uipc_socket2.c revision 1.115
1/*	$NetBSD: uipc_socket2.c,v 1.115 2013/10/08 19:58:25 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 *    may be used to endorse or promote products derived from this software
43 *    without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58 */
59
60#include <sys/cdefs.h>
61__KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.115 2013/10/08 19:58:25 christos Exp $");
62
63#include "opt_mbuftrace.h"
64#include "opt_sb_max.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/proc.h>
69#include <sys/file.h>
70#include <sys/buf.h>
71#include <sys/mbuf.h>
72#include <sys/protosw.h>
73#include <sys/domain.h>
74#include <sys/poll.h>
75#include <sys/socket.h>
76#include <sys/socketvar.h>
77#include <sys/signalvar.h>
78#include <sys/kauth.h>
79#include <sys/pool.h>
80#include <sys/uidinfo.h>
81
82/*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Locking rules and assumptions:
86 *
87 * o socket::so_lock can change on the fly.  The low level routines used
88 *   to lock sockets are aware of this.  When so_lock is acquired, the
89 *   routine locking must check to see if so_lock still points to the
90 *   lock that was acquired.  If so_lock has changed in the meantime, the
91 *   now irellevant lock that was acquired must be dropped and the lock
92 *   operation retried.  Although not proven here, this is completely safe
93 *   on a multiprocessor system, even with relaxed memory ordering, given
94 *   the next two rules:
95 *
96 * o In order to mutate so_lock, the lock pointed to by the current value
97 *   of so_lock must be held: i.e., the socket must be held locked by the
98 *   changing thread.  The thread must issue membar_exit() to prevent
99 *   memory accesses being reordered, and can set so_lock to the desired
100 *   value.  If the lock pointed to by the new value of so_lock is not
101 *   held by the changing thread, the socket must then be considered
102 *   unlocked.
103 *
104 * o If so_lock is mutated, and the previous lock referred to by so_lock
105 *   could still be visible to other threads in the system (e.g. via file
106 *   descriptor or protocol-internal reference), then the old lock must
107 *   remain valid until the socket and/or protocol control block has been
108 *   torn down.
109 *
110 * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 *   connecting), then locking the socket must also lock the socket pointed
112 *   to by so_head: their lock pointers must match.
113 *
114 * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 *   locking the socket must also lock the sockets attached to both queues.
116 *   Again, their lock pointers must match.
117 *
118 * o Beyond the initial lock assigment in socreate(), assigning locks to
119 *   sockets is the responsibility of the individual protocols / protocol
120 *   domains.
121 */
122
123static pool_cache_t socket_cache;
124
125u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
126static u_long sb_max_adj;	/* adjusted sb_max */
127
128/*
129 * Procedures to manipulate state flags of socket
130 * and do appropriate wakeups.  Normal sequence from the
131 * active (originating) side is that soisconnecting() is
132 * called during processing of connect() call,
133 * resulting in an eventual call to soisconnected() if/when the
134 * connection is established.  When the connection is torn down
135 * soisdisconnecting() is called during processing of disconnect() call,
136 * and soisdisconnected() is called when the connection to the peer
137 * is totally severed.  The semantics of these routines are such that
138 * connectionless protocols can call soisconnected() and soisdisconnected()
139 * only, bypassing the in-progress calls when setting up a ``connection''
140 * takes no time.
141 *
142 * From the passive side, a socket is created with
143 * two queues of sockets: so_q0 for connections in progress
144 * and so_q for connections already made and awaiting user acceptance.
145 * As a protocol is preparing incoming connections, it creates a socket
146 * structure queued on so_q0 by calling sonewconn().  When the connection
147 * is established, soisconnected() is called, and transfers the
148 * socket structure to so_q, making it available to accept().
149 *
150 * If a socket is closed with sockets on either
151 * so_q0 or so_q, these sockets are dropped.
152 *
153 * If higher level protocols are implemented in
154 * the kernel, the wakeups done here will sometimes
155 * cause software-interrupt process scheduling.
156 */
157
158void
159soisconnecting(struct socket *so)
160{
161
162	KASSERT(solocked(so));
163
164	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165	so->so_state |= SS_ISCONNECTING;
166}
167
168void
169soisconnected(struct socket *so)
170{
171	struct socket	*head;
172
173	head = so->so_head;
174
175	KASSERT(solocked(so));
176	KASSERT(head == NULL || solocked2(so, head));
177
178	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
179	so->so_state |= SS_ISCONNECTED;
180	if (head && so->so_onq == &head->so_q0) {
181		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182			soqremque(so, 0);
183			soqinsque(head, so, 1);
184			sorwakeup(head);
185			cv_broadcast(&head->so_cv);
186		} else {
187			so->so_upcall =
188			    head->so_accf->so_accept_filter->accf_callback;
189			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
190			so->so_rcv.sb_flags |= SB_UPCALL;
191			so->so_options &= ~SO_ACCEPTFILTER;
192			(*so->so_upcall)(so, so->so_upcallarg,
193					 POLLIN|POLLRDNORM, M_DONTWAIT);
194		}
195	} else {
196		cv_broadcast(&so->so_cv);
197		sorwakeup(so);
198		sowwakeup(so);
199	}
200}
201
202void
203soisdisconnecting(struct socket *so)
204{
205
206	KASSERT(solocked(so));
207
208	so->so_state &= ~SS_ISCONNECTING;
209	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
210	cv_broadcast(&so->so_cv);
211	sowwakeup(so);
212	sorwakeup(so);
213}
214
215void
216soisdisconnected(struct socket *so)
217{
218
219	KASSERT(solocked(so));
220
221	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
222	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
223	cv_broadcast(&so->so_cv);
224	sowwakeup(so);
225	sorwakeup(so);
226}
227
228void
229soinit2(void)
230{
231
232	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
233	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
234}
235
236/*
237 * When an attempt at a new connection is noted on a socket
238 * which accepts connections, sonewconn is called.  If the
239 * connection is possible (subject to space constraints, etc.)
