1477int
1478sowait(struct socket *so, bool catch, int timo)
1479{
1480	kmutex_t *lock;
1481	int error;
1482
1483	KASSERT(solocked(so));
1484	KASSERT(catch || timo != 0);
1485
1486	lock = so->so_lock;
1487	if (catch)
1488		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1489	else
1490		error = cv_timedwait(&so->so_cv, lock, timo);
1491	if (__predict_false(lock != so->so_lock))
1492		solockretry(so, lock);
1493	return error;
1494}
1495