240 * then we allocate a new structure, propoerly linked into the
241 * data structure of the original socket, and return this.
242 */
243struct socket *
244sonewconn(struct socket *head, bool conncomplete)
245{
246	struct socket	*so;
247	int		soqueue, error;
248
249	KASSERT(solocked(head));
250
251	if ((head->so_options & SO_ACCEPTFILTER) != 0)
252		conncomplete = false;
253	soqueue = conncomplete ? 1 : 0;
254
255	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
256		return NULL;
257	so = soget(false);
258	if (so == NULL)
259		return NULL;
260	mutex_obj_hold(head->so_lock);
261	so->so_lock = head->so_lock;
262	so->so_type = head->so_type;
263	so->so_options = head->so_options &~ SO_ACCEPTCONN;
264	so->so_linger = head->so_linger;
265	so->so_state = head->so_state | SS_NOFDREF;
266	so->so_proto = head->so_proto;
267	so->so_timeo = head->so_timeo;
268	so->so_pgid = head->so_pgid;
269	so->so_send = head->so_send;
270	so->so_receive = head->so_receive;
271	so->so_uidinfo = head->so_uidinfo;
272	so->so_cpid = head->so_cpid;
273#ifdef MBUFTRACE
274	so->so_mowner = head->so_mowner;
275	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
276	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
277#endif
278	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
279		goto out;
280	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
281	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
282	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
283	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
284	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
285	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
286	soqinsque(head, so, soqueue);
287	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
288	    NULL, NULL);
289	KASSERT(solocked(so));
290	if (error != 0) {
291		(void) soqremque(so, soqueue);
292out:
293		/*
294		 * Remove acccept filter if one is present.
295		 * XXX Is this really needed?
296		 */
297		if (so->so_accf != NULL)
298			(void)accept_filt_clear(so);
299		soput(so);
300		return NULL;
301	}
302	if (conncomplete) {
303		sorwakeup(head);
304		cv_broadcast(&head->so_cv);
305		so->so_state |= SS_ISCONNECTED;
306	}
307	return so;
308}
309
310struct socket *
311soget(bool waitok)
312{
313	struct socket *so;
314
315	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
316	if (__predict_false(so == NULL))
317		return (NULL);
318	memset(so, 0, sizeof(*so));
319	TAILQ_INIT(&so->so_q0);
320	TAILQ_INIT(&so->so_q);
321	cv_init(&so->so_cv, "socket");
322	cv_init(&so->so_rcv.sb_cv, "netio");
323	cv_init(&so->so_snd.sb_cv, "netio");
324	selinit(&so->so_rcv.sb_sel);
325	selinit(&so->so_snd.sb_sel);
326	so->so_rcv.sb_so = so;
327	so->so_snd.sb_so = so;
328	return so;
329}
330
331void
332soput(struct socket *so)
333{
334
335	KASSERT(!cv_has_waiters(&so->so_cv));
336	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
337	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
338	seldestroy(&so->so_rcv.sb_sel);
339	seldestroy(&so->so_snd.sb_sel);
340	mutex_obj_free(so->so_lock);
341	cv_destroy(&so->so_cv);
342	cv_destroy(&so->so_rcv.sb_cv);
343	cv_destroy(&so->so_snd.sb_cv);
344	pool_cache_put(socket_cache, so);
345}
346
347void
348soqinsque(struct socket *head, struct socket *so, int q)
349{
350
351	KASSERT(solocked2(head, so));
352
353#ifdef DIAGNOSTIC
354	if (so->so_onq != NULL)
355		panic("soqinsque");
356#endif
357
358	so->so_head = head;
359	if (q == 0) {
360		head->so_q0len++;
361		so->so_onq = &head->so_q0;
362	} else {
363		head->so_qlen++;
364		so->so_onq = &head->so_q;
365	}
366	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
367}
368
369int
370soqremque(struct socket *so, int q)
371{
372	struct socket	*head;
373
374	head = so->so_head;
375
376	KASSERT(solocked(so));
377	if (q == 0) {
378		if (so->so_onq != &head->so_q0)
379			return (0);
380		head->so_q0len--;
381	} else {
382		if (so->so_onq != &head->so_q)
383			return (0);
384		head->so_qlen--;
385	}
386	KASSERT(solocked2(so, head));
387	TAILQ_REMOVE(so->so_onq, so, so_qe);
388	so->so_onq = NULL;
389	so->so_head = NULL;
390	return (1);
391}
392
393/*
394 * Socantsendmore indicates that no more data will be sent on the
395 * socket; it would normally be applied to a socket when the user
396 * informs the system that no more data is to be sent, by the protocol
397 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
398 * will be received, and will normally be applied to the socket by a
399 * protocol when it detects that the peer will send no more data.
400 * Data queued for reading in the socket may yet be read.
401 */
402
403void
404socantsendmore(struct socket *so)
405{
406
407	KASSERT(solocked(so));
408
409	so->so_state |= SS_CANTSENDMORE;
410	sowwakeup(so);
411}
412
413void
414socantrcvmore(struct socket *so)
415{
416
417	KASSERT(solocked(so));
418
419	so->so_state |= SS_CANTRCVMORE;
420	sorwakeup(so);
421}
422
423/*
424 * Wait for data to arrive at/drain from a socket buffer.
425 */
426int
427sbwait(struct sockbuf *sb)
428{
429	struct socket *so;
430	kmutex_t *lock;
431	int error;
432
433	so = sb->sb_so;
434
435	KASSERT(solocked(so));
436
437	sb->sb_flags |= SB_NOTIFY;
438	lock = so->so_lock;
439	if ((sb->sb_flags & SB_NOINTR) != 0)
440		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
441	else
442		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
443	if (__predict_false(lock != so->so_lock))
444		solockretry(so, lock);
445	return error;
446}
447
448/*
449 * Wakeup processes waiting on a socket buffer.
450 * Do asynchronous notification via SIGIO
451 * if the socket buffer has the SB_ASYNC flag set.
452 */
453void
454sowakeup(struct socket *so, struct sockbuf *sb, int code)
455{
456	int band;
457
458	KASSERT(solocked(so));
459	KASSERT(sb->sb_so == so);
460
461	if (code == POLL_IN)
462		band = POLLIN|POLLRDNORM;
463	else
464		band = POLLOUT|POLLWRNORM;
465	sb->sb_flags &= ~SB_NOTIFY;
466	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
467	cv_broadcast(&sb->sb_cv);
468	if (sb->sb_flags & SB_ASYNC)
469		fownsignal(so->so_pgid, SIGIO, code, band, so);
470	if (sb->sb_flags & SB_UPCALL)
471		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
472}
473
474/*
475 * Reset a socket's lock pointer.  Wake all threads waiting on the
476 * socket's condition variables so that they can restart their waits
477 * using the new lock.  The existing lock must be held.
478 */
479void
480solockreset(struct socket *so, kmutex_t *lock)
481{
482
483	KASSERT(solocked(so));
484
485	so->so_lock = lock;
486	cv_broadcast(&so->so_snd.sb_cv);
487	cv_broadcast(&so->so_rcv.sb_cv);
488	cv_broadcast(&so->so_cv);
489}
490
491/*
492 * Socket buffer (struct sockbuf) utility routines.
493 *
494 * Each socket contains two socket buffers: one for sending data and
495 * one for receiving data.  Each buffer contains a queue of mbufs,
496 * information about the number of mbufs and amount of data in the
497 * queue, and other fields allowing poll() statements and notification
498 * on data availability to be implemented.
499 *
500 * Data stored in a socket buffer is maintained as a list of records.
501 * Each record is a list of mbufs chained together with the m_next
502 * field.  Records are chained together with the m_nextpkt field. The upper
503 * level routine soreceive() expects the following conventions to be
504 * observed when placing information in the receive buffer:
505 *
506 * 1. If the protocol requires each message be preceded by the sender's
507 *    name, then a record containing that name must be present before
508 *    any associated data (mbuf's must be of type MT_SONAME).
509 * 2. If the protocol supports the exchange of ``access rights'' (really
510 *    just additional data associated with the message), and there are
511 *    ``rights'' to be received, then a record containing this data
512 *    should be present (mbuf's must be of type MT_CONTROL).
513 * 3. If a name or rights record exists, then it must be followed by
514 *    a data record, perhaps of zero length.
515 *
516 * Before using a new socket structure it is first necessary to reserve
517 * buffer space to the socket, by calling sbreserve().  This should commit
518 * some of the available buffer space in the system buffer pool for the
519 * socket (currently, it does nothing but enforce limits).  The space
520 * should be released by calling sbrelease() when the socket is destroyed.
521 */
522
523int
524sb_max_set(u_long new_sbmax)
525{
526	int s;
527
528	if (new_sbmax < (16 * 1024))
529		return (EINVAL);
530
531	s = splsoftnet();
532	sb_max = new_sbmax;
533	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
534	splx(s);
535
536	return (0);
537}
538
539int
540soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
541{
542
543	KASSERT(so->so_lock == NULL || solocked(so));
544
545	/*
546	 * there's at least one application (a configure script of screen)
547	 * which expects a fifo is writable even if it has "some" bytes
548	 * in its buffer.
549	 * so we want to make sure (hiwat - lowat) >= (some bytes).
550	 *
551	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
552	 * we expect it's large enough for such applications.
553	 */
554	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
555	u_long  hiwat = lowat + PIPE_BUF;
556
557	if (sndcc < hiwat)
558		sndcc = hiwat;
559	if (sbreserve(&so->so_snd, sndcc, so) == 0)
560		goto bad;
561	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
562		goto bad2;
563	if (so->so_rcv.sb_lowat == 0)
564		so->so_rcv.sb_lowat = 1;
565	if (so->so_snd.sb_lowat == 0)
566		so->so_snd.sb_lowat = lowat;
567	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
568		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
569	return (0);
570 bad2:
571	sbrelease(&so->so_snd, so);
572 bad:
573	return (ENOBUFS);
574}
575
576/*
577 * Allot mbufs to a sockbuf.
578 * Attempt to scale mbmax so that mbcnt doesn't become limiting
579 * if buffering efficiency is near the normal case.
580 */
581int
582sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
583{
584	struct lwp *l = curlwp; /* XXX */
585	rlim_t maxcc;
586	struct uidinfo *uidinfo;
587
588	KASSERT(so->so_lock == NULL || solocked(so));
589	KASSERT(sb->sb_so == so);
590	KASSERT(sb_max_adj != 0);
591
592	if (cc == 0 || cc > sb_max_adj)
593		return (0);
594
595	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
596
597	uidinfo = so->so_uidinfo;
598	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
599		return 0;
600	sb->sb_mbmax = min(cc * 2, sb_max);
601	if (sb->sb_lowat > sb->sb_hiwat)
602		sb->sb_lowat = sb->sb_hiwat;
603	return (1);
604}
605
606/*
607 * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
608 * that the socket is held locked here: see sorflush().
609 */
610void
611sbrelease(struct sockbuf *sb, struct socket *so)
612{
613
614	KASSERT(sb->sb_so == so);
615
616	sbflush(sb);
617	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
618	sb->sb_mbmax = 0;
619}
620
621/*
622 * Routines to add and remove
623 * data from an mbuf queue.
624 *
625 * The routines sbappend() or sbappendrecord() are normally called to
626 * append new mbufs to a socket buffer, after checking that adequate
627 * space is available, comparing the function sbspace() with the amount
628 * of data to be added.  sbappendrecord() differs from sbappend() in
629 * that data supplied is treated as the beginning of a new record.
630 * To place a sender's address, optional access rights, and data in a
631 * socket receive buffer, sbappendaddr() should be used.  To place
632 * access rights and data in a socket receive buffer, sbappendrights()
633 * should be used.  In either case, the new data begins a new record.
634 * Note that unlike sbappend() and sbappendrecord(), these routines check
635 * for the caller that there will be enough space to store the data.
636 * Each fails if there is not enough space, or if it cannot find mbufs
637 * to store additional information in.
638 *
639 * Reliable protocols may use the socket send buffer to hold data
640 * awaiting acknowledgement.  Data is normally copied from a socket
641 * send buffer in a protocol with m_copy for output to a peer,
642 * and then removing the data from the socket buffer with sbdrop()
643 * or sbdroprecord() when the data is acknowledged by the peer.
644 */
645
646#ifdef SOCKBUF_DEBUG
647void
648sblastrecordchk(struct sockbuf *sb, const char *where)
649{
650	struct mbuf *m = sb->sb_mb;
651
652	KASSERT(solocked(sb->sb_so));
653
654	while (m && m->m_nextpkt)
655		m = m->m_nextpkt;
656
657	if (m != sb->sb_lastrecord) {
658		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
659		    sb->sb_mb, sb->sb_lastrecord, m);
660		printf("packet chain:\n");
661		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
662			printf("\t%p\n", m);
663		panic("sblastrecordchk from %s", where);
664	}
665}
666
667void
668sblastmbufchk(struct sockbuf *sb, const char *where)
669{
670	struct mbuf *m = sb->sb_mb;
671	struct mbuf *n;
672
673	KASSERT(solocked(sb->sb_so));
674
675	while (m && m->m_nextpkt)
676		m = m->m_nextpkt;
677
678	while (m && m->m_next)
679		m = m->m_next;
680
681	if (m != sb->sb_mbtail) {
682		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
683		    sb->sb_mb, sb->sb_mbtail, m);
684		printf("packet tree:\n");
685		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
686			printf("\t");
687			for (n = m; n != NULL; n = n->m_next)
688				printf("%p ", n);
689			printf("\n");
690		}
691		panic("sblastmbufchk from %s", where);
692	}
693}
694#endif /* SOCKBUF_DEBUG */
695
696/*
697 * Link a chain of records onto a socket buffer
698 */
699#define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
700do {									\
701	if ((sb)->sb_lastrecord != NULL)				\
702		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
703	else								\
704		(sb)->sb_mb = (m0);					\
705	(sb)->sb_lastrecord = (mlast);					\
706} while (/*CONSTCOND*/0)
707
708
709#define	SBLINKRECORD(sb, m0)						\
710    SBLINKRECORDCHAIN(sb, m0, m0)
711
712/*
713 * Append mbuf chain m to the last record in the
714 * socket buffer sb.  The additional space associated
715 * the mbuf chain is recorded in sb.  Empty mbufs are
716 * discarded and mbufs are compacted where possible.
717 */
718void
719sbappend(struct sockbuf *sb, struct mbuf *m)
720{
721	struct mbuf	*n;
722
723	KASSERT(solocked(sb->sb_so));
724
725	if (m == NULL)
726		return;
727
728#ifdef MBUFTRACE
729	m_claimm(m, sb->sb_mowner);
730#endif
731
732	SBLASTRECORDCHK(sb, "sbappend 1");
733
734	if ((n = sb->sb_lastrecord) != NULL) {
735		/*
736		 * XXX Would like to simply use sb_mbtail here, but
737		 * XXX I need to verify that I won't miss an EOR that
738		 * XXX way.
739		 */
740		do {
741			if (n->m_flags & M_EOR) {
742				sbappendrecord(sb, m); /* XXXXXX!!!! */
743				return;
744			}
745		} while (n->m_next && (n = n->m_next));
746	} else {
747		/*
748		 * If this is the first record in the socket buffer, it's
749		 * also the last record.
750		 */
751		sb->sb_lastrecord = m;
752	}
753	sbcompress(sb, m, n);
754	SBLASTRECORDCHK(sb, "sbappend 2");
755}
756
757/*
758 * This version of sbappend() should only be used when the caller
759 * absolutely knows that there will never be more than one record
760 * in the socket buffer, that is, a stream protocol (such as TCP).
761 */
762void
763sbappendstream(struct sockbuf *sb, struct mbuf *m)
764{
765
766	KASSERT(solocked(sb->sb_so));
767	KDASSERT(m->m_nextpkt == NULL);
768	KASSERT(sb->sb_mb == sb->sb_lastrecord);
769
770	SBLASTMBUFCHK(sb, __func__);
771
772#ifdef MBUFTRACE
773	m_claimm(m, sb->sb_mowner);
774#endif
775
776	sbcompress(sb, m, sb->sb_mbtail);
777
778	sb->sb_lastrecord = sb->sb_mb;
779	SBLASTRECORDCHK(sb, __func__);
780}
781
782#ifdef SOCKBUF_DEBUG
783void
784sbcheck(struct sockbuf *sb)
785{
786	struct mbuf	*m, *m2;
787	u_long		len, mbcnt;
788
789	KASSERT(solocked(sb->sb_so));
790
791	len = 0;
792	mbcnt = 0;
793	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
794		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
795			len += m2->m_len;
796			mbcnt += MSIZE;
797			if (m2->m_flags & M_EXT)
798				mbcnt += m2->m_ext.ext_size;
799			if (m2->m_nextpkt != NULL)
800				panic("sbcheck nextpkt");
801		}
802	}
803	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
804		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
805		    mbcnt, sb->sb_mbcnt);
806		panic("sbcheck");
807	}
808}
809#endif
810
811/*
812 * As above, except the mbuf chain
813 * begins a new record.
814 */
815void
816sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
817{
818	struct mbuf	*m;
819
820	KASSERT(solocked(sb->sb_so));
821
822	if (m0 == NULL)
823		return;
824
825#ifdef MBUFTRACE
826	m_claimm(m0, sb->sb_mowner);
827#endif
828	/*
829	 * Put the first mbuf on the queue.
830	 * Note this permits zero length records.
831	 */
832	sballoc(sb, m0);
833	SBLASTRECORDCHK(sb, "sbappendrecord 1");
834	SBLINKRECORD(sb, m0);
835	m = m0->m_next;
836	m0->m_next = 0;
837	if (m && (m0->m_flags & M_EOR)) {
838		m0->m_flags &= ~M_EOR;
839		m->m_flags |= M_EOR;
840	}
841	sbcompress(sb, m, m0);
842	SBLASTRECORDCHK(sb, "sbappendrecord 2");
843}
844
845/*
846 * As above except that OOB data
847 * is inserted at the beginning of the sockbuf,
848 * but after any other OOB data.
849 */
850void
851sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
852{
853	struct mbuf	*m, **mp;
854
855	KASSERT(solocked(sb->sb_so));
856
857	if (m0 == NULL)
858		return;
859
860	SBLASTRECORDCHK(sb, "sbinsertoob 1");
861
862	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
863	    again:
864		switch (m->m_type) {
865
866		case MT_OOBDATA:
867			continue;		/* WANT next train */
868
869		case MT_CONTROL:
870			if ((m = m->m_next) != NULL)
871				goto again;	/* inspect THIS train further */
872		}
873		break;
874	}
875	/*
876	 * Put the first mbuf on the queue.
877	 * Note this permits zero length records.
878	 */
879	sballoc(sb, m0);
880	m0->m_nextpkt = *mp;
881	if (*mp == NULL) {
882		/* m0 is actually the new tail */
883		sb->sb_lastrecord = m0;
884	}
885	*mp = m0;
886	m = m0->m_next;
887	m0->m_next = 0;
888	if (m && (m0->m_flags & M_EOR)) {
889		m0->m_flags &= ~M_EOR;
890		m->m_flags |= M_EOR;
891	}
892	sbcompress(sb, m, m0);
893	SBLASTRECORDCHK(sb, "sbinsertoob 2");
894}
895
896/*
897 * Append address and data, and optionally, control (ancillary) data
898 * to the receive queue of a socket.  If present,
899 * m0 must include a packet header with total length.
900 * Returns 0 if no space in sockbuf or insufficient mbufs.
901 */
902int
903sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
904	struct mbuf *control)
905{
906	struct mbuf	*m, *n, *nlast;
907	int		space, len;
908
909	KASSERT(solocked(sb->sb_so));
910
911	space = asa->sa_len;
912
913	if (m0 != NULL) {
914		if ((m0->m_flags & M_PKTHDR) == 0)
915			panic("sbappendaddr");
916		space += m0->m_pkthdr.len;
917#ifdef MBUFTRACE
918		m_claimm(m0, sb->sb_mowner);
919#endif
920	}
921	for (n = control; n; n = n->m_next) {
922		space += n->m_len;
923		MCLAIM(n, sb->sb_mowner);
924		if (n->m_next == NULL)	/* keep pointer to last control buf */
925			break;
926	}
927	if (space > sbspace(sb))
928		return (0);
929	m = m_get(M_DONTWAIT, MT_SONAME);
930	if (m == NULL)
931		return (0);
932	MCLAIM(m, sb->sb_mowner);
933	/*
934	 * XXX avoid 'comparison always true' warning which isn't easily
935	 * avoided.
936	 */
937	len = asa->sa_len;
938	if (len > MLEN) {
939		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
940		if ((m->m_flags & M_EXT) == 0) {
941			m_free(m);
942			return (0);
943		}
944	}
945	m->m_len = asa->sa_len;
946	memcpy(mtod(m, void *), asa, asa->sa_len);
947	if (n)
948		n->m_next = m0;		/* concatenate data to control */
949	else
950		control = m0;
951	m->m_next = control;
952
953	SBLASTRECORDCHK(sb, "sbappendaddr 1");
954
955	for (n = m; n->m_next != NULL; n = n->m_next)
956		sballoc(sb, n);
957	sballoc(sb, n);
958	nlast = n;
959	SBLINKRECORD(sb, m);
960
961	sb->sb_mbtail = nlast;
962	SBLASTMBUFCHK(sb, "sbappendaddr");
963	SBLASTRECORDCHK(sb, "sbappendaddr 2");
964
965	return (1);
966}
967
968/*
969 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
970 * an mbuf chain.
971 */
972static inline struct mbuf *
973m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
974		   const struct sockaddr *asa)
975{
976	struct mbuf *m;
977	const int salen = asa->sa_len;
978
979	KASSERT(solocked(sb->sb_so));
980
981	/* only the first in each chain need be a pkthdr */
982	m = m_gethdr(M_DONTWAIT, MT_SONAME);
983	if (m == NULL)
984		return NULL;
985	MCLAIM(m, sb->sb_mowner);
986#ifdef notyet
987	if (salen > MHLEN) {
988		MEXTMALLOC(m, salen, M_NOWAIT);
989		if ((m->m_flags & M_EXT) == 0) {
990			m_free(m);
991			return NULL;
992		}
993	}
994#else
995	KASSERT(salen <= MHLEN);
996#endif
997	m->m_len = salen;
998	memcpy(mtod(m, void *), asa, salen);
999	m->m_next = m0;
1000	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1001
1002	return m;
1003}
1004
1005int
1006sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1007		  struct mbuf *m0, int sbprio)
1008{
1009	struct mbuf *m, *n, *n0, *nlast;
1010	int error;
1011
1012	KASSERT(solocked(sb->sb_so));
1013
1014	/*
1015	 * XXX sbprio reserved for encoding priority of this* request:
1016	 *  SB_PRIO_NONE --> honour normal sb limits
1017	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1018	 *	take whole chain. Intended for large requests
1019	 *      that should be delivered atomically (all, or none).
1020	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1021	 *       over normal socket limits, for messages indicating
1022	 *       buffer overflow in earlier normal/lower-priority messages
1023	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1024	 *       Intended for  kernel-generated messages only.
1025	 *        Up to generator to avoid total mbuf resource exhaustion.
1026	 */
1027	(void)sbprio;
1028
1029	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1030		panic("sbappendaddrchain");
1031
1032#ifdef notyet
1033	space = sbspace(sb);
1034
1035	/*
1036	 * Enforce SB_PRIO_* limits as described above.
1037	 */
1038#endif
1039
1040	n0 = NULL;
1041	nlast = NULL;
1042	for (m = m0; m; m = m->m_nextpkt) {
1043		struct mbuf *np;
1044
1045#ifdef MBUFTRACE
1046		m_claimm(m, sb->sb_mowner);
1047#endif
1048
1049		/* Prepend sockaddr to this record (m) of input chain m0 */
1050	  	n = m_prepend_sockaddr(sb, m, asa);
1051		if (n == NULL) {
1052			error = ENOBUFS;
1053			goto bad;
1054		}
1055
1056		/* Append record (asa+m) to end of new chain n0 */
1057		if (n0 == NULL) {
1058			n0 = n;
1059		} else {
1060			nlast->m_nextpkt = n;
1061		}
1062		/* Keep track of last record on new chain */
1063		nlast = n;
1064
1065		for (np = n; np; np = np->m_next)
1066			sballoc(sb, np);
1067	}
1068
1069	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1070
1071	/* Drop the entire chain of (asa+m) records onto the socket */
1072	SBLINKRECORDCHAIN(sb, n0, nlast);
1073
1074	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1075
1076	for (m = nlast; m->m_next; m = m->m_next)
1077		;
1078	sb->sb_mbtail = m;
1079	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1080
1081	return (1);
1082
1083bad:
1084	/*
1085	 * On error, free the prepended addreseses. For consistency
1086	 * with sbappendaddr(), leave it to our caller to free
1087	 * the input record chain passed to us as m0.
1088	 */
1089	while ((n = n0) != NULL) {
1090	  	struct mbuf *np;
1091
1092		/* Undo the sballoc() of this record */
1093		for (np = n; np; np = np->m_next)
1094			sbfree(sb, np);
1095
1096		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1097		MFREE(n, np);		/* free prepended address (not data) */
1098	}
1099	return error;
1100}
1101
1102
1103int
1104sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1105{
1106	struct mbuf	*m, *mlast, *n;
1107	int		space;
1108
1109	KASSERT(solocked(sb->sb_so));
1110
1111	space = 0;
1112	if (control == NULL)
1113		panic("sbappendcontrol");
1114	for (m = control; ; m = m->m_next) {
1115		space += m->m_len;
1116		MCLAIM(m, sb->sb_mowner);
1117		if (m->m_next == NULL)
1118			break;
1119	}
1120	n = m;			/* save pointer to last control buffer */
1121	for (m = m0; m; m = m->m_next) {
1122		MCLAIM(m, sb->sb_mowner);
1123		space += m->m_len;
1124	}
1125	if (space > sbspace(sb))
1126		return (0);
1127	n->m_next = m0;			/* concatenate data to control */
1128
1129	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1130
1131	for (m = control; m->m_next != NULL; m = m->m_next)
1132		sballoc(sb, m);
1133	sballoc(sb, m);
1134	mlast = m;
1135	SBLINKRECORD(sb, control);
1136
1137	sb->sb_mbtail = mlast;
1138	SBLASTMBUFCHK(sb, "sbappendcontrol");
1139	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1140
1141	return (1);
1142}
1143
1144/*
1145 * Compress mbuf chain m into the socket
1146 * buffer sb following mbuf n.  If n
1147 * is null, the buffer is presumed empty.
1148 */
1149void
1150sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1151{
1152	int		eor;
1153	struct mbuf	*o;
1154
1155	KASSERT(solocked(sb->sb_so));
1156
1157	eor = 0;
1158	while (m) {
1159		eor |= m->m_flags & M_EOR;
1160		if (m->m_len == 0 &&
1161		    (eor == 0 ||
1162		     (((o = m->m_next) || (o = n)) &&
1163		      o->m_type == m->m_type))) {
1164			if (sb->sb_lastrecord == m)
1165				sb->sb_lastrecord = m->m_next;
1166			m = m_free(m);
1167			continue;
1168		}
1169		if (n && (n->m_flags & M_EOR) == 0 &&
1170		    /* M_TRAILINGSPACE() checks buffer writeability */
1171		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1172		    m->m_len <= M_TRAILINGSPACE(n) &&
1173		    n->m_type == m->m_type) {
1174			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1175			    (unsigned)m->m_len);
1176			n->m_len += m->m_len;
1177			sb->sb_cc += m->m_len;
1178			m = m_free(m);
1179			continue;
1180		}
1181		if (n)
1182			n->m_next = m;
1183		else
1184			sb->sb_mb = m;
1185		sb->sb_mbtail = m;
1186		sballoc(sb, m);
1187		n = m;
1188		m->m_flags &= ~M_EOR;
1189		m = m->m_next;
1190		n->m_next = 0;
1191	}
1192	if (eor) {
1193		if (n)
1194			n->m_flags |= eor;
1195		else
1196			printf("semi-panic: sbcompress\n");
1197	}
1198	SBLASTMBUFCHK(sb, __func__);
1199}
1200
1201/*
1202 * Free all mbufs in a sockbuf.
1203 * Check that all resources are reclaimed.
1204 */
1205void
1206sbflush(struct sockbuf *sb)
1207{
1208
1209	KASSERT(solocked(sb->sb_so));
1210	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1211
1212	while (sb->sb_mbcnt)
1213		sbdrop(sb, (int)sb->sb_cc);
1214
1215	KASSERT(sb->sb_cc == 0);
1216	KASSERT(sb->sb_mb == NULL);
1217	KASSERT(sb->sb_mbtail == NULL);
1218	KASSERT(sb->sb_lastrecord == NULL);
1219}
1220
1221/*
1222 * Drop data from (the front of) a sockbuf.
1223 */
1224void
1225sbdrop(struct sockbuf *sb, int len)
1226{
1227	struct mbuf	*m, *mn, *next;
1228
1229	KASSERT(solocked(sb->sb_so));
1230
1231	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1232	while (len > 0) {
1233		if (m == NULL) {
1234			if (next == NULL)
1235				panic("sbdrop(%p,%d): cc=%lu",
1236				    sb, len, sb->sb_cc);
1237			m = next;
1238			next = m->m_nextpkt;
1239			continue;
1240		}
1241		if (m->m_len > len) {
1242			m->m_len -= len;
1243			m->m_data += len;
1244			sb->sb_cc -= len;
1245			break;
1246		}
1247		len -= m->m_len;
1248		sbfree(sb, m);
1249		MFREE(m, mn);
1250		m = mn;
1251	}
1252	while (m && m->m_len == 0) {
1253		sbfree(sb, m);
1254		MFREE(m, mn);
1255		m = mn;
1256	}
1257	if (m) {
1258		sb->sb_mb = m;
1259		m->m_nextpkt = next;
1260	} else
1261		sb->sb_mb = next;
1262	/*
1263	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1264	 * makes sure sb_lastrecord is up-to-date if we dropped
1265	 * part of the last record.
1266	 */
1267	m = sb->sb_mb;
1268	if (m == NULL) {
1269		sb->sb_mbtail = NULL;
1270		sb->sb_lastrecord = NULL;
1271	} else if (m->m_nextpkt == NULL)
1272		sb->sb_lastrecord = m;
1273}
1274
1275/*
1276 * Drop a record off the front of a sockbuf
1277 * and move the next record to the front.
1278 */
1279void
1280sbdroprecord(struct sockbuf *sb)
1281{
1282	struct mbuf	*m, *mn;
1283
1284	KASSERT(solocked(sb->sb_so));
1285
1286	m = sb->sb_mb;
1287	if (m) {
1288		sb->sb_mb = m->m_nextpkt;
1289		do {
1290			sbfree(sb, m);
1291			MFREE(m, mn);
1292		} while ((m = mn) != NULL);
1293	}
1294	SB_EMPTY_FIXUP(sb);
1295}
1296
1297/*
1298 * Create a "control" mbuf containing the specified data
1299 * with the specified type for presentation on a socket buffer.
1300 */
1301struct mbuf *
1302sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1303{
1304	struct cmsghdr	*cp;
1305	struct mbuf	*m;
1306	int space = CMSG_SPACE(size);
1307
1308	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1309		printf("%s: message too large %d\n", __func__, space);
1310		return NULL;
1311	}
1312
1313	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1314		return NULL;
1315	if (space > MLEN) {
1316		if (space > MCLBYTES)
1317			MEXTMALLOC(m, space, M_WAITOK);
1318		else
1319			MCLGET(m, flags);
1320		if ((m->m_flags & M_EXT) == 0) {
1321			m_free(m);
1322			return NULL;
1323		}
1324	}
1325	cp = mtod(m, struct cmsghdr *);
1326	*p = CMSG_DATA(cp);
1327	m->m_len = space;
1328	cp->cmsg_len = CMSG_LEN(size);
1329	cp->cmsg_level = level;
1330	cp->cmsg_type = type;
1331	return m;
1332}
1333
1334struct mbuf *
1335sbcreatecontrol(void *p, int size, int type, int level)
1336{
1337	struct mbuf *m;
1338	void *v;
1339
1340	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1341	if (m == NULL)
1342		return NULL;
1343	memcpy(v, p, size);
1344	return m;
1345}
1346
1347void
1348solockretry(struct socket *so, kmutex_t *lock)
1349{
1350
1351	while (lock != so->so_lock) {
1352		mutex_exit(lock);
1353		lock = so->so_lock;
1354		mutex_enter(lock);
1355	}
1356}
1357
1358bool
1359solocked(struct socket *so)
1360{
1361
1362	return mutex_owned(so->so_lock);
1363}
1364
1365bool
1366solocked2(struct socket *so1, struct socket *so2)
1367{
1368	kmutex_t *lock;
1369
1370	lock = so1->so_lock;
1371	if (lock != so2->so_lock)
1372		return false;
1373	return mutex_owned(lock);
1374}
1375
1376/*
1377 * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
1378 * protocols that do not have special locking requirements.
1379 */
1380void
1381sosetlock(struct socket *so)
1382{
1383	kmutex_t *lock;
1384
1385	if (so->so_lock == NULL) {
1386		lock = softnet_lock;
1387		so->so_lock = lock;
1388		mutex_obj_hold(lock);
1389		mutex_enter(lock);
1390	}
1391
1392	/* In all cases, lock must be held on return from PRU_ATTACH. */
1393	KASSERT(solocked(so));
1394}
1395
1396/*
1397 * Set lock on sockbuf sb; sleep if lock is already held.
1398 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1399 * Returns error without lock if sleep is interrupted.
1400 */
1401int
1402sblock(struct sockbuf *sb, int wf)
1403{
1404	struct socket *so;
1405	kmutex_t *lock;
1406	int error;
1407
1408	KASSERT(solocked(sb->sb_so));
1409
1410	for (;;) {
1411		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1412			sb->sb_flags |= SB_LOCK;
1413			return 0;
1414		}
1415		if (wf != M_WAITOK)
1416			return EWOULDBLOCK;
1417		so = sb->sb_so;
1418		lock = so->so_lock;
1419		if ((sb->sb_flags & SB_NOINTR) != 0) {
1420			cv_wait(&so->so_cv, lock);
1421			error = 0;
1422		} else
1423			error = cv_wait_sig(&so->so_cv, lock);
1424		if (__predict_false(lock != so->so_lock))
1425			solockretry(so, lock);
1426		if (error != 0)
1427			return error;
1428	}
1429}
1430
1431void
1432sbunlock(struct sockbuf *sb)
1433{
1434	struct socket *so;
1435
1436	so = sb->sb_so;
1437
1438	KASSERT(solocked(so));
1439	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1440
1441	sb->sb_flags &= ~SB_LOCK;
1442	cv_broadcast(&so->so_cv);
1443}
1444
1445int
1446sowait(struct socket *so, bool catch, int timo)
1447{
1448	kmutex_t *lock;
1449	int error;
1450
1451	KASSERT(solocked(so));
1452	KASSERT(catch || timo != 0);
1453
1454	lock = so->so_lock;
1455	if (catch)
1456		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1457	else
1458		error = cv_timedwait(&so->so_cv, lock, timo);
1459	if (__predict_false(lock != so->so_lock))
1460		solockretry(so, lock);
1461	return error;
1462}
1463